二叉树应用之二叉树基本算法的实现
二叉树的遍历及常用算法

⼆叉树的遍历及常⽤算法⼆叉树的遍历及常⽤算法遍历的定义:按照某种次序访问⼆叉树上的所有结点,且每个节点仅被访问⼀次;遍历的重要性:当我们需要对⼀颗⼆叉树进⾏,插⼊,删除,查找等操作时,通常都需要先遍历⼆叉树,所有说:遍历是⼆叉树的基本操作;遍历思路:⼆叉树的数据结构是递归定义(每个节点都可能包含相同结构的⼦节点),所以遍历也可以使⽤递归,即结点不为空则继续递归调⽤每个节点都有三个域,数据与,左孩⼦指针和右孩⼦之指针,每次遍历只需要读取数据,递归左⼦树,递归右⼦树,这三个操作三种遍历次序:根据访问三个域的不同顺序,可以有多种不同的遍历次序,⽽通常对于⼦树的访问都按照从左往右的顺序;设:L为遍历左⼦树,D为访问根结点,R为遍历右⼦树,且L必须位于R的前⾯可以得出以下三种不同的遍历次序:先序遍历操作次序为DLR,⾸先访问根结点,其次遍历根的左⼦树,最后遍历根右⼦树,对每棵⼦树同样按这三步(先根、后左、再右)进⾏中序遍历操作次序为LDR,⾸先遍历根的左⼦树,其次访问根结点,最后遍历根右⼦树,对每棵⼦树同样按这三步(先左、后根、再右)进⾏后序遍历操作次序为LRD,⾸先遍历根的左⼦树,其次遍历根的右⼦树,最后访问根结点,对每棵⼦树同样按这三步(先左、后右、最后根)进⾏层次遍历层次遍历即按照从上到下从左到右的顺序依次遍历所有节点,实现层次遍历通常需要借助⼀个队列,将接下来要遍历的结点依次加⼊队列中;遍历的应⽤“遍历”是⼆叉树各种操作的基础,可以在遍历过程中对结点进⾏各种操作,如:对于⼀棵已知⼆叉树求⼆叉树中结点的个数求⼆叉树中叶⼦结点的个数;求⼆叉树中度为1的结点个数求⼆叉树中度为2的结点个数5求⼆叉树中⾮终端结点个数交换结点左右孩⼦判定结点所在层次等等...C语⾔实现:#include <stdio.h>//⼆叉链表数据结构定义typedef struct TNode {char data;struct TNode *lchild;struct TNode *rchild;} *BinTree, BinNode;//初始化//传⼊⼀个指针令指针指向NULLvoid initiate(BinTree *tree) {*tree = NULL;}//创建树void create(BinTree *BT) {printf("输⼊当前结点值: (0则创建空节点)\n");char data;scanf(" %c", &data);//连续输⼊整形和字符时.字符变量会接受到换⾏,所以加空格if (data == 48) {*BT = NULL;return;} else {//创建根结点//注意开辟的空间⼤⼩是结构体的⼤⼩⽽不是结构体指针⼤⼩,写错了不会⽴马产⽣问题,但是后续在其中存储数据时极有可能出现内存访问异常(飙泪....) *BT = malloc(sizeof(struct TNode));//数据域赋值(*BT)->data = data;printf("输⼊节点 %c 的左孩⼦ \n", data);create(&((*BT)->lchild));//递归创建左⼦树printf("输⼊节点 %c 的右孩⼦ \n", data);create(&((*BT)->rchild));//递归创建右⼦树}}//求双亲结点(⽗结点)BinNode *Parent(BinTree tree, char x) {if (tree == NULL)return NULL;else if ((tree->lchild != NULL && tree->lchild->data == x) || (tree->rchild != NULL && tree->rchild->data == x))return tree;else{BinNode *node1 = Parent(tree->lchild, x);BinNode *node2 = Parent(tree->rchild, x);return node1 != NULL ? node1 : node2;}}//先序遍历void PreOrder(BinTree tree) {if (tree) {//输出数据printf("%c ", tree->data);//不为空则按顺序继续递归判断该节点的两个⼦节点PreOrder(tree->lchild);PreOrder(tree->rchild);}}//中序void InOrder(BinTree tree) {if (tree) {InOrder(tree->lchild);printf("%c ", tree->data);InOrder(tree->rchild);}}//后序void PostOrder(BinTree tree) {if (tree) {PostOrder(tree->lchild);PostOrder(tree->rchild);printf("%c ", tree->data);}}//销毁结点递归free所有节点void DestroyTree(BinTree *tree) {if (*tree != NULL) {printf("free %c \n", (*tree)->data);if ((*tree)->lchild) {DestroyTree(&((*tree)->lchild));}if ((*tree)->rchild) {DestroyTree(&((*tree)->rchild));}free(*tree);*tree = NULL;}}// 查找元素为X的结点使⽤的是层次遍历BinNode *FindNode(BinTree tree, char x) {if (tree == NULL) {return NULL;}//队列BinNode *nodes[1000] = {};//队列头尾位置int front = 0, real = 0;//将根节点插⼊到队列尾nodes[real] = tree;real += 1;//若队列不为空则继续while (front != real) {//取出队列头结点输出数据BinNode *current = nodes[front];if (current->data == x) {return current;}front++;//若当前节点还有⼦(左/右)节点则将结点加⼊队列if (current->lchild != NULL) {nodes[real] = current->lchild;real++;}if (current->rchild != NULL) {nodes[real] = current->rchild;real++;}}return NULL;}//层次遍历// 查找元素为X的结点使⽤的是层次遍历void LevelOrder(BinTree tree) {if (tree == NULL) {return;}//队列BinNode *nodes[1000] = {};//队列头尾位置int front = 0, real = 0;//将根节点插⼊到队列尾nodes[real] = tree;real += 1;//若队列不为空则继续while (front != real) {//取出队列头结点输出数据BinNode *current = nodes[front];printf("%2c", current->data);front++;//若当前节点还有⼦(左/右)节点则将结点加⼊队列if (current->lchild != NULL) {nodes[real] = current->lchild;real++;}if (current->rchild != NULL) {nodes[real] = current->rchild;real++;}}}//查找x的左孩⼦BinNode *Lchild(BinTree tree, char x) {BinTree node = FindNode(tree, x);if (node != NULL) {return node->lchild;}return NULL;}//查找x的右孩⼦BinNode *Rchild(BinTree tree, char x) {BinTree node = FindNode(tree, x);if (node != NULL) {return node->rchild;}return NULL;}//求叶⼦结点数量int leafCount(BinTree *tree) {if (*tree == NULL)return 0;//若左右⼦树都为空则该节点为叶⼦,且后续不⽤接续递归了else if (!(*tree)->lchild && !(*tree)->rchild)return 1;else//若当前结点存在⼦树,则递归左右⼦树, 结果相加return leafCount(&((*tree)->lchild)) + leafCount(&((*tree)->rchild));}//求⾮叶⼦结点数量int NotLeafCount(BinTree *tree) {if (*tree == NULL)return 0;//若该结点左右⼦树均为空,则是叶⼦,且不⽤继续递归else if (!(*tree)->lchild && !(*tree)->rchild)return 0;else//若当前结点存在左右⼦树,则是⾮叶⼦结点(数量+1),在递归获取左右⼦树中的⾮叶⼦结点,结果相加 return NotLeafCount(&((*tree)->lchild)) + NotLeafCount(&((*tree)->rchild)) + 1;}//求树的⾼度(深度)int DepthCount(BinTree *tree) {if (*tree == NULL)return 0;else{//当前节点不为空则深度+1 在加上⼦树的⾼度,int lc = DepthCount(&((*tree)->lchild)) + 1;int rc = DepthCount(&((*tree)->rchild)) + 1;return lc > rc?lc:rc;// 取两⼦树深度的最⼤值 }}//删除左⼦树void RemoveLeft(BinNode *node){if (!node)return;if (node->lchild)DestroyTree(&(node->lchild));node->lchild = NULL;}//删除右⼦树void RemoveRight(BinNode *node){if (!node)return;if (node->rchild)DestroyTree(&(node->rchild));node->rchild = NULL;}int main() {BinTree tree;create(&tree);BinNode *node = Parent(tree, 'G');printf("G的⽗结点为%c\n",node->data);BinNode *node2 = Lchild(tree, 'D');printf("D的左孩⼦结点为%c\n",node2->data);BinNode *node3 = Rchild(tree, 'D');printf("D的右孩⼦结点为%c\n",node3->data);printf("先序遍历为:");PreOrder(tree);printf("\n");printf("中序遍历为:");InOrder(tree);printf("\n");printf("后序遍历为:");PostOrder(tree);printf("\n");printf("层次遍历为:");LevelOrder(tree);printf("\n");int a = leafCount(&tree);printf("叶⼦结点数为%d\n",a);int b = NotLeafCount(&tree);printf("⾮叶⼦结点数为%d\n",b);int c = DepthCount(&tree);printf("深度为%d\n",c);//查找F节点BinNode *node4 = FindNode(tree,'C');RemoveLeft(node4);printf("删除C的左孩⼦后遍历:");LevelOrder(tree);printf("\n");RemoveRight(node4);printf("删除C的右孩⼦后遍历:");LevelOrder(tree);printf("\n");//销毁树printf("销毁树 \n");DestroyTree(&tree);printf("销毁后后遍历:");LevelOrder(tree);printf("\n");printf("Hello, World!\n");return 0;}测试:测试数据为下列⼆叉树:运⾏程序复制粘贴下列内容:ABDGHECKFIJ特别感谢:iammomo。
二叉树的各种基本运算的实现实验报告

软件技术基础实验四--二叉树的各种基本运算的实现班级:电信0901学号:0703090106姓名:蒋玮珂实验四二叉树的各种基本运算的实现(1)实验题目:编写一个程序,实现二叉树的各种基本运算,并在此基础上设计一个主程序完成如下功能:(1)创建二叉树btree(2)求出二叉树btree的树高(3)中序遍历二叉树btree(4)统计二叉树btree的叶结点数(5)输出二叉树btree的所有叶结点(2)实验目的:(1)掌握二叉树的递归操作与运算;(2)加深对二叉树的建立,先序中序遍历方法以及树高的理解与应用(3)调试通过并正确执行给定功能要求的实验代码#include "stdafx.h"#include <fstream.h>struct bitree{char data;bitree *lchild;bitree *rchild;};bitree *createtree(char a[],char b[],int l1,int h1,int l2,int h2) {btree *root;int i,lhigh,rhigh;root=(btree*)malloc(sizeof(btree));root->data=a[l1];if(i=h1,(b[i]!=(root->data)),i++){lhigh=i-h1;rhigh=h2-i;if(lhigh)root->lchild=createtree(a,b,l1+1,l1+lhigh,h1,h1+lhigh-1);elseroot->lchild=NULL;if(rhigh)root->rchild=createtree(a,b,l2-rhigh+1,l2,h2-rhigh+1,h2);elseroot->rchild=NULL;}return root;}int treehigh(bitree *q)if(q==NULL)return 0;else{int lhigh,rhigh;lhigh=treehigh(q->lchild);rhigh=treehigh(q->rchild);if(lhigh>=rhigh)return lhigh+1;elsereturn rhigh+1;}}void inorder(bitree *q){j=0;if(q!=NULL){inorder(q->lchild,str1+(++j));*(str1+j)=q->data;inorder(q->rchild,str1+(++j));}}int countleaf(bitree *q, int count,int flag,char *str2) {k=0;if(q==0)return NULL;else if (q->lchild==NULL &&q->rchild==NULL){count ++;while (flag)*(str2+(k++))=q->data;return count;}else{countleaf(q->lchild ,count,flag,str2+(++k));countleaf(q->rchild ,count,flag,str2+(++k));if(!flag)return count;elsereturn NULL;}}void main()bitree *q;int high,flag,n=0,i=0;char x,y;ifstream infile("e:\\ProgramFiles\\MSDev98\\MyProjects\\jwk\\infile.txt");ofstream outfile("e:\\ProgramFiles\\MSDev98\\MyProjects\\jwk\\outfile.txt");char a[20],b[20],str2[20],str1[20];while(infile.get(x)){infile>>x;a[i++]=x;n++;}i=0;while(infile.get(y)){infile>>y;b[i++]=y;}q=createtree(a,b,1,n,1,n);high=treehigh(q);outfile<<"The height of the bitree is:"<<high<<endl;outfile<<"The sequence of the bitree by the way of inorder:"<<endl; inorder(q,str1);i=0;while(str1[i])outfile<<str1[i++];count=0;flag=0;count=countleaf(q,count,flag,str2);cout<<"The number of the leaves is:"<<endl<<count<<endl;flag=1;cout<<"The leaves of the bitree is:"<<endl;i=0;while(str2[i])outfile<<str2[i++];infile.close();outfile.close();}(4)实验结果截图。
二叉树的储存结构的实现及应用

二叉树的储存结构的实现及应用二叉树是一种常见的数据结构,它在计算机科学和算法设计中广泛应用。
二叉树的储存结构有多种实现方式,包括顺序储存结构和链式储存结构。
本文将从这两种储存结构的实现和应用角度进行详细介绍,以便读者更好地理解二叉树的储存结构及其在实际应用中的作用。
一、顺序储存结构的实现及应用顺序储存结构是将二叉树的节点按照从上到下、从左到右的顺序依次存储在一维数组中。
通常采用数组来实现顺序储存结构,数组的下标和节点的位置之间存在一定的对应关系,通过数学计算可以快速找到节点的父节点、左孩子和右孩子。
顺序储存结构的实现相对简单,利用数组的特性可以迅速随机访问节点,适用于完全二叉树。
1.1 实现过程在采用顺序储存结构的实现中,需要首先确定二叉树的深度,然后根据深度确定数组的长度。
通过数学计算可以得到节点间的位置关系,初始化数组并按照规定的顺序将二叉树节点逐一填入数组中。
在访问二叉树节点时,可以通过计算得到节点的父节点和子节点的位置,从而实现随机访问。
1.2 应用场景顺序储存结构适用于完全二叉树的储存和遍历,常见的应用场景包括二叉堆和哈夫曼树。
二叉堆是一种特殊的二叉树,顺序储存结构可以方便地实现它的插入、删除和调整操作,因此在堆排序、优先队列等算法中得到广泛应用。
哈夫曼树则是数据压缩领域的重要应用,通过顺序储存结构可以有效地构建和处理哈夫曼树,实现压缩编码和解码操作。
二、链式储存结构的实现及应用链式储存结构是通过指针将二叉树的节点连接起来,形成一个类似链表的结构。
每个节点包含数据域和指针域,指针域指向节点的左右孩子节点。
链式储存结构的实现相对灵活,适用于任意形态的二叉树,但需要额外的指针空间来存储节点的地址信息。
2.1 实现过程在链式储存结构的实现中,每个节点需要定义为一个包含数据域和指针域的结构体或类。
通过指针来连接各个节点,形成一个二叉树的结构。
在树的遍历和操作中,可以通过指针的操作来实现节点的访问和处理,具有较高的灵活性和可扩展性。
二叉树算法的应用

二叉树算法的应用二叉树算法在计算机科学中有着广泛的应用,它是一种非常有效的数据结构,可以用于解决许多问题。
下面将介绍二叉树算法的一些应用。
搜索二叉树搜索二叉树是一种特殊的二叉树,其中每个节点的值都大于其左子树中的所有节点的值,且小于其右子树中的所有节点的值。
搜索二叉树的应用非常广泛,例如搜索引擎、数据库索引、哈希表等。
在这些应用中,搜索二叉树可以有效地对数据进行排序和查找,提高数据处理的效率。
二叉堆二叉堆是一种特殊的二叉树,其中每个节点的值都大于或等于其子节点的值。
二叉堆可以用于实现优先队列、堆排序等算法。
在优先队列中,可以使用二叉堆来维护一组元素,并按照元素的优先级进行排序。
在堆排序中,可以使用二叉堆来对一组元素进行排序,其时间复杂度为O(nlogn)。
二叉搜索树二叉搜索树是一种特殊的二叉树,其中每个节点的值都大于其左子树中的所有节点的值,且小于其右子树中的所有节点的值。
二叉搜索树可以用于实现插入排序、查找、删除等算法。
在插入排序中,可以使用二叉搜索树来对一组元素进行排序,其时间复杂度为O(nlogn)。
在查找算法中,可以使用二叉搜索树来快速查找元素。
在删除算法中,可以使用二叉搜索树来删除指定的元素。
平衡二叉树平衡二叉树是一种特殊的二叉树,其中每个节点的左右子树的深度差不超过1。
平衡二叉树可以用于实现AVL树、红黑树等算法。
这些算法可以保证在最坏情况下,插入、删除等操作的时间复杂度为O(logn)。
二叉决策树二叉决策树是一种特殊的二叉树,其中每个节点表示一个决策。
在机器学习中,可以使用二叉决策树来构建分类器或回归器。
例如,决策树算法可以用于构建分类器,根据输入的特征来预测输出类别。
Trie树Trie树是一种特殊的二叉树,其中每个节点表示一个字符。
Trie树可以用于实现字符串匹配、文本压缩等算法。
在字符串匹配中,可以使用Trie树来快速查找字符串中的子串。
在文本压缩中,可以使用Trie树来存储一个字符串的所有前缀,从而减少存储空间的使用。
数据结构之二叉树(BinaryTree)

数据结构之⼆叉树(BinaryTree)⽬录导读 ⼆叉树是⼀种很常见的数据结构,但要注意的是,⼆叉树并不是树的特殊情况,⼆叉树与树是两种不⼀样的数据结构。
⽬录 ⼀、⼆叉树的定义 ⼆、⼆叉树为何不是特殊的树 三、⼆叉树的五种基本形态 四、⼆叉树相关术语 五、⼆叉树的主要性质(6个) 六、⼆叉树的存储结构(2种) 七、⼆叉树的遍历算法(4种) ⼋、⼆叉树的基本应⽤:⼆叉排序树、平衡⼆叉树、赫夫曼树及赫夫曼编码⼀、⼆叉树的定义 如果你知道树的定义(有限个结点组成的具有层次关系的集合),那么就很好理解⼆叉树了。
定义:⼆叉树是n(n≥0)个结点的有限集,⼆叉树是每个结点最多有两个⼦树的树结构,它由⼀个根结点及左⼦树和右⼦树组成。
(这⾥的左⼦树和右⼦树也是⼆叉树)。
值得注意的是,⼆叉树和“度⾄多为2的有序树”⼏乎⼀样,但,⼆叉树不是树的特殊情形。
具体分析如下⼆、⼆叉树为何不是特殊的树 1、⼆叉树与⽆序树不同 ⼆叉树的⼦树有左右之分,不能颠倒。
⽆序树的⼦树⽆左右之分。
2、⼆叉树与有序树也不同(关键) 当有序树有两个⼦树时,确实可以看做⼀颗⼆叉树,但当只有⼀个⼦树时,就没有了左右之分,如图所⽰:三、⼆叉树的五种基本状态四、⼆叉树相关术语是满⼆叉树;⽽国际定义为,不存在度为1的结点,即结点的度要么为2要么为0,这样的⼆叉树就称为满⼆叉树。
这两种概念完全不同,既然在国内,我们就默认第⼀种定义就好)。
完全⼆叉树:如果将⼀颗深度为K的⼆叉树按从上到下、从左到右的顺序进⾏编号,如果各结点的编号与深度为K的满⼆叉树相同位置的编号完全对应,那么这就是⼀颗完全⼆叉树。
如图所⽰:五、⼆叉树的主要性质 ⼆叉树的性质是基于它的结构⽽得来的,这些性质不必死记,使⽤到再查询或者⾃⼰根据⼆叉树结构进⾏推理即可。
性质1:⾮空⼆叉树的叶⼦结点数等于双分⽀结点数加1。
证明:设⼆叉树的叶⼦结点数为X,单分⽀结点数为Y,双分⽀结点数为Z。
数据结构实验三——二叉树基本操作及运算实验报告

《数据结构与数据库》实验报告实验题目二叉树的基本操作及运算一、需要分析问题描述:实现二叉树(包括二叉排序树)的建立,并实现先序、中序、后序和按层次遍历,计算叶子结点数、树的深度、树的宽度,求树的非空子孙结点个数、度为2的结点数目、度为2的结点数目,以及二叉树常用运算。
问题分析:二叉树树型结构是一类重要的非线性数据结构,对它的熟练掌握是学习数据结构的基本要求。
由于二叉树的定义本身就是一种递归定义,所以二叉树的一些基本操作也可采用递归调用的方法。
处理本问题,我觉得应该:1、建立二叉树;2、通过递归方法来遍历(先序、中序和后序)二叉树;3、通过队列应用来实现对二叉树的层次遍历;4、借用递归方法对二叉树进行一些基本操作,如:求叶子数、树的深度宽度等;5、运用广义表对二叉树进行广义表形式的打印。
算法规定:输入形式:为了方便操作,规定二叉树的元素类型都为字符型,允许各种字符类型的输入,没有元素的结点以空格输入表示,并且本实验是以先序顺序输入的。
输出形式:通过先序、中序和后序遍历的方法对树的各字符型元素进行遍历打印,再以广义表形式进行打印。
对二叉树的一些运算结果以整型输出。
程序功能:实现对二叉树的先序、中序和后序遍历,层次遍历。
计算叶子结点数、树的深度、树的宽度,求树的非空子孙结点个数、度为2的结点数目、度为2的结点数目。
对二叉树的某个元素进行查找,对二叉树的某个结点进行删除。
测试数据:输入一:ABC□□DE□G□□F□□□(以□表示空格),查找5,删除E预测结果:先序遍历ABCDEGF中序遍历CBEGDFA后序遍历CGEFDBA层次遍历ABCDEFG广义表打印A(B(C,D(E(,G),F)))叶子数3 深度5 宽度2 非空子孙数6 度为2的数目2 度为1的数目2查找5,成功,查找的元素为E删除E后,以广义表形式打印A(B(C,D(,F)))输入二:ABD□□EH□□□CF□G□□□(以□表示空格),查找10,删除B预测结果:先序遍历ABDEHCFG中序遍历DBHEAGFC后序遍历DHEBGFCA层次遍历ABCDEFHG广义表打印A(B(D,E(H)),C(F(,G)))叶子数3 深度4 宽度3 非空子孙数7 度为2的数目2 度为1的数目3查找10,失败。
数据结构实验二叉树

实验六:二叉树及其应用一、实验目的树是数据结构中应用极为广泛的非线性结构,本单元的实验达到熟悉二叉树的存储结构的特性,以及如何应用树结构解决具体问题。
二、问题描述首先,掌握二叉树的各种存储结构和熟悉对二叉树的基本操作。
其次,以二叉树表示算术表达式的基础上,设计一个十进制的四则运算的计算器。
如算术表达式:a+b*(c-d)-e/f三、实验要求如果利用完全二叉树的性质和二叉链表结构建立一棵二叉树,分别计算统计叶子结点的个数。
求二叉树的深度。
十进制的四则运算的计算器可以接收用户来自键盘的输入。
由输入的表达式字符串动态生成算术表达式所对应的二叉树。
自动完成求值运算和输出结果。
四、实验环境PC微机DOS操作系统或Windows 操作系统Turbo C 程序集成环境或Visual C++ 程序集成环境五、实验步骤1、根据二叉树的各种存储结构建立二叉树;2、设计求叶子结点个数算法和树的深度算法;3、根据表达式建立相应的二叉树,生成表达式树的模块;4、根据表达式树,求出表达式值,生成求值模块;5、程序运行效果,测试数据分析算法。
六、测试数据1、输入数据:2.2*(3.1+1.20)-7.5/3正确结果:6.962、输入数据:(1+2)*3+(5+6*7);正确输出:56七、表达式求值由于表达式求值算法较为复杂,所以单独列出来加以分析:1、主要思路:由于操作数是任意的实数,所以必须将原始的中缀表达式中的操作数、操作符以及括号分解出来,并以字符串的形式保存;然后再将其转换为后缀表达式的顺序,后缀表达式可以很容易地利用堆栈计算出表达式的值。
例如有如下的中缀表达式:a+b-c转换成后缀表达式为:ab+c-然后分别按从左到右放入栈中,如果碰到操作符就从栈中弹出两个操作数进行运算,最后再将运算结果放入栈中,依次进行直到表达式结束。
如上述的后缀表达式先将a 和b 放入栈中,然后碰到操作符“+”,则从栈中弹出a 和b 进行a+b 的运算,并将其结果d(假设为d)放入栈中,然后再将c 放入栈中,最后是操作符“-”,所以再弹出d和c 进行d-c 运算,并将其结果再次放入栈中,此时表达式结束,则栈中的元素值就是该表达式最后的运算结果。
二叉树的基本操作与实现实验报告

二叉树的基本操作与实现实验报告二叉树是一种重要的数据结构,在计算机科学领域中被广泛应用。
本实验将介绍二叉树的基本操作与实现,并给出相应的实验报告。
一、引言二叉树是一种特殊的树状结构,每个节点至多有两个子节点。
二叉树有许多重要的特性,如平衡二叉树、二叉树等,应用广泛。
在本实验中,我们将介绍二叉树的基本操作和实现。
二、实验目的1.掌握二叉树的基本概念和特性;2.熟悉二叉树的基本操作,包括创建、插入、删除、遍历等;3.学会使用编程语言实现二叉树的基本操作。
三、实验内容本实验主要包括以下内容:1.二叉树的定义和基本概念;2.二叉树的基本操作,包括创建、插入、删除、遍历等;3.使用编程语言实现二叉树的基本操作;4.测试和验证二叉树的基本操作的正确性。
四、实验步骤1.二叉树的定义和基本概念二叉树是一种树状结构,每个节点至多有两个子节点。
二叉树的每个节点包含一个数据项和指向左子树和右子树的指针。
二叉树的特性有很多,如完全二叉树、平衡二叉树、二叉树等。
2.二叉树的基本操作(1)创建二叉树:可以通过手动输入节点数据来创建二叉树,也可以通过读取文件中的数据来创建二叉树。
(2)插入节点:在指定位置插入一个新节点。
(3)删除节点:删除指定位置的节点。
(4)遍历二叉树:有前序遍历、中序遍历和后序遍历三种遍历方式。
3.使用编程语言实现二叉树的基本操作实现二叉树的基本操作可以使用编程语言来完成。
我们可以定义一个二叉树的结构体,包含节点数据和指向左右子树的指针。
然后根据具体的需求,实现相应的操作函数。
4.测试和验证二叉树的基本操作的正确性在完成二叉树的基本操作后,我们可以编写测试代码来验证操作的正确性。
通过创建二叉树,并进行插入、删除和遍历操作,观察输出结果是否符合预期。
五、实验结果与分析在完成二叉树的基本操作后,我们可以进行测试和验证。
通过输出二叉树的遍历结果,比对预期结果来判断操作是否正确。
同时,我们还可以观察二叉树的结构和特性,如是否满足平衡二叉树或二叉树的条件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二叉树应用——二叉树基本算法的实现【功能要求】实现Create方法,要求键盘输入二叉树结点序列,创建一棵二叉树(提示:前序递归)实现SwapTree方法,以根结点为参数,交换每个结点的左子树和右子树(提示:前序递归)增加InorderTree方法,采用非递归方法实现二叉树的中序遍历你可以选择:对BinaryTree模板进行功能扩充;自己定义并实现二叉树类要求键盘输入二叉树结点序列结点序列可以是前序,也可以是层次空结点以#表示【代码实现】// 二叉树01.cpp : Defines the entry point for the console application.//#include "stdafx.h"#include <iostream>using namespace std;template<class T>class BinaryTreeNode;template<class T>class BinaryTree{public:BinaryTree(){root=0;}BinaryTree(const BinaryTree<T> &Tree ){copy(Tree.root,root);}~BinaryTree(){};bool IsEmpty()const{return ((root)?false:true);}void Creat();bool Root (T&x)const;void MakeTree(const T&element,BinaryTree<T>&left,BinaryTree<T>&right); void BreakTree( T&element,BinaryTree<T>&left,BinaryTree<T>&right); void PreOrder(void (*Visit)(BinaryTreeNode<T>*u)){PreOrder(Visit,root);}void InOrder(void (*Visit)(BinaryTreeNode<T>*u)){InOrder(Visit,root);}void PostOrder(void (*Visit)(BinaryTreeNode<T>*u)){PostOrder(Visit,root);}void LevelOrder(void(*Visit)(BinaryTreeNode<T>*u));void PreOutput(){PreOrder(Output,root);cout<<endl;}void InOutput(){InOrder(Output,root);cout<<endl;}void Postput(){PostOrder(Output,root);cout<<endl;}void LevelOutPut(){LevelOrder(Output);cout<<endl;}void Delete(){PostOrder(Free,root);root=0;}int Height()const{return Height(root);}int Size()const{return Size(root);}BinaryTreeNode<T>*iCreat();bool equal(BinaryTree<T>&Tree){return compare(root,Tree.root);}void swap(){swap(root);}int leave(){return leave(root);}int noleave(){return noleave(root);}private:BinaryTreeNode<T>*root;void PreOrder(void(*Visit)(BinaryTreeNode<T>*u),BinaryTreeNode<T>*t);void InOrder(void(*Visit)(BinaryTreeNode<T>*u),BinaryTreeNode<T>*t);void PostOrder(void(*Visit)(BinaryTreeNode<T>*u),BinaryTreeNode<T>*t);static void Output(BinaryTreeNode<T>* t){cout<<t->data <<" ";}static void Free(BinaryTreeNode<T>*t){delete t;}int Height(BinaryTreeNode<T>*t)const;int Size(BinaryTreeNode<T>*t)const;bool compare(BinaryTreeNode<T>*t1,BinaryTreeNode<T>*t2);void copy(const BinaryTreeNode<T>*t1,BinaryTreeNode<T>*&t2);void swap(BinaryTreeNode<T>*t);int leave(BinaryTreeNode<T>*t);int noleave(BinaryTreeNode<T>*t);};template<class T>class LinkedQueue;template<class T>class Node{friend LinkedQueue<T>;private:T data;Node<T>*link;};template<class T>class LinkedQueue{public:LinkedQueue(){front=rear=0;}~LinkedQueue();bool IsEmpty()const{return ((front)?false:true);}bool IsFull()const;T First()const;T Last()const;LinkedQueue<T>&Add(const T &x);LinkedQueue<T>&Delete(T&x); private:Node<T>*front;Node<T>*rear;};template<class T>bool BinaryTree<T>::Root(T&x)const {if(root){x=root->data;return true;}else return false;}template<class T>void BinaryTree<T>::MakeTree(const T &element ,BinaryTree<T>&left,BinaryTree<T>&right){root=new BinaryTreeNode<T>(element,left.root,right.root);left.root=right.root=0;}template<class T>voidBinaryTree<T>::BreakTree(T&element ,BinaryTree<T>&left,BinaryTree<T>&right) {element=root->data;left.root=root->LeftChild;right.root=root->RightChild;delete root;root=0;}template<class T>voidBinaryTree<T>::PreOrder(void(*Visit)(BinaryTreeNode<T>*u),BinaryTreeNode<T> *t){if(t){Visit(t);PreOrder(Visit,t->LeftChild);PreOrder(Visit,t->RightChild);}}template<class T>voidBinaryTree<T>::InOrder(void(*Visit)(BinaryTreeNode<T>*u),BinaryTreeNode<T>* t){if(t){InOrder(Visit,t->LeftChild);Visit(t);InOrder(Visit,t->RightChild);}}template<class T>voidBinaryTree<T>::PostOrder(void(*Visit)(BinaryTreeNode<T>*u),BinaryTreeNode<T >*t){if(t){PostOrder(Visit,t->LeftChild);PostOrder(Visit,t->RightChild);Visit(t);}}template<class T>void BinaryTree<T>::LevelOrder(void(*Visit)(BinaryTreeNode<T>*u)){LinkedQueue<BinaryTreeNode<T>*> Q;BinaryTreeNode<T>*t;t=root;while(t){Visit(t);if(t->LeftChild) Q.Add(t->LeftChild);if(t->RightChild) Q.Add(t->RightChild);if(Q.IsEmpty()) return ;else Q.Delete(t);}}template<class T>int BinaryTree<T>::Height(BinaryTreeNode<T>*t)const{if(!t) return 0;int hl=Height(t->LeftChild);int hr=Height(t->RightChild);if(hl>hr) return ++hl;else return ++hr;}template<class T>int BinaryTree<T>::Size(BinaryTreeNode<T>*t)const{if(!t) return 0;int sl=Size(t->LeftChild);int sr=Size(t->RightChild);return (1+sl+sr);}template<class T>BinaryTreeNode<T>*BinaryTree<T>::iCreat( ){T ch;cin>>ch;BinaryTreeNode<T> * root;if(ch=='#'){root=NULL;}else{root=new BinaryTreeNode<T>;root->data=ch;root->LeftChild=this->iCreat();root->RightChild=this->iCreat();}return root;}template<class T>void BinaryTree<T>::Creat(){this->root = iCreat();}template<class T>bool BinaryTree<T>::compare(BinaryTreeNode<T> *t1, BinaryTreeNode<T> *t2) {if (t1==NULL&&t2==NULL) return true;else if (t1!=NULL&&t2==NULL) return false;else if (t1==NULL&&t2!=NULL) return false;else if (t1->data!=t2->data) return false;elsereturn(compare(t1->leftChild,t2->leftChild)&&compare(t1->RightChild,t2->RightChi ld));}template<class T>void BinaryTree<T>::copy(const BinaryTreeNode<T>*t1,BinaryTreeNode<T>*&t2) {if(t1){t2=new BinaryTreeNode<T>;t2->data=t1->data;copy(t1->LeftChild,t2->LeftChild);copy(t1->RightChild,t2->RightChild);}}template<class T>void BinaryTree<T>::swap(BinaryTreeNode<T> *t){BinaryTreeNode<T> *temp;if(!t) return;else{temp=t->LeftChild;t->LeftChild=t->RightChild;t->RightChild=temp;swap(t->leftChild);swap(t->RightChild);}}template<class T>int BinaryTree<T>::leave(BinaryTreeNode<T>*t){if(!t) return 0;if(t->LeftChild==0&&t->RightChild==0)return 1;int leafl=leave(t->LeftChild);int leafr=leave(t->RightChild);return leafl+leafr;}template<class T>int BinaryTree<T>::noleave(BinaryTreeNode<T> *t){if(!t) return 0;if(!t->LeftChild&&!t->RightChild)return 0;int leafl=noleave(t->LeftChild);int leafr=noleave(t->RightChild);return leafl+leafr+1;}template<class T>class BinaryTree;template<class T>class BinaryTreeNode{friend BinaryTree<T>;public:BinaryTreeNode(){LeftChild=RightChild=0;}BinaryTreeNode(const T&e){data=e;LeftChild=RightChild=0;}BinaryTreeNode(const T&e,BinaryTreeNode *l,BinaryTreeNode *r) {data=e;LeftChild=l;RightChild=r;}private:T data;BinaryTreeNode<T>*LeftChild,*RightChild;};template<class T>LinkedQueue<T>::~LinkedQueue(){Node<T>*next;while(front){next=front->link;delete front;front=next;}}template<class T>LinkedQueue<T>&LinkedQueue<T>::Add(const T &x) {Node<T>*p=new Node<T>;p->data=x;p->link=0;if (front) rear->link=p;else front=p;rear=p;return *this;}template<class T>LinkedQueue<T>&LinkedQueue<T>::Delete(T&x) {x=front->data;Node<T>*p=front;front=front->link;delete p;return*this;}template<class T>bool LinkedQueue<T>::IsFull()const{Node<T>*p;try{p=new Node<T>;delete p;return false;}catch (NoMem) {return true;}}template <class T>T LinkedQueue<T>::First()const{if(IsEmpty()) throw OutOfBounds;return front->data;}template<class T>T LinkedQueue<T>::Last()const{if(IsEmpty()) throw OutOfBounds;return rear->data;}BinaryTree<int> a,x,y,z;void main(){cout<<"输入二叉树:"<<endl;BinaryTree<char> Tree;Tree.Creat();cout<<"前序遍历:"<<" ";Tree.PreOutput();cout<<"后序遍历:"<<" ";Tree.Postput();cout<<"中序遍历:"<<endl;Tree.InOutput();cout<<"层序遍历:"<<" ";Tree.LevelOutPut();。