离心泵的性能曲线

合集下载

几种常见的离心泵性能曲线形式

几种常见的离心泵性能曲线形式

几种常见的离心泵性能曲线形式几种常见的离心泵性能曲线形式:(1)平坦的性能曲线这种性能曲线适用于流量调节范围较大,而压力要求变化较小的系统中。

例如,对需要用调节阀调节流量。

而又必须维持一定液面或一定压力的系统中(如锅炉),采用具有平坦性能曲线的泵,可以在一定范围内起到自动维持液面和压力的作用。

(2)陡降的性能曲线这种性能曲线适用于在流量变化不大时要求压头变化较大的系统中,或在压头有波动时,要求流量变化不在的系统中。

例如,在输送纤维浆液的系统中,为了避免在流速减慢时纤维浆液在管道中堵塞,也就是希望无论管路系统中的阻力增大多秒,而流速(流量)变化不大,因此,用具有陡降性能的泵比较合适。

另外。

轧钢过程中的除磷泵。

对泵的曲线也有此种要求。

(3)有驼峰的性能曲线具有这种曲线的泵在运行过程中可能出现不稳定工况。

泵运行工况点由泵性能曲线与装置性能曲线交点确定,而有驼峰的泵性能曲线却常常与泵的装置特性曲线交于两点,使泵处于不稳定工况,影响泵的安全运行。

因此,对有驼峰的性能曲线,一般规定工作点扬程必须小于关死扬程(即出口阀门关闭,流量等于零时的扬程),以免泵在不稳定工况运行。

目前,常要用以下方法来消除性能曲线中的驼峰。

1)用减小叶片出口安放角的方法,可以得到平坦下降的性能曲线,从而消除驼峰。

2)使进入叶轮的液体有预旋,这样可以促使获得完全下降的性能曲线。

液体有预旋后,泵的大流量区域性能曲线下降。

具有半螺旋形吸入室泵,液体在进入叶轮时也有预旋,故泵的性能曲线也有同样现象。

虽然有预旋后能促使获得完全下降的,陆能曲线,但负作用是泵的扬程减少了。

3)泵压出室(包括涡室和导叶的入口)面积不但影响关死扬程的大小,而且影响性能曲线的形状,压出室面积减少可使泵的关死扬程略有提高,使性能曲线变陡,并使最佳工况点向小流量方向移动;增大压出室面积能使关死扬程略有降低,使性能曲线平坦,最佳工况点向大流量方向移动。

但需要注意的是,过分的增大或缩小压出室入口面积都要引起泵效率的降低。

离心泵的性能参数与特性曲线

离心泵的性能参数与特性曲线

离心泵的性能参数与特性曲线泵的性能及相互之间的关系是选泵和进行流量调节的依据。

离心泵的主要性能参数有流量、压头、效率、轴功率等。

它们之间的关系常用特性曲线来表示。

特性曲线是在一定转速下,用20℃清水在常压下实验测得的。

(一)离心泵的性能参数1、流量离心泵的流量是指单位时间内排到管路系统的液体体积,一般用Q表示,常用单位为l/s、m3/s或m3/h等。

离心泵的流量与泵的结构、尺寸和转速有关。

2、压头(扬程)离心泵的压头是指离心泵对单位重量(1N)液体所提供的有效能量,一般用H表示,单位为J/N或m。

压头的影响因素在前节已作过介绍。

3、效率离心泵在实际运转中,由于存在各种能量损失,致使泵的实际(有效)压头和流量均低于理论值,而输入泵的功率比理论值为高。

反映能量损失大小的参数称为效率。

离心泵的能量损失包括以下三项,即(1)容积损失即泄漏造成的损失,无容积损失时泵的功率与有容积损失时泵的功率之比称为容积效率ηv。

闭式叶轮的容积效率值在0.85~0.95。

(2)水力损失由于液体流经叶片、蜗壳的沿程阻力,流道面积和方向变化的局部阻力,以及叶轮通道中的环流和旋涡等因素造成的能量损失。

这种损失可用水力效率ηh来反映。

额定流量下,液体的流动方向恰与叶片的入口角相一致,这时损失最小,水力效率最高,其值在0.8~0.9的范围。

(3)机械效率由于高速旋转的叶轮表面与液体之间摩擦,泵轴在轴承、轴封等处的机械摩擦造成的能量损失。

机械损失可用机械效率ηm来反映,其值在0.96~0.99之间。

离心泵的总效率由上述三部分构成,即η=ηvηhηm(2-14)离心泵的效率与泵的类型、尺寸、加工精度、液体流量和性质等因素有关。

通常,小泵效率为50~70%,而大型泵可达90%。

4、轴功率N由电机输入泵轴的功率称为泵的轴功率,单位为W或kW。

离心泵的有效功率是指液体在单位时间内从叶轮获得的能量,则有Ne = HgQρ(2-15)式中Ne------离心泵的有效功率,W;Q--------离心泵的实际流量,m3/s;H--------离心泵的有效压头,m。

离心泵的性能曲线

离心泵的性能曲线
6
B 当 ≈ 0.02 , df 值 小 时 K 最 D 2 HT µu2c2u∞ =
增 高 级 程 于 高2 用 n提 单 扬 优 提 D 械 失 近 视 常 机 损 可 似 为数

离心泵的各种功率和效率
N 效 率 Ne = 有 功
述 轴 率 前 功
ρQ H
1000
kw
1
水力功率和水力效率 水力功率: 水力功率:单位时间里泵叶轮给出的能量
l c2 hf = λ d 2 λ是 Re和 道 对 糙 有 的 数 与 流 相 粗 度 关系 阻 系 ) ( 力 数 内 为 常 , c Q 正 , 泵 λ认 一 数 与2即 2成 比 R均 阻 平 区 在 力 方 , e hf = CK1Q2 CK1与 道 面 糙 及 流 积 关 流 表 粗 度 过面 有 , 二 抛 线 是 次 物
(3)η--Q特性 --Q
检查泵的经济性,在何种情况下工作效率高、节能。 检查泵的经济性,在何种情况下工作效率高、节能。 工程上把最高点叫额定点, 工程上把最高点叫额定点,该点的各参数 Qopt额定流量 Hopt额定扬程 Nopt额定功率 为扩大泵的使用范围,各种泵规定了良好工作区。 为扩大泵的使用范围 , 各种泵规定了良好工作区 。 最高效率点以下7 范围内诸点, 有给额定点, 最高效率点以下 7 % 范围内诸点 , 有给额定点 , 有给 良好工作区。 良好工作区。
N- 曲 同 扬 下 去 恒 速 Q 线 一 程 减 q 转
3、η—Q性能曲线
H Q - 易 到 曲 很 得 η −Q 线 N Q - Ne ρQ H η= = 用 立 的、 、 代 求 对 点 Q H N 入 得 N N η曲 是 原 , 横 标 于 = max的 线 线 过 点 与 坐交 Q Q 曲

离心泵特性曲线

离心泵特性曲线

离心泵特性曲线首先离心泵的特性曲线图如下接下来是对于这个图的一些解读:离心泵的性能曲线包括流量-扬程(Q-H)曲线、流量-功率曲线(Q-N)、流量-效率曲线(Q-ŋ)以及流量-汽蚀余量(Q-NPSHr)曲线。

水泵的性能参数之间的相互变化关系及相互制约性:首先以该水泵的额顶转速为先决条件的。

水泵性能曲线主要有三条曲线:流量—扬程曲线,流量—功率曲线,流量—效率曲线。

它是离心泵的基本的性能曲线。

比转速小于80的离心泵具有上升和下降的特点称驼峰性能曲线。

比转速在80~150之间的离心泵具有平坦的性能曲线。

比转数在150以上的离心泵具有陡降性能曲线。

一般的说,当流量小时,扬程就高,随着流量的增加扬程就逐渐下降。

上述曲线都是在一定的转速下,以试验的方法求得的。

不同的转速,可以通过公式进行换算。

在性能曲线上,对于一个任意的流量点,都可以找出一组与其相对应的扬程、功率、效率以及汽蚀余量值。

通常,把这一组相对应的参数称为工作状况,简称工况或工况点。

对于离心泵最高效率点的工况称为最佳工况点。

泵在最高效率点工况下运行是最理想的。

但是用户要求的性能千差万别,不一定和最高效率点下的性能相一致。

要想使每一个用户要求的泵都在泵最高效率点下运行,那样做需要的泵规格就太多了。

为此,规定一个范围(通常以效率下降5%~8%为界),称为泵的工作范围。

我们利用叶轮的切割或者变频技术可以扩大泵的工作范围。

我们把同一类型的水泵,将它的各种不同比转数以及相同比转数不同口径的泵的工作区域集中画在同一个Q-H坐标平面上。

为了使图面上大泵的方块不致太大,坐标可以采用对数坐标,于是就得到了该类型泵的系列型谱。

各类型的泵均有各自的型谱,使用户选用水泵十分方便。

每种系列用几种比转数的水力模型,泵的口径按一定的流量间隔比变化。

同一口径的泵扬程也按一定的间隔变化。

ISO 2858规定了标准的型谱。

离心泵的曲线

离心泵的曲线

离心泵的曲线
离心泵的曲线是用来描述离心泵性能的一种图形表示。

它展示了离心泵在不同工况下的流量、扬程和效率之间的关系。

通常,离心泵的曲线包括以下几个主要参数:
1. 流量-Q:表示单位时间内通过泵的液体体积。

通常以立方米每小时(m³/h)或升每秒(L/s)来表示。

2. 扬程-H:表示泵能够提供的压力。

通常以米(m)为单位。

3. 效率-η:表示泵转化输入功率为输出功率的能力。

通常以百分比形式表示。

离心泵的曲线通常由以下几条线组成:
1. H-Q曲线(等速曲线):在恒定转速下,流量与扬程之间的关系曲线。

当流量增大时,扬程会逐渐降低。

2. η-Q曲线(效率曲线):在恒定转速下,效率与流量之间的关系曲线。

通常在设计流量附近效率较高,而在低流量和高流量处效率较低。

3. NPSHr曲线(净正吸入头曲线):表示给定流量下泵要求的最低净正吸入头。

当净正吸入头低于该值时,泵可能会产生气穴或性能下降。

4. NPSHa曲线(净正吸入头可利用余量曲线):表示给定流量下实际系统提供的净正吸入头与NPSHr之间的差值。

当可利用余量大于零时,系统运行正常。

不同型号和尺寸的离心泵有不同的曲线特征,根据具体工程要求选择合适的泵型和工作点是非常重要的。

泵—离心泵的性能曲线

泵—离心泵的性能曲线
4. NPSHr-Q曲线
NPSHr-Q曲线是检查泵工作时是否发生汽蚀的依据,应全面考虑泵的安装高度、
入口阻力损失等,防止泵发生汽蚀现象。
例2-2:用清水测定一台离心泵的主要性能参数。实验中测得流量为10m3/h,泵出口 处压力表的读数为0.17MPa(表压),入口处真空表的读数为-0.021Mpa,轴功率为 1.07KW,电动机的转速为2900r/min,真空表测压点与压力表测压点的垂直距离为 0.2m。试计算此在实验点下的扬程和效率。
见图2-35所示,M、D、C点都是离心泵的工作点。
图2-35 泵的工作点
二、工作点的类型
离心泵的性能曲线有平坦、陡降和驼峰三种,显然, 对于平坦和陡降性质的性能曲线,交点只有一个,该点 称为稳定工作点(M)。
对于驼峰性质的性能曲线,交点有两个(D、C), 但只有一个是稳定工作点(C),另一个工作点称为不稳 定工作点(D),泵只能在稳定工作点下工作。
图2-38 改变转速的调节
2. 特点
① 用这种方法调节流量,没有附加能量损失,所以是一种最经济的调节方法。
3. 驼峰H-Q曲线
具有这种性能的泵在运行中容易出现不稳定工况, 一般应在下降曲线部分操作。
图2-26 三种形状的H-Q曲线
四、离心泵性能曲线的应用
到目前为止,离心泵的性能曲线,还不能用理论计算方法精确确定,只能通过实验 获得。 离心泵的性能曲线,一般由泵的制造厂家提供,供使用部门选泵和操作时参考。
管路性能曲线
在石油化工生产中,泵和管路一起组成了一个输送系统。 能否保证泵在管路系统装置中处于最高效率点下运转,不仅取决于离心泵的性能特 性曲线,还与离心泵所在的管路特性曲线有关。
一、 管路性能曲线
所谓管路性能曲线是指使一定液体流过管路时,需 要从外界给予单位重量液体的能头HC(m)与管路液体 流量Q(m3/h)之间的关系曲线。

离心泵特性曲线测定实验

实验准备。 启动泵。 调节流量。 读取数据。 要求:测定6-8组数据,最大和最小流量一定要进行测
定。 思考:管路特性曲线如何测定?
五、数据记录和处理
液体温度: 液体密度: 泵进出口高0.18m
仪表常数K:77.902次/L 电机频率: 电机效率:60%
qV
360f0m3 100K0
/h
离心泵特性曲线测定实验
ቤተ መጻሕፍቲ ባይዱ
一、实验目的
1)熟悉离心泵的结构、特性和操作,掌握其工作原 理,了解常用的测压仪表。
2)掌握离心泵特性曲线的测定方法,测定离心泵在 一定转速下的特性曲线。
3)掌握用作图法处理实验数据的方法。
二、基本原理
离心泵的主要性能参数:
泵的流量、压头、轴功率、效率和气蚀余量。 离心泵的特性曲线:
Hp2gp116 0h0u2 22gu12
轴功 N电 率机 N 电 功 电率 机 电 效
HV q10% 0gHVq10% 0
10N 2
N
qV m3/s
要求: 数据记录在表格里,表头标明符号与单位。数
据表格手写。 数据处理要有一组计算示例。 在坐标纸上绘图,或利用相关软件绘图。注明
坐标轴名称,要有数据点。 对实验结果进行讨论分析。
离心泵的H、η 、 P都与离心泵的qV有关
H~ qV 、η~ qV 、 P~ qV
注意:特性曲线随转速而变。 各种型号的离心泵都有本身独自的特性曲线,
但形状基本相似,具有共同的特点 。
1)H~ qV曲线:表示泵的压头与流量的关系,离心泵的压头 普遍是随流量的增大而下降(流量很小时可能有例外)。 2)P~ qV曲线:表示泵的轴功率与流量的关系,离心泵的轴 功率随流量的增加而上升,流量为零时轴功率最小。

解析离心泵的特性曲线(图文)

图文解析离心泵的特性曲线一、离心泵的特性曲线定义当转速n为常量时,列出扬程(H)、轴功率(N)、效率(η)以及允许吸上真空高度(Hs)等随流量(Q)变化的函数关系,即:H = f(Q);N = F(Q);Hs = Ψ(Q);η= φ(Q),我们把这些方程关系用曲线来表示,就称这些曲线为离心泵的特性曲线。

离心泵的特性曲线是液体在泵内运动规律的外在表现形式,这三条曲线需要根据试验的方法(采用离心泵特性曲线的测定装置,逐渐开启水泵出口阀门改变其流量,测得一系列的流量及相应的扬程和轴功率,然后将H一Q、N —Q、η一Q曲线绘制在同一张坐标纸上,即为一定型式离心泵在一定转速下的特性曲线),不同的水泵特性曲线不同,水泵的特性曲线由设备生产厂家提供。

严格意义上讲,每一台水泵都有特定的特性曲线。

在水泵特性曲线上,对应任意流量点都可以找到一组与其相对应的扬程、轴功率和效率值,通常把这一组相对应的参数称为工况,其对应最高效率点的一组工况称为最佳工况。

在生产实践中,水泵的运行工况点是通过管路的特性曲线与水泵的特性曲线确定的(M工况点,见下图)。

在选择和使用泵时,使水泵在高效区运行,以保证运转的经济和安全。

二、影响离心泵特性曲线的因素离心泵的特性曲线与很多因素有关,如液体的粘度与密度、叶轮出口宽度、叶片的出口安放角与叶片数及离心泵的压出室形状等均会对离心泵的特性曲线产生影响。

1、叶轮出口直径对性能曲线的影响在叶轮其它几何形状相同的情况下,如果改变叶轮的出口直径,则离心泵的特性曲线平行移动,见下图。

根据这一特性,水泵制造厂和使用单位可以采用车削离心泵叶轮外径的方法改变一台泵的性能范围,以使泵的性能更适合实际运行需要。

例如,某厂的一台离心式循环泵,其运行压力偏高,为降低压力,将叶轮外径由270mm车削到250mm后,在流量相同的情况下,压力下降,给水泵的电机电流减小,满足了运行的要求。

2、转速与性能曲线的关系同一台离心泵输送同一种液体,泵的各项性能参数与转速之间的关系式为:Q1/Q2 = n1/n2H1/H2 = (n1/n2)2Nl/N2 = (n1/n2)2三、理论特性曲线的定性分析1、理论扬程特性曲线的定性分析由HT =中,将C2u = u2 - C2rctgβ2 代入,可得:HT =(u2 - C2rctgβ2)叶轮中通过的水量可用此式表示:QT = F2C2r,也即:C2r =式中QT:泵理论流量(m3/s);F2:叶轮的出口面积(m2);C2r:叶轮出口处水流绝对速度的径向(m/s)。

离心泵性能曲线

离心泵性能曲线离心泵是一种常用的流体机械设备,是将高速旋转的叶轮利用离心力将液体输送到管道或设备中的装置。

离心泵性能曲线是描述离心泵在不同运行条件下的流量和扬程关系的一种图形表示形式。

下面我们将详细介绍离心泵性能曲线的相关知识。

1. 基本概念离心泵性能曲线是指根据离心泵的实验数据绘制的一条曲线,它描述了离心泵在不同流量下所能提供的扬程或功率。

一般情况下,离心泵性能曲线是由离心泵的hf−Q(扬程-流量)曲线和η-Q(效率-流量)曲线组成的。

2. 性能曲线的分类根据离心泵的工作方式和结构特点,性能曲线可分为普通型、单级型、多级型和多速型等四种。

(1) 普通型性能曲线是指泵的流量和扬程基本不随着运行状态的改变而变化,通常用于输送水类流体。

(2) 单级型性能曲线是指离心泵为单级泵的性能曲线,其特点是流量和扬程比较平稳,适用于输送清洁水类流体。

(4) 多速型性能曲线是指离心泵具有多个转速的性能曲线,其性能曲线的特点是在不同的转速下,流量和扬程均有所不同。

离心泵性能曲线的绘制一般分为三个步骤:实验测试,数据处理和曲线绘制。

(1) 实验测试:对离心泵进行试验测试,测定其在不同流量下的扬程、功率、流速和效率等参数,以获取定义离心泵性能曲线的参数。

(2) 数据处理:根据泵的实验测试数据,通过计算和数据处理方法,得出离心泵的实际扬程、功率、效率等参数值,用于性能曲线的绘制。

离心泵性能曲线可以帮助人们更好地了解离心泵的性能和工作状态,对于正确选择和使用离心泵具有重要的指导意义。

通过性能曲线可以确定泵的最佳运行点,保证泵的有效工作和长寿命。

此外,性能曲线也可以用于泵的检测和维护工作,帮助人们诊断泵的故障原因,并开展相应的维修和保养工作。

总之,离心泵性能曲线是离心泵的重要性能参数之一,其绘制和应用可以帮助人们更好地了解离心泵的工作状态和性能特点,从而保证泵的有效使用和运行。

离心泵特性曲线

离心泵特性曲线
离心泵特性曲线(Centrifugal pump performance curve)是描述离心泵在不同工作条件下流量、扬程、效率和功率
等性能参数的变化关系的曲线。

离心泵特性曲线通常由以下几个要素构成:
1. 流量(Flow):流经离心泵的液体体积或质量的量度,
通常以升/秒或立方米/小时表示。

2. 扬程(Head):液体在离心泵内获得的压力能量,通常以米或千帕表示。

3. 效率(Efficiency):离心泵将输入的功率转化为输出的液体动能的比例。

效率通常以百分比表示。

4. 功率(Power):离心泵所需的电功率或机械功率,通常以千瓦或马力表示。

离心泵特性曲线一般由实验测量得到,根据不同工作条件下的流量、扬程和功率等数据绘制而成。

典型的离心泵特性曲线通常呈现出以下特点:
1. 最大扬程点(Maximum Head Point):离心泵在某一流量下能够提供的最大扬程。

该点通常是离心泵特性曲线上的最高点,也是离心泵的额定扬程。

2. 最大效率点(Maximum Efficiency Point):离心泵在某一流量下能够达到的最高效率。

该点通常是离心泵特性曲线上的效率最大值点。

3. 关闭阻塞点(Shut-off Head Point):离心泵在流量为零时的扬程。

该点通常是离心泵特性曲线上的最低点。

离心泵特性曲线的形状和特点对于选型和运行离心泵都具有重要的参考价值,可以帮助用户了解离心泵在不同工况下的性能和适用范围,并进行合理的运行和维护。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

离心泵的性能曲线
1、什么是离心泵特性曲线:
离心泵的特性曲线是将由实验测定的Q、H、N、η等数据标绘而成的一组曲线。

此图由离心泵的制造厂家提供,供使用部门选泵和操作时参考。

2、不同型号离心泵的特性曲线不同,但均有以下三条曲线:
(1) H-Q线表示压头和流量的关系;
(2) N-Q线表示泵轴功率和流量的关系;
(3) η-Q线表示泵的效率和流量的关系;
(4) 泵的特性曲线均在一定转速下测定,故特性曲线图上注出转速n值。

离心泵特性曲线上的效率最高点称为设计点,泵在该点对应的压头和流量下工作最为经济。

离心泵铭牌上标出的性能参数即为最高效率点上的工况参数。

离心泵的性能曲线可作为选择泵的依据。

确定泵的类型后,再依流量和压头选泵。

例2-2用清水测定一台离心泵的主要性能参数。

实验中测得流量为10m3/h,泵出口处压力表的读数为0.17MPa(表压),入口处真空表的读数为-0.021Mpa,轴功率为1.07KW,电动机的转速为2900r/min,真空表测压点与压力表测压点的垂直距离为0.2m。

试计算此在实验点下的扬程和效率。

解泵的主要性能参数包括转速n、流量Q、扬程H、轴功率N和效率。

直接测出的参数为
转速n=2900r/min
流量Q=10m3/h=0.00278m3/s
轴功率N=1.07KW
需要进行计算的有扬程H和效率。

用式
计算扬程H,即
已知:
于是
二、影响离心泵性能的主要因素
1、液体物理性质对特性曲线的影响
生产厂所提供的特性曲线是以清水作为工作介质测定的,当输送其它液体时,要考虑液体密度和粘度的影响。

(1) 粘度当输送液体的粘度大于实验条件下水的粘度时,泵体内的能量损失增大,泵的流量、压头减小,效率下降,轴功率增大。

(2) 密度离心泵的体积流量及压头与液体密度无关,功率则随密度增大而增加。

2、离心泵的转速对特性曲线的影响
当液体粘度不大,泵的效率不变时,泵的流量、压头、轴功率与转速可近似用比例定律计算,即
式中:Q1、H1、N1离心泵转速为n1时的流量、扬程和功率。

Q2、H2、N2离心泵转速为n2时的流量、扬程和功率。

上面的一组公式称为比例定律。

当转速变化小于20%时,可认为效率不变,用上工进行计算误差不大。

若在转速为n1的特性曲线上多选几个点,利用比例定律算出转速为n2时相应的数据,并将结果标绘在坐标纸上,就可以得到转速为n2时的特性曲线。

3叶轮直径对特性曲线的影响
当泵的转速一定时,其扬程、流量与叶轮直径有关。

下面为切割定律。

式中:Q1、H1、N1离心泵转速为在D1时的流量、扬程和功率。

Q2、H2、N2离心泵转速为D2时的流量、扬程和功率。

相关文档
最新文档