河北省衡水中学2019届高三第一次模拟考试-数学理试卷

合集下载

衡水中学2019届高三第一次摸底考试数学(理)试卷 及答案

衡水中学2019届高三第一次摸底考试数学(理)试卷 及答案

衡水中学2019届全国高三第一次摸底联考理科数学一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.复数在复平面内对应的点位于A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】D2.已知全集U=R,则A. B.C. D.【答案】C3.某地某所高中2018年的高考考生人数是2015年高考考生人数的1.5倍,为了更好地对比该校考生的升学情况,统计了该校2015年和2018年的高考情况,得到如下柱状图:2015年高考数据统计 2018年高考数据统计则下列结论正确的是A. 与2015年相比,2018年一本达线人数减少B. 与2015年相比,2018年二本达线人数增加了0.5倍C. 与2015年相比,2018年艺体达线人数相同D. 与2015年相比,2018年不上线的人数有所增加【答案】D4.已知等差数列的公差为2,前项和为,且,则的值为A. 11B. 12C. 13D. 14【答案】C5.已知是定义在上的奇函数,若时,,则时,A. B. C. D.【答案】B6.已知椭圆和直线,若过的左焦点和下顶点的直线与平行,则椭圆的离心率为A. B. C. D.【答案】A7.如图,在平行四边形中,对角线与交于点,且,则A. B.C. D.【答案】C8.某几何体的三视图如图所示,则此几何体( )A. 有四个两两全等的面B. 有两对相互全等的面C. 只有一对相互全等的面D. 所有面均不全等【答案】B9.赵爽是我国古代数学家、天文学家,大约在公元年,赵爽为《周碑算经》一书作序时,介绍了“勾股圆方图”,亦称“赵爽弦图”(以弦为边长得到的正方形是由4个全等的直角三角形再加上中间的一个小正方形组成的).类比“赵爽弦图”,可类似地构造如图所示的图形,它是由个全等的三角形与中间的一个小等边三角形拼成的一个大等边三角形,设,若在大等边三角形内部(含边界)随机取一点,则此点取自小等边三角形(阴影部分)的概率是( )A. B. C. D.【答案】A 10.已知函数(为自然对数的底数),若关于的方程有两个不相等的实根,则的取值范围是 A.B.C.D.【答案】C11.已知双曲线的左、右焦点分别为,,过作圆的切线,交双曲线右支于点,若,则双曲线的渐近线方程为A. B.C.D.【答案】A 12.如图,在正方体中,点,分别为棱,的中点,点为上底面的中心,过,,三点的平面把正方体分为两部分,其中含的部分为,不含的部分为,连结和的任一点,设与平面所成角为,则的最大值为A. B.C. D.【答案】B二、填空题:本题共4小题,每小题5分,共20分。

【100所名校】2019届河北省衡水中学高三第一次摸底考试数学(理)试题(解析版)

【100所名校】2019届河北省衡水中学高三第一次摸底考试数学(理)试题(解析版)

好教育云平台 名校精编卷 第1页(共6页) 好教育云平台 名校精编卷 第2页(共6页)2019届河北省衡水中学 高三第一次摸底考试数学(理)试题 数学 注意事项: 1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

一、单选题 1.复数z =(−3−4i )i 在复平面内对应的点位于 A . 第一象限 B . 第二象限 C . 第三象限 D . 第四象限 2.已知全集U=R ,M ={x|−x 2≥2x }则C U M = A . {x |−2<x <0 } B . {x |−2≤x ≤0 } C . {x|x <−2或x >0 } D . {x|x ≤−2或x ≥0 } 3.某地某所高中2018年的高考考生人数是2015年高考考生人数的1.5倍,为了更好地对比该校考生的升学情况,统计了该校2015年和2018年的高考情况,得到如下柱状图: 2015年高考数据统计 2018年高考数据统计 则下列结论正确的是 A . 与2015年相比,2018年一本达线人数减少 B . 与2015年相比,2018年二本达线人数增加了0.5倍 C . 与2015年相比,2018年艺体达线人数相同 D . 与2015年相比,2018年不上线的人数有所增加 4.已知等差数列{a n }的公差为2,前n 项和为S n ,且S 10=100,则a 7的值为A . 11B . 12C . 13D . 14 5.已知f (x )是定义在R 上的奇函数,若x >0时,f (x )=xlnx ,则x <0时,f (x )= A . xlnx B . xln (−x ) C . −xlnx D . −xln (−x ) 6.已知椭圆C:x 2a 2+y 2b 2=1(a >b >0)和直线l:x 4+y 3=1,若过C 的左焦点和下顶点的直线与l 平行,则椭圆C 的离心率为 A . 45 B . 35 C . 34 D . 15 7.如图,在平行四边形ABCD 中,对角线AC 与BD 交于点O ,且AE ⃑⃑⃑⃑⃑ =2EO ⃑⃑⃑⃑⃑ ,则ED ⃑⃑⃑⃑⃑ = A . 13AD ⃑⃑⃑⃑⃑ −23AB ⃑⃑⃑⃑⃑ B . 23AD ⃑⃑⃑⃑⃑ +13AB ⃑⃑⃑⃑⃑ C . 23AD ⃑⃑⃑⃑⃑ −13AB ⃑⃑⃑⃑⃑ D . 13AD ⃑⃑⃑⃑⃑ +23AB ⃑⃑⃑⃑⃑ 8.某几何体的三视图如图所示,则此几何体 A . 有四个两两全等的面 B . 有两对相互全等的面 C . 只有一对相互全等的面 D . 所有面均不全等 9.赵爽是我国古代数学家、天文学家,大约在公元222年,赵爽为《周碑算经》一书作序时,介绍了“勾股圆方图”,亦称“赵爽弦图”(以弦为边长得到的正方形是由4个全等的直角三角形再加上中间的一个小正方形组成的).类比“赵爽弦图”,可类似地构造如图所示的图形,它是由3个全等的三角形与中间的一个小等边三角形拼成的一个大等边三角形,设DF =2AF =2,若在大等边三角形中随机取一点,则此点取自小等边亚角形的概率是 此卷只装订不密封班级姓名准考证号考场号座位号好教育云平台 名校精编卷 第3页(共6页)好教育云平台 名校精编卷 第4页(共6页)A . 413B . 2√1313C . 926D . 3√132610.已知函数f (x )={−e x ,x ≤0,lnx,x >0 (e 为自然对数的底数),若关于x 的方程f (x )+a =0有两个不相等的实根,则a 的取值范围是A . a >−1B . −1<a <1C . 0<a ≤1D . a <111.已知双曲线x 2a 2−y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过F 1作圆x 2+y 2=a 2的切线,交双曲线右支于点M ,若∠F 1MF 2=45°,则双曲线的渐近线方程为A . y =±√2xB . y =±√3xC . y =±xD . y =±2x12.如图,在正方体ABCD −A 1B 1C 1D 1中,点E ,F 分别为棱BB 1,CC 1的中点,点O 为上底面的中心,过E ,F ,O 三点的平面把正方体分为两部分,其中含A 1的部分为V 1,不含A 1的部分为V 2,连结A 1和V 2的任一点M ,设A 1M 与平面A 1B 1C 1D 1所成角为α,则sinα的最大值为A . √22B . 2√55C . 2√65D . 2√66二、填空题13.已知实数x ,y 满足约束条件{x −y +1≥0,2x +y −4≤0,y ≥0,,则z =x −2y 的最小值为________.14.已知数列{a n },若数列{3n−1a n }的前n 项和T n =15×6n −15,则a 5的值为________.15.由数字0,1组成的一串数字代码,其中恰好有7个1,3个0,则这样的不同数字代码共有____________个.16.已知函数f (x )=−sin (π3x +φ)+|x −2|(|φ|<π2)的图像关于直线x =2对称,当x ∈[−1,2]时,f (x )的最大值为____________.三、解答题17.如图,在ΔABC 中,P 是BC 边上的一点,∠APC =60°,AB =2√3,AP +PB =4.(1)求BP 的长; (2)若AC =5√34,求cos∠ACP 的值. 18.在ΔABC 中,D ,E 分别为AB ,AC 的中点,AB =2BC =2CD ,如图1.以DE 为折痕将ΔADE 折起,使点A 到达点P 的位置,如图2. 如图1 如图2 (1)证明:平面BCP ⊥平面CEP ; (2)若平面DEP ⊥平面BCED ,求直线DP 与平面BCP 所成角的正弦值。

河北衡水中学2019届全国高三第一次摸底联考理科数学

河北衡水中学2019届全国高三第一次摸底联考理科数学

绝密★启用前河北衡水中学2019届全国高三第一次摸底联考理科数学本试卷4页,23小题,满分150分。

考试时间120分钟。

注意事项:1.答题前,考生务必先将自己的姓名、准考证号填写在答题卡上的相应位置。

2.全部答案在答题卡上完成,答在本试卷上无效。

3.回答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案用0.5mm 黑色笔记签字笔写在答题卡上。

4.考试结束后,将本试卷和答题卡一并交回。

一.选择题:本题共12小题,每小题5分,共60分.每小题给出的选项中,只有一项是符合题目要求的. 1.复数(34)z i i =--在复平面内对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限2.已知全集U R =,2{|2}M x x x =-≥,则U M =ðA .{|20}x x -<<B .{|20}x x -≤≤C .{|20}x x x <->或D .{|20}x x x ≤-≥或3.某所高中2018年高考考生人数是2015年考生人数的1.5倍.为了更好的对比该校考生的升学情况,统计了该校2015年和2018年的高考各层次的达线率,得到如下柱状图则下列结论正确的是A .与2015年相比,2018年一本达线人数减少B .与2015年相比,2018年二本达线人数增加了0.5倍C .与2015年相比,2018年艺体达线人数不变D .与2015年相比,2018年未达线人数有所增加4.已知等差数列{}n a 的公差为2,前n 项和为n S ,且10100S =,则7a =A .11B .12C .13D .145.已知()f x 是定义在R 上的奇函数,若0x >时,()ln f x x x =,则0x <时,()f x =A .ln x xB .ln()x x -C .ln x x -D .ln()x x --6.已知椭圆C :22221(0)x y a b a b+=>>和直线l :143x y +=,若过椭圆C 的左焦点和下顶点的直线与直线l 平行,则椭圆C 的离心率为A .45B .35C .34 D .157.如图,在平行四边形ABCD 中,对角线AC 与BD 交于点O ,且2AE EO =,则ED =A .1233AD AB -B .2133AD AB + C .2133AD AB - D .1233AD AB + 8.某几何体的三视图如图所示,则此几何体A .有四个两两全等的面B .有两个互相全等的面C .只有一对互相全等的面D .所有面都不全等9.赵爽是我国古代的数学家、天文学家,大约在公元222年,赵爽为《周髀算经》一书作序时,介绍了“勾股圆方图”,亦称“赵爽弦图”(以弦为边长得到的正方形是由4个全等的直角三角形再加上中间的一个小正方形组成).类比“赵爽弦图”,可类似的构造如图所示的图形,它是由3个全等的三角形与中间的一个小等边三角形拼成了一个大等边三角形.设22DF AF ==,若在大等边三角形中随即取一点,则此点来自小等边三角形的概率是A .413BC .926D 10.已知函数,0()ln ,0x e x f x x x ⎧-≤=⎨>⎩(e 为自然对数的底数),若关于x 的方程()0f x a +=有两个不等的实根,则a 的取值范围是A .1a >-B .11a -<<C .01a <≤D .1a <11.已知双曲线22221(0,0)x y a b a b-=>>的左,右焦点分别为12,F F ,过1F 作圆222x y a +=的切线,交双曲线的右支于点M ,若1245F MF ∠=︒,则双曲线的渐近线方程为A .y =B .y =C .y x =±D .2y x =±12.如图,在正方体1111ABCD A B C D -中,点,E F 分别是棱11,BB CC 的中点,点O 为上底面的中心,过,,E F O 三点的平面分别把正方体分为两部分,其中含有1A 的部分为几何体1V ,不含1A 的部分为几何体2V ,已知M 为几何体2V 中(内部与表面)的任意一点,设1A M 与平面1111A B C D 所成的角为α,则sin α的最大值为A .BC .5D .6 二.填空题:本题共4小题,每小题5分,共20分.13.已知实数,x y 满足约束条件102400x y x y y -+≥⎧⎪+-≤⎨⎪≥⎩,则2z x y =-的最小值为________.14.已知数列{}n a ,若数列1{3}n n a -的前n 项和11655n n T =⨯-,则5a =________. 15.由数字0,1组成的一串数字代码,其中恰好由7个1,3个0,则这样的不同数字代码共有______个.16.已知函数()sin()|2|(||)32f x x x ππϕϕ=-++-<的图像关于直线2x =对称,当[1,2]x ∈-时,()f x 的最大值为________. 三.解答题:本题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.17.(本小题12分)如图,在ABC ∆中,P 是边BC 上一点,60APC ∠=︒,AB =4AP PB +=.(1)求BP 的长;(2)若AC =,求cos ACP ∠的值.18.(本小题12分)在ABC ∆中,D ,E 分别是AB ,AC 的中点,22AB BC CD ==,如图1.以DE 为轴将ADE ∆翻折,使点A 到达点P 的位置,如图2.(1)证明:平面BCP ⊥平面CEP ;(2)若平面DEP ⊥平面BCED ,求直线DP 与平面BCP 所成角的正弦值.19.(本小题12分)某高校为了对2018年录取的大一理工科新生有针对性地进行教学,从大一理工科新生中随机抽取40名,对他们2018年高考的数学分数进行分析,研究发现这40名新生的数学分数x 在[100,150)内,且其频率y 满足1020n y a =-(其中1010(1)n x n ≤<+,n N +∈) (1)求a 的值;(2)请画出这40名新生高考数学分数的频率的分布直方图,并估计这40名新生的高考数学分数的平均数(同一组中的数据用该组的中间值代替)(3)将此样本的频率估计为总体的太绿,随机调查4名该校的大一理工科新生,记调查的4名新生中“高考数学分数不低于130分”的人数为随机变量ξ,求ξ的数学期望.20.(本小题12分)已知抛物线E :22(0)x py p =>的焦点为F ,0(2,)A y 是E 上一点,且||2AF =.(1)求E 的方程;(2)设点B 是E 上异于点A 的一点,直线AB 与直线3y x =-交于点P ,过点P 作x 轴的垂线交E 于点M ,求证:直线BM 过定点.21.(本小题12分)已知函数()1()ax f x e x a R =--∈.(1)当1a =时,求证:()0f x ≥;(2)讨论函数()f x 的零点个数.请考生在22、23两题中任选一题作答,注意,只能做所选定的题目,如果多做则按所做的第一道题记分,作答时,请用2B 铅笔在答题卡上将所选题号后的方框涂黑.22.[选修4—4:坐标系与参数方程](本小题10分)在平面直角坐标系xOy 中,以O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为2sin 2cos (0)a a ρθθ=+>;直线l的参数方程为222x y ⎧=-+⎪⎪⎨⎪=⎪⎩(t 为参数),直线l 与曲线C 分别交于,M N 两点.(1)写出曲线C 的直角坐标方程和直线l 的普通方程;(2)若点P 的极坐标为(2,)π,||||PM PN +=,求a 的值.23.[选修4—5:不等式选讲](本小题10分)已知函数()|2|f x x =-.(1)求不等式(1)(3)f x xf x +<+的解集;(2)若函数2()log [(3)()2]g x f x f x a =++-的值域为R ,求实数a 的取值范围.。

2019届河北衡水中学全国卷一高考模拟卷(一)数学含答案

2019届河北衡水中学全国卷一高考模拟卷(一)数学含答案

绝密★启封前2019届河北衡水中学全国卷一高考模拟卷(一)理科数学全卷满分150分,考试时间120分钟。

★祝考试顺利★注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上。

并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题作答用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

答在试卷和草稿纸上无效。

3.非选择题作答用0.5毫米黑色墨水签字笔直接答在答题卡上对应的答题区域内。

答在试卷和草稿纸上无效。

考生必须保持答题卡的整洁。

考试结束后,只需上交答题卡第I 卷一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.已知复数22cos sin33z i ππ=+(i 为虚数单位),则3z 的虚部为A .-1B .0C .iD .l2.已知集合**{|2,},{|2,}nA x x n NB x x n n N ==∈==∈,则下列不正确的是A .AB ⊆B .A B A ⋂=C .()ZB A φ⋂= D .A B B ⋃=3.若实数11ea dx x=⎰.则函数()sin cos f x a x x =+的图像的一条对称轴方程为A .x=0B .34x π=-C .4π-D .54x π=-4.甲乙丙3位同学选修课程,从4门课程中选。

甲选修2门,乙丙各选修3门,则不同的选修方案共有 A .36种 B .48种 C .96种 D .1 92种 5.已知不共线向量,,2,3,.()1,a b a b a b a ==-=则b a -A B .CD6.若*1(),()(),2f n n g n n n n N nϕ===∈,则(),(),()f n g n n ϕ的大小关系 A .()()()f n g n n ϕ<< B .()()()f n n g n ϕ<<C .()()()g n n f n ϕ<<D .()()()g n f n n ϕ<<7.从一个正方体中截去部分几何体,得到的几何体三视图如下,则此几何体的体积是( ) A .64 B .1223 C .1883D .4768.执行如图所示的程序框图,若输出a= 341,判断框内应填写( ) A .k<4? B .k<5? C .k<6? D .k<7?9.若A 为不等式组002x y y x ≤⎧⎪≥⎨⎪-≤⎩所示的平面区域,则当a 从-2连续变化到1时,动直线x+y=a 扫过A 中的那部分区域面积为( ) A .2 B .1C .34D .7410.已知过抛物线y 2 =2px (p>0)的焦点F 的直线x -my+m=0与抛物线交于A ,B 两点,且△OAB (O 为坐标原点)的面积为2,则m 6+ m 4的值为( ) A .1B . 2C .2D .411.平行四边形ABCD 中,AB ·BD =0,沿BD 折成直二面角A 一B D -C ,且4AB 2 +2BD 2=1,则三棱锥A -BCD 的外接球的表面积为( ) A .2πB .4πC .48πD .22412.已知R 上的函数y=f (x ),其周期为2,且x ∈(-1,1]时f (x )=1+x 2,函数g (x )=1sin (0)11,(0)x x x xπ+>⎧⎪⎨-<⎪⎩,则函数h (x )=f (x )-g (x )在区间[-5,5]上的零点的个数为( ) A .11B .10C .9D .8第Ⅱ卷本卷分为必做题和选做题两部分,13—21题为必做题,22、23、24为选考题。

2019年河北省衡水中学上学期高三数学(理)第一次调研考试试卷参考答案

2019年河北省衡水中学上学期高三数学(理)第一次调研考试试卷参考答案

高考数学精品复习资料2019.5高三年级数学试卷(理科)参考答案CACAD BDBBC AC13.⎪⎭⎫ ⎝⎛-32,214.0或215.(2,3)16.-804617.解:(1)当a =1时,()()01150152<<-+-⇔--x x x x x ∴()()5,11, -∞-=M ……4分(2)3∈M ⇔93509350953>或<><a a a a a a ⇔--⇔--……6分 5∉M ⇔02555<aa --不成立. 又251025102555>或<><a a a a a a ⇔--⇔--……8分 5∉M ⇔a <1或a >25不成立⇔1≤a ≤25……9分 综上可得,351<a ≤或259≤a <……10分 18.解析:(1)从A 处游向B 处的时间)s (2150223001==t , 而沿岸边自A 跑到距离B 最近的D 处,然后游向B 处的时间200230063002=+=t (s ) 而2002150>,所以救生员的选择是正确的.……4分(2)设CD =x ,则AC =300-x ,22300x BC +=,使救生员从A 经C 到B 的时间3000,2300630022≤≤++-=x x x t ……6分 290000261xx t ++-=',令275,0=='x t 又,>,<<<,<<0300275,02750t x t x ''……9分 知()s 210050275min +==t x ,……11分答:(略)……12分19.解析:(1)2),2(log 2)(2->+==x x x g y ……4分(2)0,)2(log )(22>+==x x x x F y ……6分 令0,)2()(2>+=x x x x u (过程略) ……10分 当2=x 时,()1()(x g x f x F y --==的最大值-3 ……12分20.(1)()32--=x x x f ,x 0是f (x )的不动点,则(),30020x x x x f =--=得10-=x或30=x ,函数()x f 的不动点为-1和3.……3分(2)∵函数f (x )恒有两个相异的不动点,∴()()012=-++=-b bx ax x x f 恒有两个不等的实根,△=()0441422>a ab b b a b +-=--对R ∈b 恒成立, ∴()01642<a a -,得a 的取值范围为(0,1).……7分 (3)由()012=-++b bx ax 得a b x x 2221-=+,由题知121,12++-=-=a x y k ,设A ,B 中点为E ,则E 的横坐标为⎪⎭⎫ ⎝⎛++-1212,22a a b a b , 121222++=-∴a a b a b , 42121122-≥+-=+-=∴a a a ab ,当且仅当()1012<<a a a =, 即22=a 时等号成立, ∴b的最小值为4-.……12分 21.解:(1)由()()a x a a x a x x f 232331223--+-+=. 得()()a a x a x x f 3322-+-+=',对任意[]2,1∈x ,()2a x f >'恒成立, 即()()()030332>,>a x x a x a x +---+对任意[]2,1∈x 恒成立, 又03<-x 恒成立,所以0<a x +对[]2,1∈x 恒成立,所以x a -<恒成立, 所以2-<a .……4分(2)依题意知21,x x 恰为方程()()03322=-+-+='a a x a x x f 的两根, 所以()()⎪⎩⎪⎨⎧-=-=+---=∆a a x x a x x a a a 3303432212122>解得31<<a -……5分所以①321=++a x x 为定值……6分②92)(22122122221=+-+=++a x x x x a x x 为定值,……7分③2793))((2332221212133231+-=++-+=++a a a x x x x x x a x x 不是定值 即2793)(23+-=a a a g (31<<-a )所以a a a g 189)(2-=',当]0,1[-∈a 时,0)(>'a g ,2793)(23+-=a a a g 在]0,1[-∈a 是增函数,当[]2,0∈a 时,()0<a g ',()279323+-=a a a g 在∈a [-1,0]是减函数,当a∈[2,3]时,g ′(a )>0,()279323+-=a a a g 在a ∈[2,3]是增函数, 所以()31≤≤-a a g 在的最小值需要比较()()21g g 与-,因为()1-g =15;()152=g所以()279323+-=a a a g ()31<<a -的最小值为15(a =2时取到).……12分22.解:(1)设,2-≤x 则2≥-x ,))(2()(x a x x f +--=-∴又 )(x f y =偶函数)()(x f x f -=∴所以,()()()2--+=x a x x f ……3分(2)()m x f =零点4321,,,x x x x ,()x f y =与m y =交点有4个且均匀分布(Ⅰ)2≤a 时,⎪⎩⎪⎨⎧=++=-=+0223231221x x x x x x x 得,23,21,21,23,3432121==-=-==x x x x x x 所以2≤a 时,43=m ……5分 (Ⅱ)42<<a 且43=m 时,43122<⎪⎭⎫ ⎝⎛-a ,2323++-<<a 所以232+<<a 时,43=m ……7分 (Ⅲ)a =4时m =1时符合题意……8分(Ⅳ)a >4时,m >1,1612203,43622243242343+-=+=⇒⎪⎩⎪⎨⎧-=+=+=+a a m a x x x x x x a x x此时2)12(1-<<a m 所以37410or 37410-<+>a a (舍) 374104+>且>a a 时,16122032+-=a a m 时存在……10分 综上: ①32+<a 时,43=m②4=a 时,1=m ③37410+>a 时,16122032+-=a a m 符合题意 ……12分。

2019届河北衡水中学高中三年级第一次摸底考试数学理试题解析版

2019届河北衡水中学高中三年级第一次摸底考试数学理试题解析版
(1)写出曲线 的直角坐标方程和直线 的普通方程;
(2)若点 的极坐标为 , ,求 的值.
Hale Waihona Puke 23.已知函数 .(1)求不等式 的解集;
(2)若函数 的值域为 ,求实数 的取值范围.
2019届河北省衡水中学
高三第一次摸底考试数学(理)试题
数学答案
参考答案
1.D
【解析】
【分析】
直接由复数的乘法运算化简,求出z对应点的坐标,则答案可求.
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
一、单选题
1.复数 在复平面内对应的点位于
A.第一象限 B.第二象限 C.第三象限 D.第四象限
2.已知全集U=R, 则
A. B.
C. D.
3.某地某所高中2018年的高考考生人数是2015年高考考生人数的1.5倍,为了更好地对比该校考生的升学情况,统计了该校2015年和2018年的高考情况,得到如下柱状图:
20.已知抛物线 的焦点为 , 是 上一点,且 .
(1)求 的方程;
(2)设点 是上异于点 的一点,直线 与直线 交于点 ,过点 作 轴的垂线交 于点 ,证明:直线 过定点.
21.已知函数 .
(1)当 时,求证: ;
(2)讨论函数 的零点的个数。
22.在平面直角坐标系 中,以 为极点, 轴的正半轴为极轴,建立极坐标系,曲线 的极坐标方程为 ;直线 的参数方程为 ( 为参数),直线 与曲线 分别交于 , 两点.
A. 11 B. 12 C. 13 D. 14
5.已知 是定义在 上的奇函数,若 时, ,则 时,

2019届河北省衡水中学高三第一次摸底考试数学(理)试题(解析版)

2019届河北省衡水中学高三第一次摸底考试数学(理)试题(解析版)则下列结论正确的是A. 与2015年相比,2018年一本达线人数减少B. 与2015年相比,2018年二本达线人数增加了0.5倍C. 与2015年相比,2018年艺体达线人数相同D. 与2015年相比,2018年不上线的人数有所增加【答案】D【解析】【分析】设2015年该校参加高考的人数为,则2018年该校参加高考的人数为.观察柱状统计图,找出各数据,再利用各数量间的关系列式计算得到答案.【详解】设2015年该校参加高考的人数为,则2018年该校参加高考的人数为.对于选项A.2015年一本达线人数为.2018年一本达线人数为,可见一本达线人数增加了,故选项A错误;对于选项B,2015年二本达线人数为,2018年二本达线人数为,显然2018年二本达线人数不是增加了0.5倍,故选项B错误;对于选项C,2015年和2018年.艺体达线率没变,但是人数是不相同的,故选项C错误;对于选项D,2015年不上线人数为.2018年不上线人数为.不达线人数有所增加.故选D.【点睛】本题考查了柱状统计图以及用样本估计总体,观察柱状统计图,找出各数据,再利用各数量间的关系列式计算是解题的关键.4.已知等差数列的公差为2,前项和为,且,则的值为A. 11B. 12C. 13D. 14【答案】C【解析】【分析】由及公差为 2.代入前项和公示,求出,得到挺喜欢上,即可求出的值.【详解】由及公差为2.得.所以,故.故选C.【点睛】本题考查等差数列的基本量计算,属基础题.5.已知是定义在上的奇函数,若时,,则时,A. B. C. D.【答案】B【解析】【分析】设,则由奇函数的性质f(-x)=-f(x),求出函数f(x)的解析式,【详解】设,则,所以.又因为是定义在上的奇函数,所以,所以.故选B.【点睛】本题考查函数的奇偶性的综合运用,属基础题.6.已知椭圆和直线,若过的左焦点和下顶点的直线与平行,则椭圆的离心率为A. B. C. D.【答案】A【解析】【分析】直线的斜率为,因为过的左焦点和下顶点的直线与平行,,由此可求椭圆的离心率.【详解】直线的斜率为,过的左焦点和下顶点的直线与平行,所以,又,所以,故选A.【点睛】本题考查椭圆的离心率求法,属基础题. 7.如图,在平行四边形中,对角线与交于点,且,则A. B.C. D.【答案】C【解析】【分析】利用向量加法法则结合图像特点运算即可.【详解】.故选C.【点睛】本题考查向量的线性运算,属基础题.8.某几何体的三视图如图所示,则此几何体A. 有四个两两全等的面B. 有两对相互全等的面C. 只有一对相互全等的面D. 所有面均不全等【答案】B【解析】【分析】由三视图得到几何体的直观图,由三视图给出的几何量证明即可..【详解】几何体的直观图为四棱锥.如图.因为,,.所以≌.因为平面,所以.同理,.因为,,,所以≌.又与不全等.故选B.【点睛】本题考查三视图原原几何体,以及线面关系的有关证明,属中档题.9.赵爽是我国古代数学家、天文学家,大约在公元222年,赵爽为《周碑算经》一书作序时,介绍了“勾股圆方图”,亦称“赵爽弦图”(以弦为边长得到的正方形是由4个全等的直角三角形再加上中间的一个小正方形组成的).类比“赵爽弦图”,可类似地构造如图所示的图形,它是由3个全等的三角形与中间的一个小等边三角形拼成的一个大等边三角形,设,若在大等边三角形中随机取一点,则此点取自小等边亚角形的概率是A. B. C. D.【答案】A【解析】【分析】根据几何概率计算公式,求出中间小三角形区域的面积与大三角形面积的比值即可.【详解】在中,,,,由余弦定理,得,所以.所以所求概率为.故选A.【点睛】本题考查了几何概型的概率计算问题,是基础题.10.已知函数(为自然对数的底数),若关于的方程有两个不相等的实根,则的取值范围是A. B. C. D.【答案】C【解析】【分析】画出函数的图像,利用数形结合法可求的取值范围,【详解】画出函数的图像如图所示,若关于的方程有两个不相等的实根,则函数与直线有两个不同交点,由图可知,所以.故选C.【点睛】本题考查方程的根个数的求参数的范围,考查数形结合思想方法,属于中档题.11.已知双曲线的左、右焦点分别为,,过作圆的切线,交双曲线右支于点,若,则双曲线的渐近线方程为A. B. C. D.【答案】A【解析】【分析】由双曲线的定义可得,结合条件可得,运用勾股定理,结合a,b,c的关系,可得,进而得到渐近线的斜率.【详解】如图,作于点.于点.因为与圆相切,,所以,,,.又点在双曲线上.所以.整理,得.所以.所以双曲线的渐近线方程为.故选A.【点睛】本题考查双曲线的渐近线的斜率,注意运用圆的切线的性质,结合双曲线的定义,考查运算能力,属于中档题.12.如图,在正方体中,点,分别为棱,的中点,点为上底面的中心,过,,三点的平面把正方体分为两部分,其中含的部分为,不含的部分为,连结和的任一点,设与平面所成角为,则的最大值为A. B.C. D.【答案】B【解析】【分析】连结.可证平行四边形即为截面. 五棱柱为,三棱柱为,设点为的任一点,过点作底面的垂线,垂足为,连结,则即为与平面所成的角,所以.进而得到的最大值.【详解】连结.因为平面.所以过的平面与平面的交线一定是过点且与平行的直线.过点作交于点,交于点,则,连结,.则平行四边形即为截面.则五棱柱为,三棱柱为,设点为的任一点,过点作底面的垂线,垂足为,连结,则即为与平面所成的角,所以.因为,要使的正弦值最大,必须最大,最小,当点与点重合时符合题意.故.故选B.【点睛】本题考查了空间中的平行关系与平面公理的应用问题,考查线面角的求法,属中档题.二、填空题:本题共4小题,每小题5分,共20分。

2019届河北衡水中学高三上学期一调考试数学(理)试卷【含答案及解析】

2019届河北衡水中学高三上学期一调考试数学(理)试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、选择题1. 已知集合,,则()A . _________B . ___________C ._________D .2. 已知为虚数单位,复数满足,则为()A .B .C .D .3. 如图,网格纸上小正方形的边长为,粗线或虚线画出某几何体的三视图,该几何体的体积为()A .B .C .D .4. 已知命题:方程有两个实数根;命题:函数的最小值为.给出下列命题:① ;② ;③ ;④ .则其中真命题的个数为()A .B .C .D .5. 由曲线,直线及轴所围成的图形的面积为()A .B .______________C .D .6. 函数的图象的大致形状是()A .B .C .D .7. 阅读下面的程序框图,运行相应的程序,输出的结果为()A .B .C .D .8. 定义在上的函数满足,,则不等式(其中为自然对数的底数)的解集为()A .B .C .D .9. 若实数,,,满足,则的最小值为()A .B .C .D .10. 已知存在,使得,则的取值范围为()A . _________B .C .______________________________D .11. 设函数,若方程有个不同的根,则实数的取值范围为()A .___________________________________B .C .___________________________________D .12. 设曲线(为自然对数的底数)上任意一点处的切线为,总存在曲线上某点处的切线,使得,则实数的取值范围为()A. B. C. D.二、填空题13. 设,变量,在约束条件下,目标函数的最大值为,则 _________ .14. 函数在区间上有两个零点,则的取值范围是_________ .15. 已知函数在时有极值,则_________ .16. 定义在上的函数满足:,当时,,则不等式的解集为_________ .三、解答题17. 在中,,,分别为角,,所对的边,且.( 1 )求角的大小;( 2 )若的面积为,求的值.18. 函数.( 1 )当时,求的单调区间;( 2 )若,,有,求实数的取值范围.19. 在中,角,,的对边分别为,,,且.( 1 )求的值;( 2 )若,,成等差数列,且公差大于,求的值.20. 已知函数().( 1 )若函数存在极大值和极小值,求的取值范围;( 2 )设,分别为的极大值和极小值,若存在实数,使得,求的取值范围.21. 已知函数,.( 1 )记,判断在区间内的零点个数并说明理由;( 2 )记在内的零点为,,若()在内有两个不等实根,(),判断与的大小,并给出对应的证明.22. 选修4-1:几何证明选讲如图,是圆的切线,是切点,于,割线交圆于,两点.( 1 )证明:,,,四点共圆;( 2 )设,,求的大小.23. 选修4-4:坐标系与参数方程已知直线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,圆的极坐标方程为.( 1 )把圆的极坐标方程化为直角坐标方程;( 2 )将直线向右平移个单位,所得直线与圆相切,求.24. (本小题满分10分)选修4-5:不等式选讲已知函数,,.( 1 )若当时,恒有,求的最大值;( 2 )若当时,恒有,求的取值范围.参考答案及解析第1题【答案】第2题【答案】第3题【答案】第4题【答案】第5题【答案】第6题【答案】第7题【答案】第8题【答案】第9题【答案】第10题【答案】第11题【答案】第12题【答案】第13题【答案】第14题【答案】第15题【答案】第16题【答案】第17题【答案】第18题【答案】第19题【答案】第20题【答案】第21题【答案】第22题【答案】第23题【答案】第24题【答案】。

【高三数学试题精选】衡水中学2019届高三数学第一次摸底试题(理科附解析)

衡水中学2019届高三数学第一次摸底试题(理科附解析)
5 c
河北衡水中学f(x),求出函数f(x)的解析式,
【详解】设,则,所以又因为是定义在上的奇函数,所以,所以
故选B
【点睛】本题考查函数的奇偶性的综合运用,属基础题
6已知椭圆和直线,若过的左焦点和下顶点的直线与平行,则椭圆的离心率为
A B c D
【答案】A
【解析】
【分析】
直线的斜率为,因为过的左焦点和下顶点的直线与平行,,由此可求椭圆的离心率
【详解】直线的斜率为,过的左焦点和下顶点的直线与平行,所以,又,所以,
故选A
【点睛】本题考查椭圆的离心率求法,属基础题
7如图,在平行四边形中,对角线与交于点,且,则
A B
c D
【答案】c
【解析】
【分析】
利用向量加法法则结合图像特点运算即可
【详解】。

2019届河北衡水中学高三上学期一调考试数学(理)试卷【含答案及解析】

2019届河北衡水中学高三上学期一调考试数学(理)试卷【含答案及解析】姓名 ____________ 班级 _______________ 分数 ____________题号-二二三总分得分、选择题4.已知命题•::方程-…- 有两个实数根;命题 .■:函数'「「-一'的最小值为.给出下列命题:r①p M :②汕Q :③"F :④rpyy .1. , 0={耳卜|叱1},则 PI 0・A .1丄B .2.已知 I 为虚数单位,复数 满足,则日为(.珅D . <■如图, 3. 体的体积为网格纸上小正方形的边长为( )' ,粗线或虚线画出某几何体的三视图,该几何已知集合「二衣则其中真命题的个数为 ()?1A . •B .- C5. A 由曲线 —B,直线 1C .16D1及|轴所围成的图形的面积为6. AB C D 的图象的大致形状是11.设函数N- -■--,若方程根,则实数•的取值范围为()|/(rf +f |/0 + l 二0有17个不同的、填空题8. 定义在IJ 上的函数 :{- J ■:厶(其中 A •C • (0- 4-x ) B (心)1丿(0.炖) I"「:满足;'I I .■■■ I : I- ■,则不等式-为自然对数的底数)的解集为()• (-oo t 0)U (3,+®)D9. ■ ■ ■ | 「 的最小值为 A • J : B •: 满足:■-■ : ■ ■ I r - I ,则)2^210. 已知 / (.1)= ,使得•丨…'「,则ii.i 的取值范围为 )A • C •D•2-4 1设曲线 「II - (「-为自然对数的底数)上任意一点处的切线为 上某点处的切线 人,使得£丄匚,则实数口的取值12. 总存在曲线.-[• _■:■:■■ 范围为( )A.- - B.(3严)C.D.13. 设脚,变量工,卩在约束条件y < na.下,目标函数二= T +的耳*T < 1最大值为■?,贝V 附= ____________ .14. 函数* = £ -川h在区间(0.3]上有两个零点,则啣的取值范围是__________________15. 已知函数’一- •在-,时有极值,则伏■-:二16. 定义在h'上的函数.I 满足:」}1,当.I:时,y\x)<x,贝怀等式十x的解集为____________ .三、解答题17. 在「认中,丿,-,,,,分别为角,.1,1所对的边,且(7 _ 6 _ £■A 7 rrn; R rn*; C(1 )求角的大小;(2 )若'…疋的面积为-,求的值.18. 函数y I ■■:<1 -—:- 、(1 )当-时,求.丨的单调区间;(2 )若.一丨,一」,:,有;〔―Y ,求实数的取值范围.19. 在\ : A'中,角,.丿,匚的对边分别为,■・,•,且I 占知= 口(1 )求I:.的值;2 )若丿,丁,.成等差数列,且公差大于「,求;;:(的值.( 1已知函数■ I - - r I I (K )•)若函数「| ,存在极大值和极小值,求-的取值范围;,使得_• 一,,求;的取值范围20.2)设 , 分别为的极大值和极小值,若存在实数21.已知函数• 一(由; ((丫)= 记「||亠i : ) - ,判断f 「 在区间I |内的零点个数并说明理 记一’「 在彳一 | 内的零点为•,,.I : ' .'.i..!I ■;(:三It )在I 一.内有两个不等实根-一,:(,若 ,-(片"、.),判断 「与2入的大小,并给出对应的证明22. 选修4-1 :几何证明选讲 如图,「丁是圆 的切线,于; 两点•是切点,.加,矿于兀,割线交圆•:,:四点共圆;D - J ',求,需窕的大小•23.选修4-4 :坐标系与参数方程 f — — 1 Q 4-(r 为参数),以坐标原点为极点,X已知直线的参数方程为 :的极坐标方程为|I把圆「的极坐标方程化为直角坐标方程; 将直线 向右平移 个单位,轴的正半轴为极轴建立极坐标系,圆 ( (所得直线一与圆匚相切,求 •本小题满分10分)选修4-5 : , -]\24. 已知函数:丨「|/不等式选讲( 1 (1 )若当_• I -时,恒有「I ■: 「,求■的最大值; (2 )若当,|:时,恒有-.I 一 ,求'的取值范围参考答案及解析第1题【答案】 A【解析】试畸析:由題删,"{血宀} ={卄弓,小卜口}=叶15 , 鹅Fl p = {x[O<x<y },故选葩第2题【答案】 b【解析】1-? 11/ — | 1+f V2试题分析;由瀬亀*乔而二牙布I 十 亍肓7°丁 '故选6第3题【答案】【解析】试题分析;由融竜得,棍搞给定的三视图可知.该几何依为如图所示的几何体」罡一个三棱锥与三棱柱的组葩其中三棱稚的体积为%斗号46 2",三棱柱时体耐今平二2心&,所b憩几何休前体积为r=iz,故选E. °第4题【答案】【解析】试题分析:由A = +4>0 ;所以方程十—2or—1“有两个实数昵所臥命題P是貢命题』当r<0时*函数/W=x + -的取11为员値,所以.命题可为假命砸,所汰叫,"% , rpQf是真席题,故选C.第5题【答案】【解析】试题分析:由万程组Z解得耳=1或"4 ,所臥所围咸的图形的面积为弘『[£-『2)规之衬斗宀2丁)卜芈、故选c・' 」丄3第6题【答案】第9题【答案】【解析】 试题分折;由题帝得」* £ T CQ sx =UW )=-_ cosr = -/(x) >所以因数F (x)为奇匣瞰丿團象关于原卓对'称,申滁S 项b C;令” 1 + e、则/⑴cosl =[ |<osl< 0 、故选B. / \l+e J第7题【答案】i【解析】试题分析;程序在运行过程中各銮重的值如下表示:fltJT^ijx = l (y = Us=2、第一次擔环'x = ly = 2^ = 3 $ 第二腐IS 环』^ = 2.y=?t j =5 § 第三 跖漕环,工二負丫二5匸二$ ;第四次循环,r = 5+v=S,r = B ;第五次猶环,x - S t y= 13,r =21 :第丸刘檢止循环,1W 寸输出结果工二半;故选0.■X S第8题【答案】 A【解析】分析:设gGO 二总丁(玄)一无文色说、则(门+J 八工)一才=叭才00+fS)-i]L 因为/(巧十fOl J 所^/(^)+r (x)-l >0 ,所以『(工)兀,所Wy=ff(x )罡单调递増 因为ey(x)>^+3 f ffKKg(x)>3 ,只因为^(0) = ^°/(C)-^ = 3 ;;所以耳>Q 7故选4------- -cos(-r)QO«X ,所以/(-x)=【解析】试题分析;因为实数 Ebe d 满足++(c~rf + 2)-0 丿所 £A—31ni7 = 0 设b-y,a-x , PlWv = 31n?r-x-由芒一才_2=0,设川= ¥C =T ,贝M 有;V = H *2 ,所以 (什汀十卩 石 就是ffi^v =31iiy-.v 3与直线+ 2之间的最小距高的平方值,对曲绒33> =31n.v-r v 2求导:/ = — 2丁与平行y = x + 2平行的切线斜率疋二1匸—2工»解得v = l 或xx离为£ = |1U+2| = ^ ,所ar =8 ,■V = ~^〔舍去),把21代入r= Jlnr-x 2 ,解得F v = x + 2 的^第10题【答案】=T ,即切点(IT),则切f *)= /6J ,所以o <Xj<^ , E?ix+|在[0*上的最小值为|,2rl 在[+ 2)上的最小值<-、因为2/(Xj) = + ^-/(\)= /(^),所以诃(幵)・丙/印・卄!,令(2"—i丄1辺二丄);所以F ■斗+ :为开口向匕对称轴为2*上抛物绻所以V ■斗亠;在2 12 乃 4 2]区间[竺二rg)上1®,所以当土 = 孚丄时,y^r~^ ?当.r = i 时j y = l 即\gf (r 2)— 亠 J_ 2 2的取值范围是I 耳土甘,故选基【解析】试题分析!作出函数于(耳・的團熟 如圄所示,因为存在七一丐当刊匸韦王叮屯吕”所臥H2 2第11题【答案】【解析】试题分析,因再一我,所決广(工)=/ + 2“3 = 0 ,解得x--3..t = l ,由r(v)>0解得21或X—3 *即函数在(vTML+oo)上单调递堀由门口“解得T v Y1 ;即画数在(-3,1)上单调递涮,则的数的极大值为/(-3>= 9 ?函数的极小值为= 、根据国数的图象可知'设/(^) = ^ ,可知显-抑+"0 ,原方程有12不同的3h nil 7:r. =.-|-.VH-III -.. r'n:H:ltf ・详/( :;•:】::「■:心:•门I「-■- "辭7 jb J△ =t- -4>0< -2 ,所臥实数f的取值范IH为;故选C.第12题【答案】【解折】;得f (買)—「1 ,因为/ +1>1 .所以J —E (CH ),由冒(町=加讣加曲,得 e rlg f (T ) = 3<J —2SLHX , X -25IILX £ [-2.2] f 所3a-2siar c [-2 *3CT . 2 + 3«] f 夢使过曲线/(x) = -e r -x 上任意一克的切绒4,总存在过曲线冒(V)今口+馱上一点处的切线厶,使得第13题【答案】 )M = 1 +【解析】y >工、试题分折:因为心,由约束条件*5…作出可讦域』如團所示,直线尸妣与更线x+ V<1L *耳交于(丄.二-);目标函数娜 对应的直线与亶线T = ^r 垂直,且在勘4】w + ] (亠•亠)处取得最大值.由题意得可知匕出=2 、且"21 ,解得J M = 1+^ ■ m + 1 m + \ 也十 1-2+Srf<02 +站王11 2 解■得- ~ >故选D- 第14题【答案】I 叮【解析】试题分析:由题意得y = e r -wrr = 0 ?得m-— 、iS/(^)= —/F (JT )=-—="眄 °工x x~I -、可得八刃在区间(1⑶上单调递曙 在区间(0.1) ±单调阖右所以当“1时,得BS 小僮 同时也是最小值/⑴“,因为当x^O 时』/(x)->-h®,当£ = 3时j /(3)=y,所以更使得函数y = £ -y».v 在区间CO. J ]上肓两个零点,所以实数択的取值范围是e<;«<y */(.v) = .?+3,x- +3^+1』则/0=川*心+2丰2仗+1)50』囲数在尺单调递増,函数无极值 、所以用+打=】1・第16题【答案】£_1第15题【答案】11【解析】M 甌分析:因湖/(置匸疋+却用+粒+计,所以广(刃工3工讣血圧母刃,所以-1 + 3JJJ -H +切'二 03 -6w + ?7 = 0当OT = Ln=3时)函劉【解析】试题分朴因为定义在建上的函数/(“满足;拦,所臥两边求导』得-f (工)=2「所^f,(x) = f l(-x)^-2x ,令2 0 ,则一“0 ,因^3r<0 时』f〔計《,所以f卜司—拓,所以f, X/(0) = Q ,直线F"过原点,所以r(o)<o,所以都有f心血,令尸(幻■畑甘n-兀,则FO/S+fCl—刈一心十1—‘即%)是尺上的单哑减酗L且凤亠。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

河北省衡水中学2019届高三第一次模拟考试-数学理试卷·2·河北省衡水中学2019~2019学年度第二学期高三年级一模考试数学(理科)试卷(A 卷)本试卷分为第I 卷(选择题)和第II 卷(非选择题)两部分.满分150分.考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题:(本题共12个小题,每小题5分,共60分,在四个选项中,只有一项是符合要求的)1.设全集为实数集R ,{}{}24,13M x x N x x =>=<≤,则图中阴影部分表示的集合是( ) A .{}21x x -≤< B .{}22x x -≤≤C .{}12x x <≤D .{}2x x <2.设,a R i ∈是虚数单位,则“1a =”是“a i a i +-为纯虚数”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件3.若{}n a 是等差数列,首项10,a >201120120a a +>,201120120a a ⋅<,则使前n 项和0n S >成立的最大正整数n 是( ) A .2019 B .2019 C.4022 D .4023·3··4··5·11.已知圆的方程422=+y x ,若抛物线过点A(0,-1),B(0,1)且以圆的切线为准线,则抛物线的焦点轨迹方程是( ) A.x23+y24=1(y≠0) B.x24+y23=1(y≠0) C.x23+y24=1(x≠0) D.x24+y23=1 (x≠0) 12. 设()f x 是定义在R 上的函数,若(0)2008f = ,且对任意x ∈R ,满足(2)()32xf x f x +-≤⋅,(6)()632x f x f x +-≥⋅,则)2008(f =( ) A.200722006+ B .200622008+ C .200722008+ D .200822006+第Ⅱ卷 非选择题 (共90分)二、填空题(本题共4个小题,每小题5分,共20分. 把每小题的答案填在答题纸的相应位置)13.在区间[-6,6],内任取一个元素xO ,若抛物线y=x2在x=xo 处的切线的倾角为α,则3,44ππα⎡⎤∈⎢⎥⎣⎦的概率为 。

·6·14.某程序框图如图所示,该程序运行后输出的S 的值是15. 在ABC ∆中,P 是BC 边中点,角A ,B ,C 的对边分别是a ,b ,c ,若0cAC aPA bPB ++=,则ABC ∆的形状为 。

16.在x 轴的正方向上,从左向右依次取点列 {} ,2,1,=j A j ,以及在第一象限内的抛物线x y 232=上从左向右依次取点列{} ,2,1,=k B k ,使k k k A B A 1-∆( ,2,1=k )都是等边三角形,其中0A 是坐标原点,则第2005个等边三角形的边长是 。

三、解答题(共6个题, 共70分,把每题的答案填在答卷纸的相应位置)17.(本题12分)在△ABC 中,c b a ,,是角C B A ,,对应的边,向量),(c b a m +=,()c b a n -+=,,且abn m )23(+=•. (1)求角C ;(2)函数)(021)2sin()cos()(cos )sin(2)(2>-+-+=ωωωx B A x B A x f 的相邻两个极值的横坐标分别为20π-x 、0x ,求)(x f 的单调递减区间.18.(本题12分)已知四边形ABCD满足1//,2AD BC BA AD DC BC a====,E是BC的中点,将△BAE沿AE翻折成11,B AE B AE AECD∆⊥使面面,F为1B D的中点.(1)求四棱锥1B AECD-的体积;(2)证明:1//B E ACF面;(3)求面11ADB ECB与面所成锐二面角的余弦值.19.(本题12分)·7·现有4个人去参加某娱乐活动,该活动有甲、乙两个游戏可供参加者选择,为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏.(1)求这4个人中恰有2人去参加甲游戏的概率;(2)求这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率;(3)用X,Y分别表示这4个人中去参加甲、乙游戏的人数,记ξ=|X-Y|,求随机变量ξ的分布列与数学期望Eξ.20.(本题12分)已知椭圆C:22221x ya b+=(0a b>>)过点(20),,且椭圆C的离心率为12.·8··9·(Ⅰ)求椭圆C 的方程;(Ⅱ)若动点P 在直线1x =-上,过P 作直线交椭圆C 于M N ,两点,且P 为线段MN 中点,再过P 作直线l MN ⊥.求直线l 是否恒过定点,如果是则求出该定点的坐标,不是请说明理由。

21. (本题12分)已知函数()f x 是定义在[)(],00,e e -⋃上的奇函数,当(]0,x e ∈时, ()ln f x ax x =+(其中e 是自然界对数的底,a R ∈)(1)求()f x 的解析式; (2)设[)ln (),,0x g x x e x =∈-,求证:当1a =-时,且[)0,e x -∈,1()()2f x g x >+恒成立;·10· (3)是否存在实数a ,使得当[),0x e ∈-时,()f x 的最小值是3 ?如果存在,求出实数a 的值;如果不存在,请说明理由。

请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.答题时用2B 铅笔在答题卡上把所选的题号涂黑.22. (本小题满分10分) 选修4—1:几何证明选讲 已知PQ 与圆O 相切于点A ,直线PBC 交圆于B 、C 两点,D 是圆上一点,且AB ∥CD ,DC 的延长线交PQ 于点Q求证:AB CQ AC⋅=2 若AQ=2AP ,AB=3,BP=2,求QD.23.(本小题满分10分) 选修4—4:坐标系与参数方程在平面直角坐标系中,曲线C1的参数方程为⎩⎨⎧==ϕϕsin cos b y a x(a >b >0,ϕ为参数),以Ο为极点,x 轴的正半轴为极轴建立极坐标系,曲线C2是圆心在极轴上且经过极点的圆,已知曲线C1上的点M )3,2( 对应的参数ϕ=3π,4πθ=与曲线C2交于点D)4,2(π(1)求曲线C1,C2的方程;(2)A (ρ1,θ),Β(ρ2,θ+2π)是曲线C1上的两点,求 222111ρρ+的值。

24.(本小题满分l0分) 选修4—5:不等式选讲 已知关于x 的不等式a x x 2log |1||12|≤--+(其中0>a ).(1)当4=a 时,求不等式的解集; (2)若不等式有解,求实数a 的取值范围2019~2019学年度第二学期高三年级一模考试 数学(理科)答案一、选择题 (A )卷CACDD DBABC CC (B )CCADD BDACB CC 二、填空题 13、111214、21-15、等边三角形 16. 2005三、解答题17、解:(1)因为abn m c b a n c b a m )23(),,(),,(+=⋅-+=+=,所以abc b a 3222=-+,故23cos =C ,6,0ππ=∴<<C C . ---------5分(2)21)2sin()cos()(cos )sin(2)(2-+-+=x B A x B A x f ωω=21)2sin(cos )(cos sin 22-+x C x C ωω=21)2sin(23)(cos 2-+x x ωω=)62sin(πω+x ----------8分因为相邻两个极值的横坐标分别为20π-x 、0x ,所以)(x f 的最小正周期为π=T ,1=ω所以)62sin()(π+=x x f ---------10分由Z k k x k ∈+<+<+,2326222πππππ所以)(x f 的单调递减区间为Z k k k ∈++],32,6[ππππ.---------12分18、解:(1)取AE 的中点M ,连结B1M ,因为BA=AD=DC=21BC=a ,△ABE 为等边三角形,则B1M=a 23,又因为面B1AE ⊥面AECD ,所以B1M ⊥面AECD , 所以43sin 23313a a a a V =⨯⨯⨯⨯=π ---------4分(2)连结ED 交AC 于O ,连结OF ,因为AECD 为菱形,OE=OD 所以FO ∥B1E , 所以1//B E ACF 面。

---------7分(3)连结MD ,则∠AMD=090,分别以ME,MD,MB1为x,y,z 轴建系,则)0,0,2(a E ,)0,23,(a a C)0,0,2(aA -,)0,23,0(a D ,)23,0,0(1a B ,所以1,)23,0,2(1aa EB -=,)0,23,2(a a AD =,)23,0,2(1aa AB =,设面ECB1的法向量为),,(z y x u =,⎪⎪⎩⎪⎪⎨⎧=+-=+02320232az x aay x a ,令x=1,)33,33,1(-=u ,同理面ADB1的法向量为)33,33,1(--=v , 所以53313113131131311,cos =++⨯++-+>=<v u ,故面11ADB ECB 与面所成锐二面角的余弦值为53.--------12分19.解:依题意,这4个人中,每个人去参加甲游戏的概率为13,去参加乙游戏的概率为23.设“这4个人中恰有i 人去参加甲游戏”为事件iA (i =0,1,2,3,4),则ii i i C A P -=44)32()31()((1)这4个人中恰有2人去参加甲游戏的概率278)32()31()(22242==C A P 3分(2)设“这4个人中去参加甲游戏的人数大于去参加乙游戏的人数”为事件B ,则43A AB ⋃=,由于3A 与4A 互斥,故91)31()32()31()()()(44433443=+=+=C C A P A P B P所以,这4个人去参加甲游戏的人数大于去参加乙游戏的人数的概率为19. 7分(3)ξ的所有可能取值为0,2,4. 由于1A 与3A 互斥,A 与4A 互斥,故278)()0(2===A P P ξ,8140)()()2(31=+==A P A P P ξ8117)()()4(40=+==A P A P P ξ。

相关文档
最新文档