燃煤锅炉烟气余热回收计算
关于烟气余热利用新方案设计计算

4. 假设条件 1) 、不考虑烟气中灰尘所含热量。 2) 、不考虑酸露凝结时的放热。 3) 、涉及简单传热计算时,假设空气、烟气的热物理性质为常数。 4) 、不考虑换热器、管路散热损失。 5. 计算过程
请参考计算表格 实际运行中,烟气出空气预热器温度在 120~150 度,烟气进空气预热器温度在 340~370 度,空气进空气预热器温度在 20 度左 右时,出空气预热器的温度在 310~340 度。经计算,空气预热器中烟气的热容量大约是空气的 1.35 倍。 很显然,1.利用烟气余热加热空气的方式,由于空气热容量小于烟气,很难将空气进锅炉的温度再进一步升高,所以所获得的 收益甚微。2.直接利用烟气加热凝结水,由于烟气的温度已经较低,进入热力系统后大部分热量仍将以冷源损失掉,所以所获收益 也不明显。 通过详细考察空气、烟气的热容量,为了深度利用烟气余热,并将余热发挥出最大节能效果,采取如下措施:将烟气低温部分 回收来热量加热空气,由于空气温度升高,进入空气预热器后所消耗的高温部分烟气热量将减少。由此,将节省下来的空气预热器 内温度较高的烟气热量用于回热系统。 我们将烟气温降分为以下三个温度段:350~254 度,220~140 度,113~65 度,空气温升也分为三个阶段:190~320 度,80~190 度,20~80 度,对应于烟气三个温降温度段。烟气温降中的 254~220 度、140~113 度,即为我们从中获取的热量段,将两温度段热 量分别加热给水取代部分 2#高加抽气和加热凝结水取代部分 6#低加抽气。
Pn hn
①
Pr8 h8
锅炉尾部受热面
⑤
Pr6 h6
②
Pr5 h5 t5 t4 Pr4 h4 t3 ts4 P=0.824 t=172 t=132 Pr3 h3 t2 ts3 t=104 ts2 Pr2 h2 t1 ts1 tsf6 Pr1 h1
烟气余热回收计算

化验数据
(二)烟气冷凝余热回收装置输出热量
10
回收器循环水量
G
kg/h
试验数据
11
回收器进水温度
Tjs
℃
试验数据
12
回收器出水温度
Tcs
℃
试验数据
13
回收器进水压力
Pjs
MPa
试验数据
14
回收器出水压力
pcs
MPa
试验数据
15
进水焓
Hjs
kJ/kg
查水和水蒸气性质表
16
出水焓
Hcs
kJ/kg
序号
名称
符号
单位
计算公式或数据来源
试验数据
(一)燃料特性
1
收到基碳
Car
%
化验数据
2
收到基氢
Har
%
化验数据
3
收到基氧
Oar
%
化验数据
4
收到基硫
Sar
%
化验数据
5
收到基氮
Nar
%
化验数据
6
收到基灰分
Aar
%
化验数据
7
收到基水分
Mar
%
化验数据
8
干燥无灰基挥发分
Vdaf
%
化验数据
9
收到基低位发热量
Qnet,r,ar
查水和水蒸气性质表
17
燃料消耗量
B
kg/h
试验数据
18
回收装置输出热量
Qr
kJ/kg
近似取为收到基低位发热量
(三)烟气冷凝余热回收装置输入热量
19
排烟处RO2
燃气供热厂锅炉烟气深度余热回收工程

De s i g n o f De e p R e c o v e r i n g Wa s t e He a t f r o m F l u e Ga s i n He a t i n g P l a n t
WANG m
( E n e r g y a n d E n v i r o n me n t E n g i n e e r i n g De s i g n a n d Re s e a r c h I n s t i t u t e ,
0 引言 当今 社会“ 节能” 已成 为继煤 炭 、 石油 、 电力 、 天 然 气之 后 的“ 第 五 能源 ” , 而 目前使 用 的工业锅 炉 中普 遍 存在 着 锅 炉热 效 率低 、 排烟 温 度 余 热温 度 高 、 烟 气 污 染 气体 含 量 过高 等 问题 。锅 炉 是 我 国主 要 的热 能设 备, 随着 我 国经济 的快 速发 展 , 能源 消耗 日益 增加 , 城 市 空气质 量 日益恶化 的 问题越发 突 出。 锅炉 方面 能耗 高、 污 染高 的主 要原 因之 一就 是排烟 温度 。排 烟温 度 高 为亟待 解决 和重 点突破 的难 点之一 。 目前 ,大 中城市 已有 大部 分供热厂 从燃煤锅 炉改 为燃 气锅炉 , 尤 其是大 型集 中供 热厂 中大容量 、 高参数 燃气 锅炉 , 已加装 了烟气余热 冷凝 回收装置 。 烟 气余热 冷凝 回收装置 是利用温 度较低 的水冷 却烟气 ,把烟气 温度 降低到烟气 中的水蒸气冷 凝 , 同时 , 实现烟 气显热 和水 蒸气潜热 的回收利用 , 提高锅炉 热效率 。 现 在 随着 节 能技术 的不 断发展 ,又有 了在烟气 冷凝装 置后使烟 气温 度进一 步降低 的深度节 能技术 问世 ,烟气 深度 回 收余热 的工程 己在北 京某供热厂 中实施应用 。
烟气潜热回收效率计算

烟气潜热回收效率计算全文共四篇示例,供读者参考第一篇示例:烟气潜热回收是指通过采用热交换器等设备,将工业生产过程中排放的烟气中的热量回收利用,提高能源利用效率,降低能源消耗。
烟气中的热量主要包括明烟(即温度高于环境空气温度的烟气)和潜热(即由水蒸气形成冷凝水释放的热量)。
一般来说,烟气中的潜热回收效率可以用以下公式来计算:烟气潜热回收效率= (回收的潜热量/ 烟气中的总潜热量)× 100%如果要计算烟气潜热回收效率,首先需要了解烟气中潜热的计算方法。
通常情况下,烟气中潜热的计算可以通过以下公式来进行:烟气中的总潜热量= Vg × Cp × (Tg - Ta)Vg是烟气的体积流量,单位是m3/h;Cp是烟气的比热容,单位是kJ/(kg·K);Tg是烟气的温度,单位是摄氏度;Ta是环境空气的温度,单位是摄氏度。
通过这个公式,可以计算出烟气中的总潜热量。
接下来,通过使用热交换器等设备回收利用部分烟气中的潜热,我们可以获得回收的潜热量。
在实际应用中,热交换器的效率、设计参数等都会对回收效果产生影响,因此在设计和选择烟气潜热回收设备时,需要根据具体情况进行计算和优化。
将回收的潜热量代入烟气潜热回收效率的公式中,就可以得到相应的效率值。
通过计算烟气潜热回收效率,可以评估热交换器等设备的性能,优化烟气处理系统,实现能源的有效利用。
烟气潜热回收是一项重要的节能措施,通过合理设计和运用相关设备,可以提高工业生产过程中的能源利用效率,降低生产成本,减少环境污染。
在实际操作过程中,需要根据具体情况进行计算和优化,确保烟气潜热回收效率的有效提高。
第二篇示例:烟气潜热回收是一种能源回收技术,通过利用工业生产或排放的烟气中所含有的高温废热来进行热能回收和再利用。
这种技术能够有效地提高能源利用效率,减少对环境的污染和能源资源的浪费。
在工业生产中,烟气潜热回收已经被广泛应用,但其效率的计算与评估至关重要。
烟气余热回收计算doc资料

0.95 1320965.88 315492.21
366.85 80.00 5.00 14970.00 1.093 1.005 80.33 254412.92 66.42 535.61 535606.14
投入成本 成本回收期 SO2减排量 CO2减排量 氮氧化物减排量 CO减排量
给定 查表 查表 计算
Qh/Qd/η
Bj*W*0.0085 Bj*W*2.6
Bj*W*0.0074 Bj*W*0.0005
92600.00 2.07 13.55
4144.57 11.80 0.86
20.00 9000.00 55.05 15000.00 21.03
0.40 143.60 2738.49 482.37 254412.92 78.87 636.03 636032.29 200000.00 3.77 16.09 4921.68 14.01 0.95
SO2减排量
Sj
CO2减排量
Cj
氮氧化物减排量
Nj
CO减排量
NCj
Mpa ℃ KJ/kg Kg/h 万kCal/h kg/h 吨/年 元 元 月 kg/d kg/d kg/d kg/d
Bj*W*0.0085 Bj*W*2.6
Bj*W*0.0074 Bj*W*0.00054
给定 给定 计算(大概值) 给定 Qh/V给水
m3/kg Vα*(273+165)/273
kg/m3 kJ /(kg·ºC )
m3/h kg/h Kg m3/h
查表 查表 计算 计算 计算 经验计算
实际烟气体积流量
实际烟气质量流量
排烟温度
烟气冷凝热回收方案设计与计算

烟气冷凝热回收方案设计与计算《燃气应用》课程2010-2011学年春季学期大作业目录一、研究背景 (2)二、研究问题 (3)三、方案设计及计算 (4)1.方案一计算 (4)2.方案二计算 (10)3.1给定方案计算 (10)3.2扩展方案设计及计算 (10)四、比较探讨 (15)五、总结思考 (15)六、课程总结 ............................................................................. 错误!未定义书签。
一、研究背景在北京,近几年出现了许多作为区域供热热源的中小型天然气锅炉,2005年北京用于采暖的天然气耗量约20亿Nm3/年,如果50%的锅炉能够回收这些天然气燃烧的烟气冷凝热,将节约天然气用量1.5亿Nm3/年。
天然气价格按1.8元/Nm3计,则每年可减少燃料费用2.7亿元。
可见,实现天然气烟气冷凝余热在采暖的应用,将会显示出巨大的经济效益和社会效益。
由于天然气的主要成分为甲烷,含氢量很高,因而燃烧后排出的烟气中含有大量的水蒸气(容积成分接近20%),水蒸气的汽化潜热占天然气高位发热量的比例为10%-11%,若将烟气冷凝潜热回收,可较大幅度提高天然气的利用效率,因此回收利用烟气余热是提高天然气利用效率的一种有效途径。
目前,燃气锅炉回收烟气冷凝热利用系统是按照温度低的供热回水通过设置在锅炉尾部的凝水换热器使烟气冷却,从而获取烟气的部分显热和水蒸气潜热。
在空气温度低的环境中,一些冷凝锅炉还在冷凝换热器后设置空气预热器,使烟气温度进一步降低,冷凝热进一步得到利用,被加热的空气进入锅炉燃烧。
具体分析实际工程:锅炉工作将产生较高温度的水,同时为了避免低温水通入锅炉导致锈蚀等一系列问题,需要对送进锅炉的水有一定温度要求。
另一方面,房间侧采用地板采暖或者暖气片采暖等不同形式所需要的供水温度不一样(回水温度也相应不一样),但都比锅炉出水温度低。
燃气锅炉烟气余热深度回收利用的分析研究

燃气锅炉烟气余热深度回收利用的分析研究发布时间:2022-03-03T06:21:21.872Z 来源:《建筑设计管理》2021年21期作者:李鹏[导读] 在燃气锅炉供热中,大型燃气锅炉的排烟温度一般为100℃及以上李鹏身份证号码:61030319811006****摘要:在燃气锅炉供热中,大型燃气锅炉的排烟温度一般为100℃及以上,即使采用常规烟冷器余热回收方法只能回收少部分显热(烟气温度降至约60℃),大部分热量以水蒸气汽化潜热的形式排至环境中,并产生烟囱“白烟”效应对环境造成热污染。
吸收式热泵的使用能将烟气的温度进一步降低至30℃以下,通过烟气冷凝余热回收利用技术,不仅可以将排烟温度降到露点以下,回收利用排烟显热和排烟中水蒸气凝结潜热,还可将烟气冷凝水资源化再利用,烟气冷凝水还可吸收净化烟气中SO2和NOX及颗粒物等污染物起到净化烟气的效果,并实现烟囱“消白烟”美化环境。
燃气锅炉的烟气余热深度回收利用的节能、节水、减排潜力更大,意义重大。
大规模“煤改气”为吸收式直燃热泵应用于烟气余热深度回收利用领域提供了广泛的平台。
关键词:燃气锅炉;烟气余热1 烟气余热回收利用的分析研究天然气燃烧后排出的烟气中的水蒸气冷凝析出时,可释放出大量冷凝热。
例如,对燃气直燃机或燃气锅炉,其排烟温度一般在145℃左右,可见烟气露点温度为60~57℃,如果可将排烟温度降低至30℃,则可使燃气锅炉的效率提高10%以上。
目前,国内外大中型锅炉等主要是利用中高温排烟余热,对于低温排烟余热,特别是烟气露点温度以下的余热利用很少,主要原因是烟气冷凝水呈酸性,易对设备造成腐蚀,同时低温烟气传热温差小、换热系数小,使得换热设备体积大、耗材多、投资大,流动阻力大。
1.1 烟气余热回收利用的计算通过烟气余热量的计算可知,将烟气温度从145℃下降到高于露点温度时可提高烟气利用率4%~6%;若将烟气温度从145℃下降到低于露点温度时可提高烟气利用率10%以上。
华源泰盟燃煤锅炉烟气余热深度回收和消白技术

26产业 INDUSTRY燃煤锅炉在运行时会排放大量的高温烟气,烟气经过除尘、脱硫、湿电除尘后排入大气,脱硫后排烟温度约为55℃,烟气蕴含大量的潜热,直接排放不仅带来了能源的浪费,而且由于湿度较高,会形成烟囱冒“白烟”现象。
“燃煤锅炉烟气余热深度回收和消白技术就是为解决这个问题孕育而生的。
”杨巍巍告诉记者。
研发记者:燃煤锅炉烟气余热深度回收和消白技术在研发过程中遇到哪些问题?如何解决的?讲述一两个令人印象深刻的事件或瞬间。
杨巍巍:主要问题有两个。
首先是烟气热量的计算,因为燃煤的特点,没有准确的燃煤成分和烟气成分,因此在项目研发阶段无法确认烟气余热量计算的准确性;其次是由于燃煤烟气的成分复杂,对喷淋式换热器的结构、流程、防腐等问题提出了新的要求。
我们解决这两个问题的方式,重点是加强理论研究和模拟计算。
通过更广泛地查阅文献、理论研究和模拟计算,充分考虑可能遇到的各种问题,形成了一套完整的烟气热量计算方法和喷淋式换热器的设计方法,并在实际项目中应用,验证这些方法都是准确可行的。
由于燃煤项目都是大项目,无法做小试或中试等试验研究,所以只能以这种方式保证准确性。
印象比较深刻的瞬间是,在第一个项目完成后,为了得到更准确的数据,带着各种测试设备对整个系统进行了详细的测试,其中就包括在40多米的烟道出口测量烟气参数,并多次调整。
在40多米的平台上测试了七八天,每天上下十几次。
最终通过理论与实际结合,完善了设计计算模型。
记者:燃煤锅炉烟气余热深度回收和消白技术的关键技术有哪些?杨巍巍:主要两点。
一是专用吸收式热泵。
目前,吸收式热泵余热回收技术以其高效节能和具有显著经济效益的特点,尤为引人注目。
吸收式热泵以溴化锂溶液作为工质,对环境没有污染,不破坏大气臭氧层,而且具有高效节能的特点。
溴化锂吸收式热泵可以回收利用各种低品位的余热或废热,达到节能减排的目的。
吸收式热泵以高温热源驱动,把低温热源的热量传递给到需要的中温热源,从而提高系统能源的利用效率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
V给水 Δ T给水 P T h V蒸汽 Bj
℃ kg/h ℃ Mpa ℃ KJ/kg Kg/h 万kCal/h kg/h 吨/年 元 元 月 kg/d kg/d kg/d kg/d
Sj Cj Nj NCj
Bj*W*0.0085 Bj*W*2.6 Bj*W*0.0074 Bj*W*0.0005
数值 20000.00 24.00 330.00 833.33 5000.00 20935.00 600.00 3.00 5.52 17.10 30.87 0.82 1.087 25726.22 21095.50 5367.95 15030.26 26000.00 21320.00 220.00 160.00 0.95 1320965.88 315492.21 366.85 80.00 5.00 14970.00 1.093 1.005 80.33 249869.83 66.42 526.04 315625.05
Sj Cj Nj NCj
元 月 kg/d kg/d kg/d kg/d ℃ kg/h
Bj*W*0.0085 Bj*W*2.6 Bj*W*0.0074 Bj*W*0.00054 给定 给定 计算(大概值) 给定 Qh/V给水 给定 查表 查表 计算 Qh/Qd/η
92600.00 3.52 13.55 4144.57 11.80 0.86 20.00 9000.00 55.05 15000.00 21.03 0.40 143.60 2738.49 482.37 249869.83 78.87 624.67 374804.74 200000.00 6.40 16.09 4921.68 14.01 0.95
注:数值一栏白色底框为输入值,颜色底框为计算值
项 目 日耗燃煤(燃料) 工作制 每年工作日 小时燃煤量(燃料) 燃料低发热值 燃料价格 空气系数 单位理论空气消耗量 单位燃烧生成气量(标 况) 单位燃烧生成气量(工 况) 烟气密度(工况165℃) 烟气定压比热(工况) 理论烟气体积流量 理论烟气质量流量 理论蒸汽发生量 根据蒸汽量计算烟气量 实际烟气体积流量 实际烟气质量流量 排烟温度 出口温度 换热效率 回收热量 锅炉效率 不完全燃烧率 鼓风流量 鼓风密度(50℃) 鼓风比热(50℃) 鼓风温度提高 每年回收热量 小时节约煤量(省燃料 量) 每年省煤量(省燃料量) 每年经济效益
3
来源 /1000)*Qd+0.5 (0.21/1000)*Qd+1.65 +(α -1)*L0 Vα *(273+165)/273 查表 查表 计算 计算 计算 经验计算 给定 计算 给定或测定 给定 给定 C p× G× (T进-T出)*k
表 示 B W
Qd Qd Y α L0 Vα 165℃时 ρ Cp V G V
单 位 kg/h h/天 天 kg/h KCal/kg kj/Kg 元 Nm3/kg Nm3/kg m /kg kg/m3 kJ /(kg· º C) m3/h kg/h Kg m3/h m3/h kg/h ℃ ℃ kJ/h kCal/h kW % % m3/h kg/m3 kJ /(kg· º C) ℃ 万kCal/h kg/h 吨/年 元
T进 T出 k Qh η μ V鼓风 ρ 鼓风 Cp鼓风 Δ T鼓风 Bj
给定 给定 给定或测定 查表 查表 Qh/(Cp× V鼓风×ρ 风)
鼓
Qh/Qd/(100-μ )%
投入成本 成本回收期 SO2减排量 CO2减排量 氮氧化物减排量 CO减排量 软水池温度 锅炉补水流量 软水池水温维持温度 余热回收器给水流量 给水温度提高 饱和蒸汽压力 饱和蒸汽温度 蒸汽焓值 蒸汽流量 每年回收热量 小时节约煤量(省燃料 量) 每年省煤量(省燃料量) 每年经济效益 投入成本 成本回收期 SO2减排量 CO2减排量 氮氧化物减排量 CO减排量