用于绝对距离测量的He-Ne激光多波长干涉仪的研究
实验8迈克尔逊干涉仪测量He-Ne激光波长

射光 2,光束1被动镜 M2 再次反射回并穿过 G1 到达 E; 光束 2 穿过补偿片 G2 后被定镜 M1 反射回,二次穿过 G2 到达 G1 并被底层膜反射到达 E;最后两束光是频率相同、 振动方向相同,光程差恒定即位相差恒 定的相干光,它们在相遇空间 E 产生干
2 θ
Hale Waihona Puke 涉条纹。由 M1反射回来的光波在分光板 G1的第二
咳嗽等;测量时动作要轻、缓,尽量使身体部位离开实验台面,以防震动;不能触摸光学元 件光学表面。
-
-可修编-
-
.
2、激光管两端的高压引线头是裸露的,且激光电源空载输出电压高达数千伏,要
警惕误触。
3、 测量过程中要防止回程误差。测量时,微调鼓轮只能沿一个方向转动(必须和大 手轮转动方向一致),否则全部测量数据无效,应重新测量。。
面上反射时,如同平面镜反射一样,使 M
1在 M2附近形成 M1的虚像 M1′,因而光
M2
在迈克尔逊干涉仪中自 M2和 M1的反射相
当于自 M2和 M1′的反射。由此可见,在
迈克尔逊干涉仪中所产生的干涉与空气
薄膜(M2和 M1′之间所夹)所产生的干
涉是等效的。
当 M2和 M1′平行时(此时 M1和 M2严格 互相垂直),将观察到环形的等倾干涉条
由干涉明纹条件有 2dcosθk=kλ…… (2)(考虑到 θ 较小,)
(1)d、λ 一定时,若 θ = 0,光程差 δ = 2d 最大,即圆心所对应的干涉级次最高,从
圆心向外的干涉级次依次降低;
(2)k、λ 一定时,若 d 增大,θ 随之增大,可观察到干涉环纹从中心向外“涌出”,
干涉环纹逐渐变细,环纹半经逐渐变小;当 d 增大至光源相干长度一半时,干涉环纹
实验十迈克尔逊干涉仪测He-Ne激光的波长

实验十迈克尔逊干涉仪测He-Ne激光的波长实验十迈克尔逊干涉仪测He-Ne激光的波长迈克尔逊干涉仪是1883年美国物理学家迈克尔逊和莫雷合作设计制作出来的精密光学仪器。
它利用分振幅法产生双光束以实现光的干涉,可以用来观察光的等倾、等厚和多光束干涉现象,测定单色光的波长和光源的相干长度等。
在近代物理和计量技术中有广泛的应用。
【实验目的】1(了解迈克尔逊干涉仪的特点,学会调整和使用。
2(学习用迈克尔逊干涉仪测量单色光波长及薄玻璃片厚度的方法。
【实验仪器】WSM-100型迈克尔逊干涉仪,HNL,55700型He-Ne激光器、扩束镜,白赤灯,毛玻璃片,光具座,薄玻璃片。
【实验原理】迈克尔逊干涉仪工作原理:如图10-1所示。
在图中S为光源,G是分束板,G的一面镀有半反射膜,11使照在上面的光线一半反射另一半透射。
G是补偿板,M、M为平面反射镜。
212M1M1LGG,1M22S,,1G1激光器M2 SM2,,2分束板补偿板EE图10-2 迈克尔逊干涉仪简化光路图10-1 迈克尔逊干涉仪原理图光源He-Ne激光器S发出的光经会聚透镜L扩束后,射入G板,在半反射面上分成两束光:光束(1)1经G板内部折向M镜,经M反射后返回,再次穿过G板,到达屏E;光束(2)透过半反射面,穿过补偿1111板G射向M镜,经M反射后,再次穿过G,由G下表面反射到达屏E。
两束光相遇发生干涉。
22221补偿板G的材料和厚度都和G板相同,并且与G板平行放置。
考虑到光束(1)两次穿过玻璃板,G2112的作用是使光束(2)也两次经过玻璃板,从而使两光路条件完全相同,这样,可以认为干涉现象仅仅是由于M镜与M镜之间的相对位置引起的。
12为清楚起见,光路可简化为图10-2所示,观察者自E处向G板看去,透过G 板,除直接看到M镜111之外,还可以看到M镜在G板的反射像M,,M镜与M,构成空气薄膜。
事实上M、M镜所引起的干2121212涉,与M、M,之间的空气层所引起的干涉等效。
迈克尔逊干涉仪测量光波的波长实验报告

迈克尔逊干涉仪测量光波的波长班级:姓名:学号:实验日期:一、实验目的1.了解迈克尔逊干涉仪的结构和原理,掌握调节方法;2.利用点光源产生的同心圆干涉条纹测定单色光的波长。
二、仪器及用具(名称、型号及主要参数)迈克尔逊干涉仪,He-Ne激光器,透镜等三、实验原理迈克尔逊干涉仪原理如图所示。
两平面反射镜M1、M2、光源S和观察点E(或接收屏)四者北东西南各据一方。
M1、M2相互垂直,M2是固定的,M1可沿导轨做精密移动。
G1和G2是两块材料相同薄厚均匀相等的平行玻璃片。
G1的一个表面上镀有半透明的薄银层或铝层,形成半反半透膜,可使入射光分成强度基本相等的两束光,称G1为分光板。
G2与G1平行,以保证两束光在玻璃中所走的光程完全相等且与入射光的波长无关,保证仪器能够观察单、复色光的干涉。
可见G2作为补偿光程用,故称之为补偿板。
G1、G2与平面镜M1、M2倾斜成45°角。
如上图所示一束光入射到G1上,被G1分为反射光和透射光,这两束光分别经M1和M2’反射后又沿原路返回,在分化板后表面分别被透射和反射,于E处相遇后成为相干光,可以产生干涉现象。
图中M2’是平面镜M2由半反膜形成的虚像。
观察者从E处去看,经M2反射的光好像是从M2’来的。
因此干涉仪所产生的干涉和由平面M1与M2’之间的空气薄膜所产生的干涉是完全一样的,在讨论干涉条纹的形成时,只需考察M1和M2两个面所形成的空气薄膜即可。
两面相互平行可到面光源在无穷远处产生的等倾干涉,两面有小的夹角可得到面光源在空气膜近处形成的等厚干涉。
若光源是点光源,则上述两种情况均可在空间形成非定域干涉。
设M 1和M 2’之间的距离为d ,则它们所形成的空气薄膜造成的相干光的光程差近似用下式表示若 M 1与M 2平行,则各处d 相同,可得等倾干涉。
系统具有轴对称不变性,故屏E 上的干涉条纹应为一组同心圆环,圆心处对应的光程差最大且等于2d,d 越大圆环越密。
He-Ne激光器模式分析实验

He-Ne 激光器模式分析一、 实验目的 1、 了解激光器模式的形成及特点,加深对其物理概念的理解; 2、 通过测试分析,掌握模式分析的基本方法; 3、 了解实验使用的共焦球面扫描干涉仪的工作原理及性能,学会正确使用 二、 实验原理1. 激光模式的一般分析 稳定腔的输出频率特性:(1)其中:L —谐振腔长度;q 纵横序数;R 、艮一两球面反射镜的曲率半径; m n 横模序数;n 腔内介质的折射率。
(1)式看出,对于同一纵模序数,不同横模之间的频差为: (1--) (1 - - )] 1/2R 1 R 2(其中 A m=n- m' ; A n=n_ rT )对于相同的横模,不同纵模间的频差为 3 ' = —A q q :q 2耳 L 相邻两纵模的频差为 C 2 F(3)由(2)、( 3)式看出,稳定球面腔有如图 2— 1的频谱。
△表示不同的两横模(比如U 00与U 10)之间的频差与相邻两纵模之间的频差之比,2. 共焦球面扫描干涉仪的工作原理C1Vmnq「辽[q_(m n 1)]C0S-1[(1LR 1 )(1L R 2 )]1/2 Avmn:m'n'_1(m ;n)cos [(2)(△q=q — q ')(2)式除以(3)式得=mn:m ,n\l c ^ . .;n )cos _1[(1 —丄)(1 -丄)]AvqR 1R 2「/2(4)设:Avmn:m'nAu qS=丄 cos -1 [(1 -丄)(1 一 丄)]1/2兀R 1 R 2于是(4)式可简写作:(二m =n ) _ ': S(5)V 00q+1(1) 共焦球面扫描干涉仪由两块镀有高反射率的凹面镜构成,如图 射镜的曲率半径R=R=L 。
(2) 正入射时,干涉相长条件为:4L=m ・(n 为折射率;L 为腔长)(3) 通常情况下,R 固定,而F 2装在一块管状压电陶瓷上。
如果在压电陶瓷 y 方 向上加一周期性的信号电压,那么 Fb 将随压电陶瓷周期变形并沿轴向在中心位置 附近做微小振动,因而干涉仪的腔长 L 也做微小的周期变化。
激光绝对距离测量技术

1m
与测量臂有关的相位 1m 与 2 m 随 L 值变化而变化
4 4 L v1L c 1
2 M
4 4 L v2 L c 2
s 1m 2 m
1 2 4 L 4 L 12 s
探测器后加入低通滤波器(LPF)
仅使拍频信号f 2 f1通过滤波器,则可得到信号
3)无零位,增量式,不能测量绝对位移
液摆
3.1发展背景
ct L 2n 2n 2
相位法测量过程中相位差只能介于0-2π,
故最大可测量程为:
Lmax
2n
因此需借助其他方法来扩展测量范围, 以满足大量程测量的需求
3.1发展背景
由此提出合成波长(多波长)激光干涉
测量方法来扩展测量范围,满足大尺寸
2
4 v2 L (v2 f 2 )Z c
两外差信号再叠加形成:
超外差信号
外差
超外差
外差
1
4 v1L (v1 f1 )Z c
2
4 v2 L (v2 f 2 )Z c
1r
4 (v1 f1 ) Z c
2r
4 (v2 f 2 ) Z c
移相法
下图为清华大学研制的半导体激光器大尺寸绝对距离测量系统 采用三角波电流调制半导体激光器,调频范围为165GHz
内容提要
1 2 3 3 4 3
研究背景 测量方法分类 多波长测量原理
发展现状
前景展望
5
3
多波长测量原理
3.1发展背景
传统干涉仪: 1)需要导轨,计时从始态到终态全部过程,中间不允掉电 2)计数时间长,测量长度较大时耗时时间长,易受环境影响
用迈克尔逊干涉仪测量He-Ne激光波长的测量不确定度分析

用迈克尔逊干涉仪测量 H e N e激光波长的测量不确定度分析
s 和 s 距 离 条 纹 中 心 0 点 处 的 光 程 差 变 化 为 A 6 = 2 A d 。但在 实 际 操 作 中 , M 与 M 不 完 全 垂直, S 和 s : 的连 线 不完 全 平 行 于 导轨 方 向 , 这
文献标志码 : A D OI : 1 0 . 1 4 1 3 9 / j . c n k i . c n 2 2 - 1 2 2 8 . 2 0 1 4 . 0 6 . 0 3 4 中 图分 类 号 : 0 4 — 3 4
迈 克尔 逊 干 涉 实 验 是 物 理 实 验 中常 见 的测 量单 色光 波 长 的方 法 。但 在 实 际 测 量 中 , 经 常会 发 现用迈 克 尔逊干 涉仪 测得 的波 长值会 比真实值 偏 大一些 。这种误 差往 往被认 为是 由于数 干涉 环 条 纹变 化 的数 目不 精 确 而造 成 的 , 也 因此 而 忽 视 了该种 误差 产生 的更 深层 次 的原 因。测量 读数 误
条纹 中心 的偏移 量 , 减 小 系统误差 。
心的理想位置为 0 。而 s 的实际位置为 , 实际 条 纹 中心位 置为 0 。当 M: 移 动 的距 离 为 A d时 , S 移动 2 A d到 啦 置( 沿导轨方 向) , 条纹中心移 动到 0 位 置 。此 时 与条纹 中心 处 A k 个 条 纹 变化
设 M 和 M: 之 间 的距离 为 d , 则 s 和 S : 之 间
收稿 日期 : 2 0 1 4 . 0 7 . 1 4
ቤተ መጻሕፍቲ ባይዱ
互垂 直 , 点光 源 S 和 S :的 连线 经 过 观 察 屏 E上 的条 纹 中心 , 并且 S 。 S 应 当与 M 的移动方 向( 导
He-Ne激光模式及参数测量

不相等,因此可以判断A、B是两个纵模,而 C、D、E、F 是跳模。
(3)出现跳模的原因可能是:由于腔内温度的升高,使得粘贴在放电管两端的两个反射镜
片之间的距离加大,也就是谐振腔的腔长变大。
这将使得各本证纵模的谐振频率向低频方向漂移,输出激光的频率也随之减小。当 ������������:1
模的频率变成比������������模频率更接近中心频率 ������0 时,由于谱线竞争,������������:1模就可能战胜 ������������ 模取
(2) 保证倾角、高度不变,大范围内移动水平距离 Z,在不同距离观察 M,N,光电接
收器上的光斑位置,是否出现大幅度移动;
倘若大幅度移动,说明没有达到“平行、等高、垂直”;这时调节方向是往光斑反方向
运动的方向调节;直到光斑在 M、N、光电转换器上的光斑不随着水平距离 Z 的变化发生大
幅度移动。其原理如下:
e
2
x xc w2
2
π /2
严格满足高斯型表达式。按照高斯光束理论,w 即为光斑半径,代表着光强下降到最大
值的 ������;2。因此第一组数据测量所得的光斑半径为:
������ = 0.068 + ������������������������ × ������������������[− 2(������;26.8.644266)2]
������1 = 2.84 mm,相关系数 :γ = 0.998。满足实验精度要求。理想情况下表达式为:
������(������,
������)
=
������(������,
0)������������������[−
2������2 ������(������ )2
“迈克尔逊干涉仪”实验报告

"迈克尔逊干涉仪”实验报告【引言】迈克尔逊干涉仪是美国物理学家迈克尔逊(A、A、Michelson)发明的。
1887年迈克尔逊和莫雷(Morley)否定了 "以太”的存在,为爱因斯坦的狭义相对论提供了实验依据。
迈克尔逊用镉红光波长作为干涉仪光源来测量标准米尺的长度, 建立了以光波长为基准的绝对长度标准,即Im二1553164. 13个镉红线的波长。
在光谱学方面,迈克尔逊发现了氢光谱的精细结构以及水银和蛇光谱的超精细结构,这一发现在现代原子理论中起了重大作用。
迈克尔逊还用该干涉仪测量出太阳系以外星球的大小。
因创造精密的光学仪器,和用以进行光谱学和度量学的研究,并精密测出光速,迈克尔逊于1907年获得了诺贝尔物理学奖。
【实验目的】(1) 了解迈克尔逊干涉仪的原理和调整方法。
(2)测量光波的波长和钠双线波长差。
【实验仪器】迈克尔逊干涉仪、lle-Ne激光器、钠光灯、扩束镜【实验原理】1、迈克尔逊干涉仪结构原理图1是迈克尔逊干涉仪光路图,点光源S发出的光射在分光镜G1, G1右表面镀有半透半反射膜,使入射光分成强度相等的两束。
反射光和透射光分别垂直入射到全反射镜Ml和M2,它们经反射后再回到G1的半透半反射膜处, 再分别经过透射和反射后,来到观察区域E。
如到达E处的两束光满足相干条件,可发生干涉现象。
G2为补偿扳,它与G1为相同材料,有相同的厚度,且平行安装,目的是要使参加干涉的两光束经过玻璃板的次数相等,波阵面不会发生横向平移。
Ml为可动全反射镜,背部有三个粗调螺丝。
M2为固定全反射镜,背部有三个粗调螺丝,侧面和下面有两个微调螺丝。
2、可动全反镜移动及读数可动全反镜在导轨上可由粗动手轮和微动手轮的转动而前后移动。
可动全反镜位置的读数为:、□ □△△△ (mm) (1)在™刻度尺上读出。
(2)粗动手轮:每转一圈可动全反镜移动1mm,读数窗口内刻度盘转动一圈共100个小格,每小格为0、01mm, □□由读数窗口内刻度盘读出。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
用于绝对距离测量的He-Ne激光多波长干涉仪的研究
与传统外差干涉测量法相比,多波长绝对距离干涉测量法具有测量过程无需导轨及测相无需累加计数的优势,可使干涉测量更适用于实际生产生活的需要,进一步提高了现有激光干涉测距系统的应用范围,有着较高的应用和学术价值。
近年来,研究工作主要集中在如何选择合适光源组成合成波长链、高精度的相位测量、对各种误差因素的修正及如何使干涉系统实用化等方面。
本论文着重围绕多波长干涉测量法中的几个关键技术展开理论和实验研究,旨在探索其设计、构建和实用化方法。
主要内容包括:1.从小数重合法和多波长干涉理论出发,推导了光源在干涉系统中所需满足的级间过渡条件和使测量精度得以提高的逐级精化理论。
结合对各种光源振荡特性的分析,提出了利用633nm波段He-Ne激光构成双线三频的合成波长干涉测量方案,分析了该方案的实现机理以及光源部分所要满足的条件。
2.根据干涉系统中对光源的要求,特别是根据通常情况下629nm波长难以单谱线振荡输出的特性,分析了在相邻且增益相差悬殊的两谱线中选择单波长振荡的难点及以往激光器内谱线选择方法的不足。
从F-P腔模理论出发,研究了标准具随着长度和反射率参数而改变的透射特性,提出了用内置F-P标准具法在激光器内选择谱线的方案。
给出了对于增益悬殊的相邻谱线,F-P标准具实现选线所需要满足的长度和反射率公式,并用高斯光束传输理论仿真分析了内置F-P标准具后激光器的透射特性。
3.采用内置F-P标准具法,研制出可实现629nm单波长振荡输出的激光器。
通过调整F-P标准具在激光器内的倾斜角可以实现633nm和629nm两波长交替输出。
实验测量了该激光器在不同谱线振荡时随电流改变的输出功率变化;用外置F-P扫描干涉仪检测了两波长分别振荡时的模式分布;并进一步用调节激光器腔体PZT的方法测量功率调谐曲线进一步证明前述模式分布结论的正确性;使用小抖动方法对629nm波长He-Ne激光器进行稳频实验,并给出了稳频实验结果。
4.根据干涉方案中对光源的需求,详细分析了633nm双纵模He-Ne激光器内存在的模式特征。
从理论上分析推导了在考虑模牵引效应后,双纵模激光器内两纵模的拍频不确定度与其中一个单纵模频率不确定度之间的关系。
用双纵模等光强法对该激光器实施了稳频,并和高稳定度的碘稳激光器作了双纵模拍频和单纵模的稳定度测试。
5.用629nm和633nm波长激光组成117μm合成波长进行绝对距离动态及静态测量实验,并从合成波长、大气折射率波动及测相电路三个方面对实验结果作了误差分析。