管壳式换热器总传热系数的范围

合集下载

化工原理课程设计管壳式换热器的设计

化工原理课程设计管壳式换热器的设计

西北大学化工学院列管式换热器的工艺设计说明书题目: 列管式换热器的工艺设计和选用课程名称: 化工原理课程设计专业: 化学工程与工艺班级: 09级学生姓名: 李哲学号: 2009115057指导教师: 吴峰设计起止时间:2012 年1月1日至2012 年 1月13日设计题目:列管式换热器的工艺设计和选用一、设计条件炼油厂用循环水将煤油油从230℃冷却到120℃。

柴油流量位28700kg/h;循环水初温为22℃,经换热后升温到46℃。

换热器的热损失可忽略。

管、壳程阻力压降不大于100kPa。

试设计能完成上述任务的列管式换换热器。

二、设计说明书的内容1、设计题目及原始数据;2、目录;3、设计方案的确定;4、工艺计算及主体设备设计;5、辅助设备的计算及选型;(主要设备尺寸、衡算结果等);6、设计结果概要或设计结果汇总表;7、参考资料、参考文献;目录一.设计任务及设计条件 (3)二.设计方案 (3)1.换热器类型选择 (3)2.流程选择 (3)3.流向选择 (3)三.确定物性数据 (3)四.估算传热面积 (3)五.工艺结构尺寸计算 (3)1.管径及管内流速选择 (3)2.传热管数和传热管程数 (4)3.平均传热温差校正及壳程数 (5)4.传热管排列和分程方法 (5)5.壳体内径 (5)6.折流板 (5)7.其他主要附件 (6)8.接管 (6)9.壁厚的确定、封头 (7)六.换热器核算 (7)(一).热流量核算 (7)1.壳程表面传热系数核算 (8)2.管程表面传热系数核算 (8)3.污垢热阻 (9)4.传热面裕度 (9)(二)传热管壁温及壳体壁温计算 (9)(三)阻力计算 (10)1.管程流体阻力计算 (10)2.壳程流体阻力计算 (10)七.换热器主要计算结果汇表 (11)八.主要符号说明 (11)九.换热器主要结构尺寸图和管子布置图 (12)十.参考文献 (15)一.设计任务及设计条件:用循环冷却水将流量为28700Kg/h 的煤油从230℃降至120℃,冷却水为清净河水,进口温度22℃,选定冷却水出口温度46℃,设计一台列管换热器完成冷却任务。

基于Aspen EDR 的管壳式换热器的设计

基于Aspen EDR 的管壳式换热器的设计

2019年第38卷增刊1 CHEMICAL INDUSTRY AND ENGINEERING PROGRESS收稿日期:2019-04-28;修改稿日期:2019-05-13。

第一作者及通信作者:孟雪(1988—),女,硕士,工程师,研究方向为化工设计。

E-mail :mengxuenanjing@ 。

引用本文:孟雪, 荆恒铸, 曹真真, 等. 基于Aspen EDR 的管壳式换热器的设计[J]. 化工进展, 2019, 38(s1): 275–277.Citation: MEGN Xue, JING Hengzhu, CAO Zhenzhen, et al. Design of shell and tube heat exchanger based on Aspen EDR[J]. Chemical Industry and Engineering Progress, 2019, 38(s1): 275–277.·275·化 工 进展DOI :10.16085/j.issn.1000–6613.2019–0680基于Aspen EDR 的管壳式换热器的设计孟雪,荆恒铸,曹真真,李红明(河南心连心化学工业集团股份有限公司,河南 新乡 453731)摘要:管壳式换热器作为一种高效换热装置在石化领域得到广泛应用,但传统计算方法非常复杂,因此软件设计已逐步代替传统手算方法成为工程设计人员的主要设计手段。

本文通过对含氢气、一氧化碳、氮气等气体的合成气冷却器进行设计,探讨了管壳式换热器的选型原则,介绍了Aspen EDR 设计软件使用要点,详细阐述了Aspen EDR 软件设计和校核管壳式换热器的步骤,着重介绍了气体冷却器设计过程中换热器的参数选取及要点,并对设计过程中碰到的问题及调整优化方法进行了简单介绍。

设计结果表明,Aspen EDR 软件设计的结果不仅能达到工艺要求,而且计算过程快捷明了,极大简化了手工计算的过程,提高了设计效率。

管壳式热交换器的热力计算

管壳式热交换器的热力计算

3. 壳程流通截面积的确定
a. 纵向隔板,要确定其长度。
采用连续性方程。
标准: 使流体在纵向隔板转弯时的流速与各流程中顺管束流动时速度基本相等。 问题: 怎么确定壳程流速?
b. 弓形折流板,要确定其缺口高度。
标准: 流体在缺口处的流通截面积与流体在两折流板间错流的流通截面积 相接近,以免因流动速度变化引起压降。
b) 回弯阻力
Pi 4
wt2
2
Zt
Pa,
Z t 管程数
c) 进、出口连接管阻力
Pi 1.5
2 wn
2
Pa
2. 壳程阻力计算
a) 无折流板 可直接利用直管中沿程阻力计算公式 4A 当量直径 d 自由流通面积和湿周 U b) 弓形折流板 包括了顺流和叉流的复杂流动,有间隙泄漏、旁路等,所以很难准确地计 算阻力 贝尔-台华法 具体方法见课本
四、管壳式热交换器的合理设计
1.流体在热交换器内流动空间的选择原则:
1)提高传热系数小的一侧的换热系数 2)省材料,降低成本 3)便于清洗检修 4)减少和环境的热量交换 5)减少受热不匀造成的热应力 管内:容积流量小的,不清洁易结垢的,压力高的、有腐蚀性的,加热设备 中的高温流体或低温设备中的低温流体 壳体:容量大尤其是气体,刚性结构换热器中对流传热系数较大的流体,饱 和蒸汽等
山东大学· Βιβλιοθήκη 源与动力工程学院 杜文静第二章 管壳式换热器
一.管壳式热交换器的结构计算
结构计算的目的在于确定设备的主要结构参数和尺寸,包括: (1) 计算管程流通截面积,包括确定管子尺寸、数目、管程数,并选择管 子的排列方式等; (2) 确定壳体直径; (3) 计算壳程流通截面积,包括折流板类型; (4) 计算进出口连接管尺寸。

换热器的工艺参数参考表

换热器的工艺参数参考表

换热器的工艺参数参考表一.总传热系数表3-1 原油总传热系数参考表表 3-2 油品换热器的经验总传热系数参考表表3-3 加氢、重整和润滑油换热器的经验总传热系数参考值表3-4 馏分油油气冷凝器经验总传热系数参考值表 3-5 塔顶油气等冷凝器的总传热系数参考值管壳式换热器(1)用作冷凝器表3-6-1(2)用作加热器表3-6-2(3)用作换热器表3-6-3(4)用作蒸发器表3-6-4(5)用作冷凝器表3-6-5续表蛇管式换热器(1)用作冷凝器表3-7-1续表(2)用作加热器表3-7-2(3)用作换热器表3-7-3(4)用作蒸发器表3-7-4(5)用作冷凝器表3-7-5夹套式换热器(1)用作冷却器表3-8-1、(2)用作加热器表3-8-2(3)用作蒸发器表3-8-3续表套管式换热器(1)用作冷却器表3-9-1(2)用作加热器表3-9-2(3)用作热交换器表3-9-3(4)用作冷凝器表3-9-4空冷器(1)用作冷却器表3-10-1(2)用作冷凝器表3-10-2喷淋式换热器(1)用作冷凝器表3-11-1(2)用作冷却器表3-11-2螺旋板式换热器表3-12其他形式换热器表3-13续表二.结垢热阻表3-14 水结垢热阻参考数据表单位:(m2.K)/W表 3-15原油结垢热阻参考数据表单位:(m2.K)/W表3-16 工业物流结垢热阻参考数据表三.金属导热系数λ表3-17有色金属的导热系数λ表3-18 铝和铝合金导热系数W/(m.℃)表3-19 纯铜导热系数W/(m.℃)表3-20 铜合金导热系数W/(m.℃)表3-21 钛和钛合金导热系数W/(m.℃)GB151—1999 壁温计算F1 符号K ——以换热管外表面积为基准计算的总传热系数,W/(m 2·℃); q ——热强度,W/m 2; γd ——污垢热阻,m 2·℃/W ;T m 、t m ——分别为热、冷流体的平均温度,℃; T i 、t o ——分别为热流体的进、出口温度,℃; t i 、t o ——分别为冷流体的进、出口温度,℃; t t ——管壁温度,℃; t s ——壳壁温度,℃;△t M ——流体的有效平均温差,℃;α——以换热管外表面积为基准计算的给热系数,W/(m 2·℃)。

管壳式换热器总传热系数的大致范围

管壳式换热器总传热系数的大致范围
壳侧流体 1Kca/hl=1.163W
管侧流体
K
W∕(㎡· ℃)
液 体 - 液 体 介 质 稀释沥青(溶于石油馏出物中) 水 57~110 植物油、妥尔油等 水 110~280 乙醇胺(单乙醇胺或二乙醇胺)10%~20% 水或单乙醇胺或二乙醇胺 800~1100 软化水 水 1700~2800 燃料油 水 85~140 燃料油 油 57~85 汽油 水 340~910 重油 重油 45~280 重油(热) 水(冷) 60~280 富氢重整油 富氢重整油 510~880 煤油或瓦斯油 水 140~280 煤油或瓦斯油 油 110~200 煤油或喷气发动机燃料 三氯乙烯 230~280 润滑油(低粘度) 水 140~280 润滑油 油 60~110 石脑油 水 280~400 石脑油 油 140~200 有机溶剂(热) 盐水(冷) 170~510 有机溶剂 有机溶剂 110~340 水 烧碱溶液(10%~30%) 570~1420 蜡馏出液 水 85~140 蜡馏出液 油 74~130 水 水 1100~1420 道生油 重油 45~340 冷 凝 蒸 气 - 液 体 介 质 酒精蒸气 水 570~1100 沥青 道生油蒸气 230~340 道生油蒸气 道生油 460~680 煤气厂焦油 水蒸气 230~280 高沸点烃类(真空) 水 60~170 低沸点烃类(大气压) 水 460~1100 烃类蒸气(分凝器) 油 140~230 有机蒸气 水 570~1100 有机蒸气(大气压下) 盐水 490~980 有机蒸气(减压下且含少量不凝气) 盐水 240~490 有机蒸气(传热面塑料衬里) 水 230~900 有机蒸气(传热面不透性石墨) 水 300~1100 水(u=1~1.5) 汽油蒸气 520 原油(u=0.6) 汽油蒸气 110~170 煤油蒸气 水 170~370 煤油或石脑油蒸气 油 110~170 石脑油蒸气 水 280~430 水蒸气 供给水 2300~5700

换热器热量及面积计算公式

换热器热量及面积计算公式

换热器热量及面积计算一、热量计算1、一般式 Q=Q c=Q hQ=W h(H h,1 - H h,2)= W c(H c,2 - H c,1)式中:Q为换热器的热负荷, kj/h或kw;W为流体的质量流量, kg/h ;H为单位质量流体的焓,kj/kg ;下标 c 和 h 分别表示冷流体和热流体,下标 1 和 2 分别表示换热器的入口和出口。

2、无相变化Q=W h c p,h (T1-T2)=W c c p,c (t2-t1)式中:c p为流体均匀定压比热容,kj/(kg.℃);T为热流体的温度,℃;t为冷流体的温度,℃。

3、有相变化a. 冷凝液在饱和温度下走开换热器,r c(t 2-t 1) Q=W = Wc p,ch式中:W h为饱和蒸汽(即热流体)冷凝速率(即质量流量)(kg/s)r 为饱和蒸汽的冷凝潜热(J/kg )b.冷凝液的温度低于饱和温度,则热流体开释热量为潜热加显热Q=W h[r+ c p,h(T s-T w)] = W c c p,c (t 2-t 1)式中:c p,h为冷凝液的比热容(J/(kg/℃));T s为饱和液体的温度(℃)二、面积计算1、总传热系数K管壳式换热器中的K 值以下表:冷流体热流体总传热系数 K,w/(m2. ℃)水水850-1700水气体17-280水有机溶剂280-850水轻油340-910水重油60-280有机溶剂有机溶剂115-340水水蒸气冷凝1420-4250气体水蒸气冷凝30-300水低沸点烃类冷凝455-1140水沸腾水蒸气冷凝2000-4250轻油沸腾水蒸气冷凝455-1020注:1w = 1J/s =kj/h =kcal/h1kcal =kj2、温差(1)逆流热流体温度 T: T1→T2冷流体温度 t : t2 ←t1温差△ t :△ t1 →△ t2△t m=(△ t2- △t1 )/ ㏑(△ t2/ △t1 )(2)并流热流体温度 T: T1→T2冷流体温度 t : t1 →t2温差△ t :△ t2 →△ t1△t m=(△ t2- △t1 )/ ㏑(△ t2/ △t1 )对数均匀温差,两种流体在热互换器中传热过程温差的积分的均匀值。

U型管换热器设计说明书

U型管换热器设计说明书
(1)管板形式选择: 管板形式选择 a 型:管板通过垫片与壳体法兰和管箱法兰连接。管板
形式如下图:
(2)管板计算 按照 GB151——1999 管壳式换热器中 a 型连接方式管板的计算步骤进行下
列计算。 a)根据布管尺寸计算
在布管区围,因设置隔板槽和拉杆结构的需要,而未能被换 热管支撑的面积, 对于正方形排布
煤油在管中的流速为 0.8~1,取管程流体流速
常用换热管为

选用外径
管程流体体积流量可由煤油的要求流量的出:
n=20 N=4
换热管。
L=8m
取管数 由换热面积确定管程数和管长: 由于是 U 型管换热器,由 GB151-1999 管壳式换热器查得有 2,4 两种管程可 选。 初选管程为 4
考虑到常用管为 9m 管,为生产加工方便,选用单程管长 8m 又考虑到单程管长 8m 会使得换热器较长,在选取换热器壳体径时,尽量选取 较大的,以保证安全,因此换热器部空间较大,故选用较为宽松的正方形排 布。 换热管材料 由于管程压力大于 0.6MPa,不允许使用焊接钢管,故选择无缝冷拔钢管。
折流板间 距 200mm
计算压力
圆筒径由选定的圆筒公称直径得 设计温度下的圆筒材料的许用应力由选定的材料 Q345R 从 GB150.2 中查得
焊接接头系数
由于壳程流体为水,不会产生较严重的腐蚀,选取腐蚀 yu 量 又由于 Q345R 在公称直径为 400mm 是可选取得最小厚度为 8mm,则选择圆 筒厚度为 8mm 折流板间距: 折流板间距一般不小于圆筒径的五分之一且不小于 50mm;因此取折流板间 距为 200mm 核算传热系数: 由 GB151—1999 管壳式换热器得到包括污垢在的,以换热管外表面积为基准 的总传热系数 K 的计算公式:

利用HTRI进行管壳式换热器的设计

利用HTRI进行管壳式换热器的设计

利用HTRI进行管壳式换热器的设计发布时间:2021-07-05T02:51:01.218Z 来源:《中国科技人才》2021年第10期作者:王建航[导读] 常用的管壳式换热器主要有固定管板式,浮头式及U型管式。

一般优先选用固定板式换热器。

对壳体和管子温差超过30°C或冷热流体进口温差超过110°C的情况应考虑选用浮头式换热器。

对于高温高压流体应考虑选用U型管换热器。

空气产品(山东)工程设计有限公司山东省淄博市 255000摘要:管壳式换热器作为重要的换热设备,在石油石化行业应用广泛。

本文阐述了如何借助HTRI进行管壳式换热器的设计,以及在设计过程中需要注意的问题,从而设计出经济实用的换热器。

关键词:管壳式换热器;HTRI管壳式换热器又称列管式换热器,因其制造容易,生产成本低,适应性强,处理量大,工作可靠,维护方便,在石油,化工,能源等行业的应用中处于主导地位。

【1】相比于其他型式的换热器,其理论研究,设计技术及标准化和规范化也是最完善的。

【2】随着计算机技术的发展,专门的换热器计算软件HTRI,HTFS已经成为换热器计算的主要手段,并很好的符合实际的生产工况。

本文主要叙述如何利用HTRI进行管壳式换热器的设计。

1 设计前应确定的条件1.1明确两股流体的工艺参数及要求初步确定换热器的形式。

常用的管壳式换热器主要有固定管板式,浮头式及U型管式。

一般优先选用固定板式换热器。

对壳体和管子温差超过30°C或冷热流体进口温差超过110°C的情况应考虑选用浮头式换热器。

对于高温高压流体应考虑选用U型管换热器。

1.2根据两股流体的物性确定冷热流体的流程。

1/易结垢的物料应走容易清洗的一侧;2/有毒,有腐蚀性或高压的物料应走管程;3/通常蒸汽为便于排凝,一般通入壳程;4/高粘度流体或在管程为层流的流体,可考虑其走壳程。

因为壳程中的挡板有利于流体达到湍流,提高换热系数;1.3根据流体物性确定合适的污垢系数流体的结垢会严重影响换热器的换热效果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

包括在K值中总污垢 热阻rf,(㎡· ℃)∕W 0.0018 0.0007 0.00054 0.00018 0.0012 0.0014 0.00054 0.0007 0.00088 0.00035 0.00088 0.00088 0.00026 0.00035 0.0011 0.00088 0.00088 0.00054 0.00035 0.00054 0.00088 0.00088 0.00054 — 0.00035 0.0011 0.00026 0.00097 0.00054 0.00054 0.0007 0.00054 — — — — — — 0.0007 0.00088 0.00088 0.00088
85~140 340~510 1400~4200 570~1100 850~1100 640 360 230~460 107~190 100~1500 750~2000 230~460 57~280 110~230 30~110 460~710 20~200 850~1700 230~340 1100~1700 1420~4300 570~1100 450~1000 140~430 170~570
0.00097 0.00044 — — 0.00054 — — 0.00088 — — — 0.00088 0.00088 0.00088 0.00088 0.00054 — 0.00026 0.00026 0.00026 0.00026 — — — —
6﹟燃料油 2﹟燃料油 水 有机溶剂 水 甲醇蒸气 CCl4蒸气 芳香族蒸气共沸物 水(直立式) 水 水(u=1~1.5) 气 体 - 液 体 水或盐水 水或盐水 空气等(压缩) 空气等(大气压) H2含天然气混合物 气体 介 质 沸 腾 汽 化 水蒸气冷凝 传热用轻油 水蒸气冷凝 水蒸气冷凝 水蒸气冷凝 水蒸气冷凝 水蒸气冷凝 有机溶剂
Hale Waihona Puke 水蒸气 水蒸气 水蒸气 水蒸气 二氧化硫 水(直立式) 水(直立式) 水 糠醛蒸气(含不凝气) 21%盐酸蒸气(传热面不透性石墨) 氨蒸气 空气、N2等(压缩) 空气、N2等(大气压下) 水或盐水 水或盐水 水 道生油 氯或无水氧的气化 氯化气 丙烷、丁烷等气化 水沸腾 有机溶剂气化 轻油气化 重油气化(真空) 制冷剂气化
壳侧流体
管侧流体
K
W∕(㎡· ℃)
液 体 - 液 体 介 质 稀释沥青(溶于石油馏出物中) 水 57~110 植物油、妥尔油等 水 110~280 乙醇胺(单乙醇胺或二乙醇胺)10%~20% 水或单乙醇胺或二乙醇胺 800~1100 软化水 水 1700~2800 燃料油 水 85~140 燃料油 油 57~85 汽油 水 340~910 重油 重油 45~280 重油(热) 水(冷) 60~280 富氢重整油 富氢重整油 510~880 煤油或瓦斯油 水 140~280 煤油或瓦斯油 油 110~200 煤油或喷气发动机燃料 三氯乙烯 230~280 润滑油(低粘度) 水 140~280 润滑油 油 60~110 石脑油 水 280~400 石脑油 油 140~200 有机溶剂(热) 盐水(冷) 170~510 有机溶剂 有机溶剂 110~340 水 烧碱溶液(10%~30%) 570~1420 蜡馏出液 水 85~140 蜡馏出液 油 74~130 水 水 1100~1420 道生油 重油 45~340 冷 凝 蒸 气 - 液 体 介 质 酒精蒸气 水 570~1100 沥青 道生油蒸气 230~340 道生油蒸气 道生油 460~680 煤气厂焦油 水蒸气 230~280 高沸点烃类(真空) 水 60~170 低沸点烃类(大气压) 水 460~1100 烃类蒸气(分凝器) 油 140~230 有机蒸气 水 570~1100 有机蒸气(大气压下) 盐水 490~980 有机蒸气(减压下且含少量不凝气) 盐水 240~490 有机蒸气(传热面塑料衬里) 水 230~900 有机蒸气(传热面不透性石墨) 水 300~1100 水(u=1~1.5) 汽油蒸气 520 原油(u=0.6) 汽油蒸气 110~170 煤油蒸气 水 170~370 煤油或石脑油蒸气 油 110~170 石脑油蒸气 水 280~430 水蒸气 供给水 2300~5700
相关文档
最新文档