电波传播的几个基本概念

合集下载

无线电系统与电波传播

无线电系统与电波传播

无线电系统与电波传播无线电系统是现代电子与电气工程领域的重要组成部分,它在通信、广播、雷达、导航等领域发挥着关键作用。

而电波传播则是实现无线电系统功能的基础,它涉及到电磁波在空间中的传播和传输过程。

本文将重点探讨无线电系统与电波传播的关系以及相关技术。

一、电磁波的基本概念电磁波是一种由电场和磁场相互作用而产生的能量传播形式。

它具有波动性和粒子性,可以在真空中传播,并且具有不同的频率和波长。

根据频率的不同,电磁波可以分为无线电波、微波、红外线、可见光、紫外线、X射线和γ射线等不同类型。

二、电波传播的基本原理电波在传播过程中会受到多种因素的影响,包括传播介质、地形地貌、天气条件等。

其中,传播介质是影响电波传播最重要的因素之一。

根据传播介质的不同,电波传播可以分为地面波传播、天波传播和空间波传播等几种类型。

1. 地面波传播地面波传播是指电波沿着地球表面传播的过程。

这种传播方式适用于低频和中频的无线电波,其传播距离较短,一般在几百公里范围内。

地面波传播受到地形地貌的影响较大,如山脉、建筑物等会对电波的传播路径和传播损耗产生显著影响。

2. 天波传播天波传播是指电波在大气中传播的过程。

这种传播方式适用于中频和高频的无线电波,其传播距离较长,可达数千公里。

天波传播受到大气层的影响较大,如电离层、大气湍流等会对电波的传播路径和传播损耗产生显著影响。

3. 空间波传播空间波传播是指电波在空间中自由传播的过程。

这种传播方式适用于高频和超高频的无线电波,其传播距离较远,可达数百公里至几千公里。

空间波传播受到地球曲率的影响较大,如地球曲率会限制电波的传播距离和传播范围。

三、无线电系统的基本组成无线电系统由多个组成部分构成,包括发射机、接收机、天线、传输介质等。

发射机负责将电信号转换成电磁波信号并发射出去,接收机负责接收并解调电磁波信号,天线则用于辐射和接收电磁波信号,传输介质则承载电磁波信号的传输。

无线电系统的设计与优化需要考虑多个因素,包括传输距离、传输速率、传输可靠性等。

无线电传播的基本方式

无线电传播的基本方式

无线电传播的基本方式电波传播是研究由辐射源所辐射的无线电波通过自然条件下的媒质到达接收天线的传播特性和规律。

电波传播的基本方式有以下几种:一、表面波传播地面上的天线沿地面辐射的电波,沿地面向远处传播。

表面波传播又称为地表面波传播、地波传播,主要用于超长波,长波,中波和短波波段。

表面波其辐射电波只要是沿着地表传播,随着传播距离的增大,电波强度逐渐减弱。

由于水平极化的表面波衰减较大,因此表面波的主要极化形式是垂直极化。

地表的电参数与形状是影响地波传播的主要因素。

地波在向前传播的过程中有部分能量传入地下,随着传播距离的增大,电波将逐渐减弱,这里除了因扩散引起的自然衰减外,还有大地的吸收衰减,大地的吸收衰减跟大地的电参数和电波的波长有关。

地波传播过程中存在波前倾斜的现象,在接收垂直单极天线发射的地波时,为了有效地接收各场分量,应采用相适应的天线极化形式。

在地面上适宜用垂直极化天线,地下适宜采用埋地天线,水下适宜采用漂浮的水平极化天线。

大地的电导率越大,电磁波波长越长,地波传播的衰减就越小。

同时,因为大地是一种稳定的媒质,不受气候,地磁,太阳辐射等因素影响,所以地波传播是非常稳定的。

电磁波的频率越低,传播损耗越小,短波频段利用地波进行近距离通信的频率约为1.6MHz~5MHz。

地波的衰减随频率的升高而增大,所以即使用1000W的发射机,地波传播距离也仅为100KM左右,所以这种传播形式不宜用作无线电广播或者远距离通信。

此外,传播距离还和传播路径上的媒质的电参数密切相关,沿海面传播的距离远远超过沿陆地传播的距离。

二、视距传播发射天线和接收天线限于在互相“看得见”的视距内的直射线传播称为视距传播。

地面通信,卫星通信以及雷达都是这种传播形式。

视距传播又称为直线波传播,主要用于超短波和微波波段的电波传播。

视距传播主要指在超短波和微波波段,收发天线远离地面处于相互能“看得见”的距离内,电波直接从发射天线传播到接收处的一种传播形式。

(第六章)电波传播概论

(第六章)电波传播概论
色散效应是由于不同频率的无线电波在媒质中的传播速 度有差别而引起的信号失真。载有信号的无线电波都占据一定 的频带, 当电波通过媒质传播到达接收点时, 由于各频率成分传播 速度不同, 因而不能保持原来信号中的相位关系, 引起波形失真。 至于色散效应引起信号畸变的程度, 则要结合具体信道的传输情况 而定。
式中,h1和h2的单位为米。 视距传播时, 电波是在地球周围的大气中传播的, 大气对电波
产生折射与衰减。 由于大气层是非均匀媒质, 其压力、温度与湿 度都随高度而变化, 大气层的介电常数是高度的函数。
天线 与电波传播
在标准大气压下, 大气层的介电常数εr随高度增加而减小,
并逐渐趋近于1, 因此大气层的折射率n= 随高度的增加而减 小。若将大气层分成许多薄片层, 每一薄层是均匀的, 各薄层的 折射率n随高度的增加而减小。这样当电波在大气层中依次通过 每个薄层界面时, 射线都将产生偏折, 因而电波射线形成一条向 下弯曲的弧线, 如图 6-4 所示。
② 当工作波长λ和两天线高度h1和h2都不变时, 接收点场强随
两天线间距的增大而呈波动变化, 间距减小,波动范围减小,如 图6-7所示。
天线 与电波传播
图 6 – 6 接收点场强随天线高度的变化曲 图 6 –7 接收点场强随间距d的变化曲 线
天线 与电波传播
③ 当两天线高度h1和h2和间距d不变时, 接收点场强随工作波
图 6 – 8 接收点场强随工作波长λ的变化曲线
天线 与电波传播
6.3 天波传播
天波传播通常是指自发射天线发出的电波在高空被电离层 反射后到达接收点的传播方式, 有时也称电离层电波传播, 主要 用于中波和短波波段。
1. 电离层概况
电离层是地球高空大气层的一部分, 从离地面60km的高度 一直延伸到1000 km的高空。由于电离层电子密度不是均匀分 布的, 因此, 按电子密度随高度的变化相应地分为D, E, F1, F2四 层, 每一个区域的电子浓度都有一个最大值, 如图 6- 9所示。 电 离层主要是太阳的紫外辐射形成的, 因此其电子密度与日照密 切相关——白天大, 晚间小, 而且晚间D层消失; 电离层电子密 度又随四季不同而发生变化。 除此之外, 太阳的骚动与黑子活 动也对电离层电子密度产生很大影响。

通信导论第五章电波传播

通信导论第五章电波传播

短波波段都可以利用天波传播方 250
式,目前,它仍是无线电远程通
信的主要传播方式之一。电离层 0 大致可分为 D、E、F1、F2四层。
F1 E O
0.5
F2
1.0
1.5
N(电子/cm3)106
各电离层高度及平均电子密度
层名
D E F1 F2
离地面高度 He(km)
60~90
90~150
150~200
当天线低架于地面时(天线架设高度小于波长时,称为低
架天线),且最大辐射方向是沿地表面,这时电波传播的 主要途径就是地面波传播,也叫地表波或地波传播。
电波沿地表面传播时,电磁波的能量不断被地面所吸收,
因此地面上的场强要比自由空间传播时小得多,能量的衰
减数值与地面的电参数有关,同时也和电波的频率及极化
方向有关。
2.季节变化:由于不同季节太阳照射不同, 故下一图般表夏示季出电电子离密层度的大日于夜冬和季 季,节但变化F2层。例外,
3. 受太阳活动影响的变化
电离层的日夜和季节变化
N 电子密度
N 电子密度
F2
日出
F2
日落
日出
日落
F1
E
E
D
D
0
4 8 12 16 20 24
0
4
8 12 16 20 24 t(时间)
t(时间)
a 夏季
b 冬季
电离层受太阳活动影响的变化
太阳活动性一般以太阳一年的平均黑子数来代表,黑子数目增加时,
太阳所辐射的能量增强,因而各层电子密度大。黑子的数目每年都在
变化,但是根据长期观察证明,它的变化也是有一定规律的,从图可
以看出太阳黑子的变化周期大约是11年,因此电离层的电子密度也与 这11年变化周期有关。

第13章__电波传播

第13章__电波传播

电道的传输损耗:
发射天线输入功率与接收天线输出功率(满足 匹配条件)之比,即
Pin 4 r 2 1 L ( ) 2 PL A Gr G L L L0 LF Gr GL dB
在路径传输损耗 Lb 为客观存在的前提下,降 低传输损耗L的重要措施就是提高收、发天线的增 益系数。
因此,频率越低,绕射能力越强。
衰减损耗、衰落 媒质效应 反射、折射、散射 极化偏转 干扰和噪声 时域、频域畸变 这些媒质效应对信息传输的质量和可靠性常常产 生严重影响,因此各种媒质中各频段电磁波的传播效 应是电波传播研究的主要对象。
电波
电波传播的基本特性
电波传播的基本特性即移动信道的基本特性 ——衰落特性
D=1的无方向性接收天线的有效接收面积为
Ae 4
2
所以该接收天线的接收功率为
2 PL Sav Ae ( ) Pr 4 r
于是自由空间传播损耗为
Pr 4 r L0 10lg 20lg dB PL
或 L0 32.45 20lg f ( MHz ) 20lg r( km)
划分菲涅尔半波带的球面是任意选取的,因此 当球面半径R变化时,尽管各菲涅尔区的尺寸也在 变化,但是它们的几何定义不变。而它们的几何定 义恰恰就是以A、P两点为焦点的椭圆定义。
如果考虑到以传播路径为轴线的旋转对称性, 不同位置的同一菲涅尔半波带的外围轮廓线应是一
个以收、发两点为焦点的旋转椭球。
A
2F1
A与工作频率、传播距离、媒质电参数、地貌 地物、传播方式等因素有关。
基本传输损耗:Lb L0 LF 自由空间传播损耗
dB
衰减损耗
如果发射天线的输入功率为Pin,增益系数为 Gr,接收天线的增益系数为GL,则相应的功率密 度和最佳接收功率分别为

无线电波传播的基础知识

无线电波传播的基础知识

(a )
(b )
(c)
除了上述3种基本的传播方式外,还有散射传播 – 散射传播是利用低空对流层、高空电离层下缘的不均匀的“ 介质团”对电波的散射特性来达到传播目的的。 – 散射传播的距离可以远远超过地-地视距传播的视距。 – 对流层散射主要用于100MHz~10GHz频段,传播距离 r<800km; – 电离层散射主要用于30~100MHz频段,传播距离r>1000km。 散射通信的主要优点是距离远,抗毁性好,保密性强。
35
36 37 38 39 40 41 42 43 44 45
3.2
4 5.12 6.4 8 10 12.8 16 20 25.6 32
50
51 52 53 54 55 56 57 58 59 60
100
128 160 200 256 320 400 512 640 800 1000
dBm=10logmW
– 从物理知识中我们已经知道,只有当波长与障碍物高度可以 比较的时候,才能有绕射功能。在实际情况中只有长波、中 波以及短波的部分波段能绕过地球表面的大部分障碍到达较 远的地方。 – 在短波的部分波段和超短波、微波波段,由于障碍高度比波 长大,因而电波在地面上不绕射,而是按直线传播。
天波传播
– 发射天线向高空辐射的电波在电离层内经过连续折射而返回 地面到达接收点的传播方式称为天波传播。 – 尽管中波、短波都可以采用这种传播方式,但是仍然以短波 为主。它的优点是能以较小的功率进行可达数千千米的远距 离传播。 – 天波传播的规律与电离层密切相关,由于电离层具有随机变 化的特点,因此天波信号的衰落现象也比较严重。
dBm功率转换表
DBm 0 1 3 4 功率 ( W) 0.001 0.00125 0.002 0.0025 dBm 16 17 18 19 功率 ( W) 0.04 0.048 0.064 0.08 dBm 31 32 33 34 功率 ( W) 1.28 1.6 2 2.56 dBm 46 47 48 49 功率 ( W) 40 51.2 64 80

电波传播原理

电波传播原理

电波传播原理
电波传播原理是指电磁波在空间中传播的方式和规律。

电磁波包括无线电波、微波、红外线、可见光、紫外线、X射线和γ射线等,它们在传播时具有相同的物理性质。

电磁波的传播需要介质的支持,可以是气体、液体、固体或真空。

在传播过程中,电磁波会通过周期性的变化产生电场和磁场,形成电磁场的波动。

电磁波的传播速度是一个重要的参数,通常用光速来表示。

在真空中,电磁波的传播速度为299,792,458米/秒。

在不同的介质中,电磁波的传播速度会发生变化,根据介质的不同,传播速度会减小或增大。

电磁波的传播具有直线传播和衍射传播两种方式。

直线传播指的是电磁波在空间中传播的直线路径,不会发生弯曲或偏折。

衍射传播是指电磁波在遇到边缘或障碍物时发生弯曲和扩散,改变传播方向。

电磁波的传播还受到频率和波长的影响。

不同频率和波长的电磁波具有不同的传播特性。

低频电磁波会更容易穿透建筑物和其他障碍物,但传播范围较短;高频电磁波传播范围更广,但对障碍物的穿透能力较差。

总而言之,电波传播原理是通过介质支持电磁波在空间中传播的方式和规律。

它涉及到电磁场的波动、传播速度、传播方式
以及频率和波长等因素的影响。

电波传播原理是无线通信和广播等电磁波应用的基础。

无线电波的基本知识

无线电波的基本知识

三维工程技术培训讲义三维工程技术培训讲义无线电波的基本概念第一部分无线电波的基本知识无线电波的基本概念 无线电波的传播方向 无线电波的极化方式 无线电波的传播速度 自由空间的传播知识 无线电波的衰落特性无线电波是一种能量传输形式,在传播过程中,电 场和磁场在空间是相互垂直的,同时这两者又都垂直于 传播方向。

12三维工程技术培训讲义三维工程技术培训讲义无线电波的传播方向无线电波的极化方式 无线电波在空间传播时,其电场方向是按一定 的规律而变化的,这种现象称为无线电波的极化。

无线电波的电场方向称为电波的极化方向。

如果电 波的电场方向垂直于地面,我们就称它为垂直极化 波。

如果电波的电场方向与地面平行,则称它为水 平极化波。

34三维工程技术培训讲义三维工程技术培训讲义无线电波的传播速度 无线电波和光波一样,它的传播速度和传播媒质 有关。

无线电波在真空中的传播速度等于光速。

我们 用C=300000公里/秒表示。

在媒质中的传播 速度为:Vε`=C/√ε,式中ε为传播媒质的相对 介电常数。

空气的相对介电常数与真空的相对介电常 数很接近,略大于1。

因此,无线电波在 空气中的传播速度略 小于光速,通常我们 就认为它等于光速。

5无线电波的传播方式)直射 直射是无线电波在自由空间传播的方式。

)反射 当电磁波遇到比波长大得多的物体时,就会发生反射。

反射常发 生在地球表面、建筑物和墙壁表面。

)绕射(衍射) 波在传播时,若被一个大小接近于或小于波长的物体阻挡,就绕 过这个物体,继续进行。

)散射 散射就是由于介质中存在的微小粒子(异质体)或者分子对电磁 波的作用,使电磁波偏离原来的传播方向而向四周传播的现象。

61三维工程技术培训讲义三维工程技术培训讲义无线电波的传播方式无线电波的衰落特性 衰落一般分为快衰落与慢衰落两种) 慢衰落12 34慢衰落是由接收点周围地形地物对信号反射,使得信号电平在几十米范 围内有大幅度的变化,若MS在没有任何障碍物的环境下移动,则某点信号 电平与该点和发射机的距离有关。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电波传播的几个基本概念目前GSM和CDMA移动通信使用的频段为:GSM:890 ~ 960 MHz,1710 ~1880 MHzCDMA: 806 ~ 896 MHz806 ~ 960 MHz 频率范围属超短波范围;1710 ~1880 MHz 频率范围属微波范围。

电波的频率不同,或者说波长不同,其传播特点也不完全相同,甚至很不相同2.1自由空间通信距离方程设发射功率为PT,发射天线增益为GT,工作频率为f . 接收功率为PR,接收天线增益为GR,收、发天线间距离为R,那么电波在无环境干扰时,传播途中的电波损耗L0 有以下表达式:L0 (dB) = 10 Lg(PT / PR )= 32.45 + 20 Lg f ( MHz ) + 20 Lg R ( km ) - GT (dB) - GR (dB)[举例] 设:PT = 10 W = 40dBmw ;GR = GT = 7 (dBi) ;f = 1910MHz 问:R = 500 m 时,PR = ?解答:(1) L0 (dB) 的计算L0 (dB) = 32.45 + 20 Lg 1910( MHz ) + 20 Lg 0.5 ( km ) - GR (dB) - GT (dB) = 32.45 + 65.62 - 6 - 7 – 7= 78.07 (dB)(2)PR 的计算PR = PT / ( 10 7.807 ) = 10 ( W ) / ( 10 7.807 )= 1 ( μW ) / ( 10 0.807 )= 1 ( μW ) / 6.412= 0.156 ( μW )= 156 ( mμW ) #顺便指出,1.9GHz电波在穿透一层砖墙时,大约损失(10~15) dB极限直视距离超短波特别是微波,频率很高,波长很短,它的地表面波衰减很快,因此不能依靠地表面波作较远距离的传播。

超短波特别是微波,主要是由空间波来传播的。

简单地说,空间波是在空间范围内沿直线方向传播的波。

显然,由于地球的曲率使空间波传播存在一个极限直视距离Rmax 。

在最远直视距离之内的区域,习惯上称为照明区;极限直视距离Rmax 以外的区域,则称为阴影区。

不言而语,利用超短波、微波进行通信时,接收点应落在发射天线极限直视距离Rmax内。

受地球曲率半径的影响,极限直视距离Rmax 和发射天线与接收天线的高度HT 与HR间的关系为:Rmax =3.57{ √HT (m) +√HR (m) } (km)考虑到大气层对电波的折射作用,极限直视距离应修正为Rmax = 4.12 { √HT (m) +√HR (m) } (km)由于电磁波的频率远低于光波的频率,电波传播的有效直视距离Re 约为极限直视距离Rmax 的70% ,即Re = 0.7 Rmax .例如,HT 与HR 分别为49 m 和 1.7 m,则有效直视距离为Re = 24 km .电波在平面地上的传播特征由发射天线直接射到接收点的电波称为直射波;发射天线发出的指向地面的电波,被地面反射而到达接收点的电波称为反射波。

显然,接收点的信号应该是直射波和反射波的合成。

电波的合成不会象1 + 1 = 2 那样简单地代数相加,合成结果会随着直射波和反射波间的波程差的不同而不同。

波程差为半个波长的奇数倍时,直射波和反射波信号相加,合成为最大;波程差为一个波长的倍数时,直射波和反射波信号相减,合成为最小。

可见,地面反射的存在,使得信号强度的空间分布变得相当复杂。

实际测量指出:在一定的距离Ri之内,信号强度随距离或天线高度的增加都会作起伏变化;在一定的距离Ri之外,随距离的增加或天线高度的减少,信号强度将。

单调下降。

理论计算给出了这个Ri 和天线高度HT与HR 的关系式:Ri = (4 HT HR )/ l ,l 是波长。

不言而喻,Ri 必须小于极限直视距离Rmax电波的多径传播在超短波、微波波段,电波在传播过程中还会遇到障碍物(例如楼房、高大建筑物或山丘等) 对电波产生反射。

因此,到达接收天线的还有多种反射波(广意地说,地面反射波也应包括在内),这种现象叫为多径传播。

由于多径传输,使得信号场强的空间分布变得相当复杂,波动很大,有的地方信号场强增强,有的地方信号场强减弱;也由于多径传输的影响,还会使电波的极化方向发生变化。

另外,不同的障碍物对电波的反射能力也不同。

例如:钢筋水泥建筑物对超短波、微波的反射能力比砖墙强。

我们应尽量克服多径传输效应的负面影响,这也正是在通信质量要求较高的通信网中,人们常常采用空间分集技术或极化分集技术的缘由。

电波的绕射传播在传播途径中遇到大障碍物时,电波会绕过障碍物向前传播,这种现象叫做电波的绕射。

超短波、微波的频率较高,波长短,绕射能力弱,在高大建筑物后面信号强度小,形成所谓的“阴影区”。

信号质量受到影响的程度,不仅和建筑物的高度有关,和接收天线与建筑物之间的距离有关,还和频率有关。

例如有一个建筑物,其高度为10 米,在建筑物后面距离200 米处,接收的信号质量几乎不受影响,但在100 米处,接收信号场强比无建筑物时明显减弱。

注意,诚如上面所说过的那样,减弱程度还与信号频率有关,对于216 ~223 兆赫的射频信号,接收信号场强比无建筑物时低16 dB,对于670 兆赫的射频信号,接收信号场强比无建筑物时低20dB .如果建筑物高度增加到50 米时,则在距建筑物1000 米以内,接收信号的场强都将受到影响而减弱。

也就是说,频率越高、建筑物越高、接收天线与建筑物越近,信号强度与通信质量受影响程度越大;相反,频率越低,建筑物越矮、接收天线与建筑物越远,影响越小。

因此,选择基站场地以及架设天线时,一定要考虑到绕射传播可能产生的各种不利影响,注意到对绕射传播起影响的各种因素。

传输线的几个基本概念连接天线和发射机输出端(或接收机输入端)的电缆称为传输线或馈线。

传输线的主要任务是有效地传输信号能量,因此,它应能将发射机发出的信号功率以最小的损耗传送到发射天线的输入端,或将天线接收到的信号以最小的损耗传送到接收机输入端,同时它本身不应拾取或产生杂散干扰信号,这样,就要求传输线必须屏蔽。

顺便指出,当传输线的物理长度等于或大于所传送信号的波长时,传输线又叫做长线。

传输线的种类超短波段的传输线一般有两种:平行双线传输线和同轴电缆传输线;微波波段的传输线有同轴电缆传输线、波导和微带。

平行双线传输线由两根平行的导线组成它是对称式或平衡式的传输线,这种馈线损耗大,不能用于UHF频段。

同轴电缆传输线的两根导线分别为芯线和屏蔽铜网,因铜网接地,两根导体对地不对称,因此叫做不对称式或不平衡式传输线。

同轴电缆工作频率范围宽,损耗小,对静电耦合有一定的屏蔽作用,但对磁场的干扰却无能为力。

使用时切忌与有强电流的线路并行走向,也不能靠近低频信号线路。

传输线的特性阻抗无限长传输线上各处的电压与电流的比值定义为传输线的特性阻抗,用Z0 表示。

同轴电缆的特性阻抗的计算公式为Z。

=〔60/√εr〕×Log ( D/d ) [ 欧]。

式中,D 为同轴电缆外导体铜网内径;d 为同轴电缆芯线外径;εr为导体间绝缘介质的相对介电常数。

通常Z0 = 50 欧,也有Z0 = 75 欧的。

由上式不难看出,馈线特性阻抗只与导体直径D和d以及导体间介质的介电常数εr有关,而与馈线长短、工作频率以及馈线终端所接负载阻抗无关。

馈线的衰减系数信号在馈线里传输,除有导体的电阻性损耗外,还有绝缘材料的介质损耗。

这两种损耗随馈线长度的增加和工作频率的提高而增加。

因此,应合理布局尽量缩短馈线长度。

单位长度产生的损耗的大小用衰减系数β表示,其单位为dB / m (分贝/米),电缆技术说明书上的单位大都用dB / 100 m(分贝/百米).设输入到馈线的功率为P1 ,从长度为L(m )的馈线输出的功率为P2 ,传输损耗TL可表示为:TL =10 ×Lg ( P1 /P2 ) ( dB )衰减系数为β=TL / L ( dB / m )例如,NOKIA 7 / 8英寸低耗电缆,900MHz 时衰减系数为β= 4.1 dB / 100 m ,也可写成β=3 dB / 73 m ,也就是说,频率为900MHz 的信号功率,每经过73 m 长的这种电缆时,功率要少一半。

而普通的非低耗电缆,例如,SYV-9-50-1,900MHz 时衰减系数为β=20.1 dB / 100 m ,也可写成β=3 dB / 15 m ,也就是说,频率为900MHz 的信号功率,每经过15 m 长的这种电缆时,功率就要少一半!匹配概念什么叫匹配?简单地说,馈线终端所接负载阻抗ZL 等于馈线特性阻抗Z0 时,称为馈线终端是匹配连接的。

匹配时,馈线上只存在传向终端负载的入射波,而没有由终端负载产生的反射波,因此,当天线作为终端负载时,匹配能保证天线取得全部信号功率。

如下图所示,当天线阻抗为50 欧时,与50 欧的电缆是匹配的,而当天线阻抗为80 欧时,与50 欧的电缆是不匹配的。

如果天线振子直径较粗,天线输入阻抗随频率的变化较小,容易和馈线保持匹配,这时天线的工作频率范围就较宽。

反之,则较窄。

在实际工作中,天线的输入阻抗还会受到周围物体的影响。

为了使馈线与天线良好匹配,在架设天线时还需要通过测量,适当地调整天线的局部结构,或加装匹配装置。

反射损耗前面已指出,当馈线和天线匹配时,馈线上没有反射波,只有入射波,即馈线上传输的只是向天线方向行进的波。

这时,馈线上各处的电压幅度与电流幅度都相等,馈线上任意一点的阻抗都等于它的特性阻抗。

而当天线和馈线不匹配时,也就是天线阻抗不等于馈线特性阻抗时,负载就只能吸收馈线上传输的部分高频能量,而不能全部吸收,未被吸收的那部分能量将反射回去形成反射波。

例如,在右图中,由于天线与馈线的阻抗不同,一个为75 ohms,一个为50 ohms ,阻抗不匹配,其结果是电压驻波比在不匹配的情况下, 馈线上同时存在入射波和反射波。

在入射波和反射波相位相同的地方,电压振幅相加为最大电压振幅Vmax ,形成波腹;而在入射波和反射波相位相反的地方电压振幅相减为最小电压振幅Vmin ,形成波节。

其它各点的振幅值则介于波腹与波节之间。

这种合成波称为行驻波。

终端负载阻抗ZL 和特性阻抗Z0 越接近,反射系数R 越小,驻波比VSWR 越接近于1,匹配也就越好。

平衡装置信号源或负载或传输线,根据它们对地的关系,都可以分成平衡和不平衡两类。

若信号源两端与地之间的电压大小相等、极性相反,就称为平衡信号源,否则称为不平衡信号源;若负载两端与地之间的电压大小相等、极性相反,就称为平衡负载,否则称为不平衡负载;若传输线两导体与地之间阻抗相同,则称为平衡传输线,否则为不平衡传输线。

相关文档
最新文档