高二上学期期中数学考试试卷及答案

合集下载

广东省部分名校2024-2025学年高二上学期期中联考数学试题(含解析)

广东省部分名校2024-2025学年高二上学期期中联考数学试题(含解析)

2024—2025年度高二上学期期中考试数学注意事项:1.答题前,考生务必将自己的姓名、考生号、考场号、座位号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.4.本试卷主要考试内容:北师大版选择性必修第一册第一章至第三章.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.绕原点逆时针旋转90°后所对应的直线的斜率为( )A.C.2.椭圆的两个焦点分别为,,长轴长为10,点在椭圆上,则的周长为( )A.16B.18C. D.203.已知抛物线的焦点为,点在抛物线上,定点,则的最小值为( )A.6B.7C.8D.94.已知双曲线的两个焦点分别为,,双曲线上有一点,若,则( )A.9B.1C.1或9D.11或95.在正方体中,,,则( )A. B.C. D.6.过抛物线的焦点作圆的切线,该切线交抛物线C 于A ,B 两点,则( )0y +=22:19x y C m+=1F 2F P C 12PF F △10+212y x =F P (5,2)Q ||||PQ PF +22:1412x y C -=1F 2F C P 15PF =2PF =1111ABCD A B C D -13AE AB = 134BF BD = EF =11231234AB AD AA -++ 11331244AB AD AA -+11121243AB AD AA --+ 11331244AB AD AA -++2:4C y x =22:(3)1P x y -+=||AB =A. B.14 C.15 D.167.如图,在四棱锥中,平面,与底面所成的角为,底面为直角梯形,,,,三棱锥的外接球为球,则平面截球所得截面圆的面积为( )A.B.C.D.8.圆幂是指平面上任意一点到圆心的距离与半径的平方差.在平面上任给两个不同圆心的圆,则两圆圆幂相等的点的集合是一条直线,这条线被称为这两个圆的根轴.已知圆与圆,是这两个圆根轴上一点,则的最大值为( )B. C. D.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知直线,直线,圆,则下列选项正确的是( )A.若,则B.若,则C.若与圆相交于,两点,则D.过上一点向圆作切线,切点为,则10.在菱形中,,,E 为AB 的中点,将沿直线DE 翻折至的位置,使得二面角为直二面角,若为线段的中点,则( )P ABCD -PA ⊥ABCD PB ABCD π4ABCD π2ABC BAD ∠=∠=2AD =1PA BC ==P ACD -O PBC O 9π811π89π411π421:2C x x +20y +=222:68160C x y x y +--+=P 21PC PC -1:(1)50l ax a y ++-=2:3450l x y -+=22:(3)(4)9C x y ++-=12//l l 37a =-12l l ⊥4a =-1l C A B min ||2AB =2l P C Q min ||PQ =ABCD 2AB =60BAD ∠=︒ADE △1A DE △1A DE C --P 1A CA.平面B.C.异面直线,所成的角为D.与平面11.已知椭圆的左、右焦点分别为,,是上任意一点,则下列结论正确的是( )A.若存在点,使得,则椭圆的离心率的取值范围为B.若存在点,使得,则椭圆的离心率的取值范围为C.若存在点,使得,且,则椭圆D.若存在点,使得,且,则椭圆三、填空题:本题共3小题,每小题5分,共15分.12.已知向量,,则向量在向量上的投影向量的模为___________.13.双曲线以椭圆的焦点为顶点,长轴的顶点为焦点,则双曲线的标准方程为___________,渐近线方程为___________.14.已知圆,直线,为圆上一动点,为直线上一动点,定点,则的最小值为___________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)已知椭圆上的点到其焦点的距离的最大值为16,最小值为4.(1)求椭圆的方程;(2)直线与椭圆相交于A ,B 两点,若线段AB 的中点坐标为,求直线的方程.16.(15分)//BP 1A DE DP EC⊥PB 1A D π31A B PBD 2222:1(0)x y C a b a b+=>>1F 2F P C P 12π2F PF ∠=C ⎛ ⎝P ||2aOP =C ⎫⎪⎪⎭P 122PF PF =12π3F PF ∠=C P 2||3a OP =122π3F PF ∠=C (5,9,1)a =(2,1,1)b = a b C 2212036x y +=C 22:(1)(3)4C x y ++-=:280l x y --=M C N l (7,4)P --||||MN PN +2222:1(0)x y C a b a b+=>>C l C (3,4)--l已知的顶点,,顶点满足,记顶点的轨迹为.(1)求曲线的方程.(2)过点的直线(斜率不为0)与曲线交于不同的两点P ,Q ,O 为坐标原点,试判断直线OP ,OQ 的斜率之积是否为定值.若为定值,求出该定值;若不是,说明理由.17.(15分)如图,在几何体中,平面平面,四边形和是全等的菱形,且平面平面,是正三角形,,.(1)求该几何体的体积;(2)求平面与平面夹角的余弦值.18.(17分)已知动点到点的距离比它到直线的距离小,记动点的轨迹为.(1)求轨迹的方程.(2)已知直线与轨迹交于A ,B 两点,以A ,B 为切点作两条切线,分别为,,且,相交于点.若,求.19.(17分)在平面内,若直线将多边形分为两部分,且多边形在两侧的顶点到的距离之和相等,则称为多边形的一条“等线”.已知双曲线与双曲线有相同的离心率,,分别为双曲线的左、右焦点,为双曲线右支上一动点,双曲线在点处的切线与双曲线的渐近线交于A ,B 两点(A 在B 上方),当轴时,直线为的等线.(1)求双曲线的方程;(2)若是四边形的等线,求四边形的面积;(3)已知为坐标原点,直线OP 与双曲线的右支交于点,试判断双曲线在点处的切线是否为的等线,请说明理由.ABC △(2,0)A -(3,0)B C 3||2||CA CB =C W W A l W 111ABDC A B C -111//A B C ABDC 11A ACC ABDC 11A ACC ⊥ABDC 111A B C △2AB =160A AC BAC ︒∠=∠=11A ABB 11B C D M 30,2⎛⎫⎪⎝⎭30y +=32M C C :3l y kx =+C 1l 2l 1l 2l P ||||AB AP =k l l l l 22122:1(0,0)x y C a b a b-=>>222:31C x y -=1F 2F 1C P 1C 1C P 1l 1C 2PF x ⊥y =12PF F △1C y =12AF BF 12AF BF O 2C Q 2C Q 2l 12AF F △[注]双曲线在其上一点处的切线方程为.2222:1(0,0)x y C a b a b-=>>()00,P x y 00221x x y y a b -=2024—2025年度高二上学期期中考试数学参考答案1.D的斜率为,倾斜角为120°,所以绕原点逆时针旋转90°后所对应的直线的倾斜角为30°,斜率为.2.B 因为长轴长为10,所以长半轴长,短半轴长,半焦距,故的周长为.3.C 因为等于点到准线的距离,所以当PQ 垂直于准线时,有最小值,最小值为.4.A因为,所以,故.5.D 因为,,所以.因为,所以.6.D 记抛物线的焦点为,则.记切点为,因为圆的圆心为,所以,,所以,所以直线AB 的方程为.设,,联立方程组得,所以,所以.7.A 如图,建立空间直角坐标系,则,,.易知三棱锥的外接球球心为PD 的中点,所以.设平面的法向量为,因为,,所以令,得.因为,所以点到平面的距离.0y +=tan 30=︒5a =3b =4c ==12PF F △2218a c +=||PF P ||||PQ PF +82Q px +=156PF a c =<+=2124PF PF a -==29PF =13AE AB = 134BF BD = 12334EF EB BF AB BD =+=+111BD BD DD AD AB AA =+=-+()1123133341244EF AB AD AB AA AB AD AA =+-+=-++C F (1,0)F Q P (3,0)P ||2PF =||1PQ =30PFQ ∠=︒1)y x =-()11,A x y ()22,Bx y 21),4,y x y x ⎧=-⎪⎨⎪=⎩21410x x -+=1214x x +=12||16AB x x p =++=(0,0,1)P (1,0,0)B (1,1,0)C P ACD -O 10,1,2O ⎛⎫ ⎪⎝⎭PBC (,,)n x y z = (1,0,1)BP =- (0,1,0)BC = 0,0,n BP x z n BC y ⎧⋅=-+=⎪⎨⋅==⎪⎩1x =(1,0,1)n = 10,1,2OP ⎛⎫=- ⎪⎝⎭ O PBC ||||OP n d n ⋅===设截面圆的半径为,则,所以截面圆的面积为.8.A 由题知,圆的圆心为,半径;圆的圆心为,半径.设点为圆与圆的根轴上的任意一点,则,所以,整理得,即圆与圆的根轴为直线.取关于对称的点,则.因为,所以在上,所以当,,三点共线时,取得最大值.因为到到,所以,即的最大值为.9.ABD 若,则,得,故A 正确.若,则,得,故B 正确.因为过定点,所以,故C 不正确.因为,所以当时,取得最小值.因为圆心到直线的距离,所以,故D 正确.10.AC 如图,建立空间直角坐标系,则,,,,.r222519||488r OP d =-=-=9π81C 1(1,0)C -11r =2C 2(3,4)C 23r =(,)P x y 1C 2C l 22221122PC r PC r -=-()()()22222211343x y x y++-=-+--20x y +-=1C 2C l 20x y +-=1C l1C '11PC PC '=12C C l ⊥1C '12C C P 1C '2C 2121PC PC PC PC '-=-12C C '1C l 2C l 12C C '=21PC PC -12//l l 15345a a +-=≠-37a =-12l l ⊥34(1)0a a -+=4a =-1l (5,5)M -min ||4AB ===2222||||||||9PQ PC CQ PC =-=-2PC l ⊥||PQ C 2l 4d ==min ||PQ ==1(0,0,1)A (1,0,0)B C D 12P ⎛⎫⎪ ⎪⎝⎭对于A ,因为,平面的一个法向量为,所以,所以平面,故A 正确.对于B ,因为,,所以,所以DP ,EC 不垂直,故B 错误.对于C ,因为,,所以,所以异面直线,所成的角为,故C 正确.对于D ,设平面的法向量为,因为,,所以令,得.设与平面所成的角为,因为,所以,,故D 错误.11.BCD 对于A ,只需,因为,所以,所以,故A 错误.对于B ,若存在,则只需,所以,故B 正确.对于C,因为,,所以,.因为,所以,,所以,故C 正确.12BP ⎛⎫= ⎪ ⎪⎝⎭1A DE (1,0,0)m =0BP m ⋅= //BP 1ADE 11,2DP ⎛⎫= ⎪ ⎪⎝⎭EC =102DP EC ⋅=≠ 10,2PB ⎛⎫=- ⎪ ⎪⎝⎭ 11)A D =-1cos ,PB A D = 1112PB A D PB A D ⋅=PB 1A D π3PBD (,,)n x y z =12BP ⎛⎫= ⎪ ⎪⎝⎭(BD =- 10,20,n BP y z nBD x ⎧⋅=+=⎪⎨⎪⋅=-+=⎩ x =n = 1A B PBD θ1(1,0,1)A B =-111sin cos ,A B n A B n A B nθ⋅====cos θ=b c ≤222b ac =-2222b ac c =-≤c e a ⎫=∈⎪⎪⎭||2a OP =2ab ≥e ⎫=⎪⎪⎭122PF PF =122PF PF a +=143a PF =223aPF =12π3F PF ∠=2221644214299332a a c a a =+-⨯⨯⨯223c a =c e a ==对于D ,因为,所以.因为,所以,所以.因为,所以,所以.由,得D 正确.向量在向量上的投影向量的模为.13.; 设双曲线的方程为,因为椭圆的焦点为,长轴顶点为,所以,,所以.故双曲线的标准方程为,渐近线方程为.14.11 设圆心关于对称的点为,则解得即,连接,(图略),所以,故的最小值为.15.解:(1)由题意,可知解得因为,所以椭圆的方程为.(2)设,,则122PF PF PO += 2221212122cos 4||PF PF PF PF F PF PO ++∠=122PF PF a +=()2222121212121639PF PF PF PF PF PF PF PF a +-=+-=2122027PF PF a =222121212122cos PF PF PF PF F PF F F +-∠=()2212124PF PF PF PF c +-=221244PF PF a c =-222204427a a c =-e =ab ||||b a b ⋅= 2211620y x -=y x =C 22221(0,0)y x a b a b-=>>2212036x y +=(0,4)±(0,6)±4a =6c =b ==C 2211620y x -=a y x x b =±=(1,3)C -l ()000,C x y 000013280,2232,1x y y x -+⎧-⨯-=⎪⎪⎨-⎪=-+⎪⎩005,9,x y =⎧⎨=-⎩0(5,9)C -0C N 0C P 0013CN PN C N PN C P +=+≥=MN PN +13211-=16,4,a c a c +=⎧⎨-=⎩10,6.a c =⎧⎨=⎩22264b a c =-=C 22110064x y +=()11,A x y ()22,B x y 221122221,100641,10064x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩两式相减得,整理可得.因为线段AB 的中点坐标为,所以,,.所以直线的斜率,故直线的方程为,即.16.解:(1)设,因为,所以,所以,所以的方程为.(2)设,,.联立方程组得,所以,.因为,所以,故直线OP ,OQ 的斜率之积为定值,且定值为.17.解:取AC 的中点,连接,,则,.因为平面平面,且交于AC ,所以平面.如图,以为坐标原点,,,的方向分别为x ,y ,z 轴的正方向建立空间直角坐标系,则,,,,,,,.(1)连接BC .因为,所以.因为,,所以,2222121210064x x y y --+=121212121625y y x xx x y y -+=-⨯-+(3,4)--126x x +=-128y y +=-l 1212121216166122525825y y x x k x x y y -+-==-⨯=-⨯=--+-l 124(3)25y x +=-+12251360x y ++=(,)C x y 3||2||CA CB =22229(2)94(3)4x y x y ++=-+22120x y x ++=W 22120(0)x y x y ++=≠:2l x my =-()11,P x y ()22,Q x y 222,120,x my x y x =-⎧⎨++=⎩()2218200m y my ++-=12281m y y m +=-+122201y y m =-+()()()222121212122222016422244111m m x x my my m y y m y y m m m -=--=-++=++=+++12125OP OQ y y k k x x ⋅==-5-O 1A O BO 1A O AC ⊥BO AC ⊥11A ACC ⊥ABDC 1A O ⊥ABDC O OB OC 1OA(0,1,0)A -B (0,1,0)C 2,0)D 1A 1B 1(0,C 1222ABC S =⨯⨯=△1OA =11113A B C ABC ABC V S OA -=⋅=△(BC = 1BB = 1cos ,BC BB = 1114||BC BB BC BB ⋅=则.设平面的法向量为,则令,得,因为,所以点到平面的距离所以,所以该几何体的体积.(2)设平面的法向量为,因为,,所以令,则.设平面的法向量为,因为,,所以所以.设平面与平面的夹角为,则,所以平面与平面夹角的余弦值为.18.解:(1)由题意知动点的轨迹是以为焦点,为准线的抛物线,所以轨迹的方程为.(2)设,,联立方程组得,则,.易知,的斜率存在,设的方程为,1sin B BC ∠=11B BCC S =四边形11B BCC (,,)n x y z = 10,0,n BC y n BB y ⎧⋅=+=⎪⎨⋅=+=⎪⎩ 1x =()1n =- (0,2,0)DB =- D 11B BCC ||||DB n d n ⋅==1111123D B BCC B BCC V S d -=⋅=四边形111115A B C ABC D B BCC V V V --=+=11A ABB ()111,,p x y z =AB = 1AA = 111110,0,p AB y p AA y ⎧⋅=+=⎪⎨⋅=+=⎪⎩ 11x =(1,p = 11B C D ()222,,q x y z =11(B C = 1(0,1,B D = 11221220,0,q B C y q B D y ⎧⋅=+=⎪⎨⋅=-=⎪⎩q = 11A ABB 11B C D θ||1cos |cos ,|||||5p q p q p q θ⋅=〈〉==11A ABB 11B C D 15M 30,2⎛⎫⎪⎝⎭32y =-C 26x y =2111,6A x x ⎛⎫ ⎪⎝⎭2221,6B x x ⎛⎫⎪⎝⎭26,3,x y y kx ⎧=⎨=+⎩26180x kx --=126x x k +=1218x x =-1l 2l 1l ()21116y x m x x -=-联立方程组得.由,解得,所以的方程为.同理可得,的方程为. 由解得即点.因为,,,且,所以,即,化简得,因此或故.因为直线为的等线,所以点在轴的上方,即.由,得因为双曲线的离心率为2,所以双曲线的离心率为,又因为,所以,所以,,所以双曲线的方程为.(2)设,则双曲线在点处的切线的方程为.双曲线的渐近线方程为,可得,()21121,66y x m x x x y⎧-=-⎪⎨⎪=⎩2211660x mx mx x -+-=()221136460m mx x ∆=--=13x m =1l 2111136y x x x =-2l 2221136y x x x =-21122211,3611,36y x x x y x x x ⎧=-⎪⎪⎨⎪=-⎪⎩1212,2,6x x x x x y +⎧=⎪⎪⎨⎪=⎪⎩1212,26x x x x P +⎛⎫ ⎪⎝⎭222121,6x x AB x x ⎛⎫-=- ⎪⎝⎭ ()12121,26x x x x x AP -⎛⎫-=⎪⎝⎭()22121,26x x x x x PB -⎫-⎛=⎪ ⎝⎭ ||||AB AP =()0AB AP PB +⋅=()()()()()222221212212112210236436x x x x x x x x x x x x x AB PB AP PB -+---⋅+⋅=+++= 22122227290x x x x ++=-=126,3x x =-⎧⎨=⎩126,3,x x =⎧⎨=-⎩12k =±y =12PF F △P x 2,b Pc a⎛⎫ ⎪⎝⎭2b a -=2b a=2C 1C 2ca=222c a b =+223b a =a =3b =1C 22139x y -=()00,P x y 1C P 1l 00139x x y y-=1C y =A x =B x =所以,所以是线段AB 的中点.因为点,到过原点的直线的距离相等,所以过原点的等线必定满足点A ,B 到该等线的距离相等,且分别位于两侧,所以该等线必过点,即直线OP 的方程为.方程组解得或所以.所以,,所以,故.(3)设,则双曲线在点处的切线的方程为.易知与在的右侧,在的左侧,因为,,所以点到的距离由得.因为,,所以,,所以因为点到的距离,点到的距离所以,即为的等线.02A B x x x +=+=P 1F 2F O O P y =22,1,39y x y⎧=⎪⎨-=⎪⎩3,x y =⎧⎪⎨=⎪⎩3,x y =-⎧⎪⎨=-⎪⎩P A A y ===+B B y ===--A B y y -=1212113622A B AF BF S F F y y =⋅-=⨯=四边形()11,Q x y 2C Q 2l 11310x x y y --=A 2F 2l 1F 2l A x =A y =A 2l 1d 0022,31,y y x x x y ⎧=⎪⎨⎪-=⎩22022003x x x y =-10x >220039x y -=013x x =013y y =1d 2F 2l 2d =1(F -2l 3d =123d d d +=2l 12AF F △。

吉林省白城市2024-2025学年高二上学期10月期中考试数学试题含答案

吉林省白城市2024-2025学年高二上学期10月期中考试数学试题含答案

白城市2024-2025学年度高二上学期期中考试数学试卷(答案在最后)一、单项选择题(本大题共8小题,每题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知空间三点()1,0,3A ,()1,1,4B -,()2,1,3C -,若//AP BC ,且AP =uu u v 则点P 的坐标为()A.()4,2,2-B.()2,2,4-C.()4,2,2-或()2,2,4- D.()4,2,2--或()2,2,4-【答案】C 【解析】【分析】设P 点坐标,由//AP BC可解出P 坐标,再用空间向量模长公式即可.【详解】设(),,P x y z ,则()1,,3AP x y z =--uu u r ,()3,2,1BC =--uu u r,因为//AP BC ,所以()3,2,AP BC λλλλ==--uu u r uu u r ,1323x y z λλλ-=⎧⎪=-⎨⎪-=-⎩,3123x y z λλλ=+⎧⎪=-⎨⎪=-+⎩,所以()31,2,3P λλλ+--+,又AP =uu u v=解得1λ=或1λ=-,所以()4,2,2P -或()2,2,4-,故选:C2.已知圆221:(2)(3)1C x y -+-=和圆222:(3)(4)9C x y -+-=,,M N 分别是圆12,C C 上的动点,P 为x轴上的动点,则PM PN +的最小值为()A.4-B.1-C.6-D.【答案】A 【解析】【分析】求出圆1C 关于x 轴的对称圆的圆心坐标A ,以及半径,然后求解圆A 与圆2C 的圆心距减去两个圆的半径和,即可求出||||PM PN +的最小值.【详解】圆1C 关于x 轴的对称圆的圆心坐标()2,3A -,半径为1,圆2C 的圆心坐标为(3,4),半径为3,∴若M '与M 关于x 轴对称,则PM PM '=,即||||||||PM PN PM PN '+=+,由图易知,当,,P N M '三点共线时||||PM PN '+取得最小值,∴||||PM PN +的最小值为圆A 与圆2C 的圆心距减去两个圆的半径和,∴()()222||3132344524AC --=-+---=-.故选:A.3.直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,点P 在圆()2222x y -+=上,则ABP 面积的取值范围是A.[]26, B.[]48, C.22 D.2232⎡⎣【答案】A 【解析】【详解】分析:先求出A ,B 两点坐标得到AB ,再计算圆心到直线距离,得到点P 到直线距离范围,由面积公式计算即可详解: 直线x y 20++=分别与x 轴,y 轴交于A ,B 两点()()A 2,0,B 0,2∴--,则AB 2= 点P 在圆22x 22y -+=()上∴圆心为(2,0),则圆心到直线距离120222d ++=故点P 到直线x y 20++=的距离2d的范围为则[]2212,62ABP S AB d ==∈ 故答案选A.点睛:本题主要考查直线与圆,考查了点到直线的距离公式,三角形的面积公式,属于中档题.4.在四面体ABCD 中,E 为AD 的中点,G 为平面BCD 的重心.若AG 与平面BCE 交于点F ,则AF AG=()A.12B.23C.34D.45【答案】C 【解析】【分析】根据共线定理及空间向量线性运算可得结果.【详解】如图:连接DG 交BC 于H ,则H 为BC 中点,连接,,AH EH AG ,因为AG ⊂平面AHD ,EH ⊂平面AHD ,设AG EH K = ,则,K EH K AG ∈∈,又EH ⊂平面BCE ,所以K ∈平面BCE ,故K 为AG 与平面BCE 的交点,又因为AG 与平面BCE 交于点F ,所以F 与K 重合,又E 为AD 的中点,G 为平面BCD 的重心,因为点A ,F ,G 三点共线,则()23AF mAG m AD DG m AD DH ⎛⎫==+=+ ⎪⎝⎭()21323DB DC m AD m AD AB AD AC AD ⎛⎫+⎡⎤=+⨯=+⨯-+- ⎪⎢⎥⎣⎦⎝⎭()13m AD AB AC =++又因为点E ,F ,H 三点共线,则(),1AF xAH y AE x y =++=,()22x y AF x AH y AE AB AC AD =+=++ ,所以32132m xx y m y⎧=⎪⎪+=⎨⎪⎪=⎩,解得34m =,即34AF AG = ,故34AF AG =.故选:C.5.O 为空间任意一点,若1148AP OA OB tOC =-++,若A ,B ,C ,P 四点共面,则t =()A.1B.98C.18D.14【答案】C 【解析】【分析】将1148AP OA OB tOC =-++化简为:3148OP OA OB OC t =++ ,利用四点共面定理可得31148t ++=,即可求解.【详解】因为AP OP OA =- ,所以1148AP OA OB tOC =-++,可化简为:1148OP OA OA OB tOC -++-=,即3148OP OA OB OC t =++ ,由于A ,B ,C ,P 四点共面,则31148t ++=,解得:18t =;故选:C6.已知直线1:420l ax y +-=与直线2:250l x y b -+=互相垂直,垂足为()1,c 则a b c ++=()A.24B.20C.2D.4-【答案】D 【解析】【分析】根据两直线垂直可求出a 的值,将公共点的坐标代入直线1l 的方程,可得出c 的值,再将公共点的坐标代入直线2l 的方程,可得出b 的值,由此可得出a b c ++的值.【详解】因为直线1:420l ax y +-=与直线2:250l x y b -+=互相垂直,则2200a -=,可得10a =,由题意可知,点()1,c 为两直线的公共点,则10420c +-=,解得2c =-,再将点()1,2-的坐标代入直线2l 的方程可得()2520b -⨯-+=,解得12b =-,因此,101224a b c ++=--=-.故选:D.7.已知圆221:(1)(2)1C x y -+-=,圆222:(3)(4)4C x y -++=,,M N 分别是圆12,C C 上两个动点,P 是x 轴上动点,则PN PM -的最大值是()A. B. C.D.【答案】A 【解析】【分析】由两圆的标准方程写出其圆心坐标及半径,再由2211||||(||)(||)PN PM PC r PC r -≤+--,求出点2C 关于x 轴的对称点3C ,结合2113||||||PC PC C C -≤即可求得结果.【详解】由题意知,圆1C 的圆心为1(1,2)C ,半径11r =,圆2C 的圆心为2(3,4)C -,半径22r =,作2(3,4)C -关于x 轴的对称点3(3,4)C ,如图所示,22112121||||(||)(||)||||PN PM PC r PC r PC PC r r -≤+--=-++31211321||||||PC PC r r C C r r =-++≤++213=+=+13,,P C C 共线时等号成立,所以||||PN PM -的最大值为3+.故选:A.8.已知抛物线24x y =的焦点为F ,过F 的直线与抛物线交于A ,B 两点,点O 为坐标原点,则下列命题中正确的个数为()①AOB V 面积的最小值为4;②以AF 为直径的圆与x 轴相切;③记OA ,OB ,AB 的斜率分别为1k ,2k ,3k ,则123k k k +=;④过焦点F 作y 轴的垂线与直线OA ,OB 分别交于点M ,N ,则以MN 为直径的圆恒过定点.A.1 B.2C.3D.4【答案】C 【解析】【分析】依次判断每个选项:AB 的斜率为0时,2AOB S =△,所以①错误,计算1||||2EG AF =②正确,证明1212123124y y x x k k k x x ++=+==,所以③正确,根据等式令0x =,得1y =-或3,所以④正确,得到答案.【详解】当AB 的斜率为0时,2AOB S =△,所以①错误.设AF 的中点为E ,作EG x ⊥轴交x 轴于点G ,作AD ⊥准线交准线于点D ,交x 轴于点C ,则||||2E OFG AC +=,又1OF CD ==,所以||||11||||||222CD AC EG AD AF +===,所以②正确.直线AB 的方程为31y k x =+,联立24x y =,得23440x k x --=.设()11,A x y ,()22,B x y ,则1234x x k +=,124x x =-,所以1212123124y y x x k k k x x ++=+==,所以③正确.直线111:4y x OA y x x x ==,所以14,1M x ⎛⎫ ⎪⎝⎭.同理可得24,1N x ⎛⎫⎪⎝⎭.所以以MN 为直径的圆的方程为()()2217122121222(1)x x x x x y x x x x +-⎡⎤⎡⎤-+-=⎢⎥⎢⎥⋅⋅⎣⎦⎣⎦,即()222332(1)44x k y k ++-=+.令0x =,得1y =-或3,所以④正确.故选:C.【点睛】本题考查了抛物线的面积,斜率,定值问题,意在考查学生的计算能力和综合应用能力.二、多项选择题(本大题共4小题.每题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得2分.)(2023·四川省成都市树德中学期中)9.点()00,P x y 是圆22:86210C x y x y +--+=上的动点,则下面正确的有()A.圆的半径为3B.03y x -既没有最大值,也没有最小值C.002x y +的范围是11⎡-+⎣D.2200023x y x +++的最大值为72【答案】BC 【解析】【分析】将圆方程化为标准方程可判断选项A 错误.设03y k x =-,则转化为直线与圆有交点,可算得003y k x =-既没有最大值,也没有最小值,选项B 正确.对于选项C 和D ,可用三角换元化简,再结合辅助角公式即可判断.【详解】圆22:86210C x y x y +--+=转化为()()22434x y -+-=,则圆的圆心为()4,3,半径为2,选项A 错误.设003y k x =-,则直线()003y k x =-与圆有交点,即2≤,整理得23650k k +-≥,解得33k --≤或33k -+≥.既03y x -没有最大值,也没有最小值,选项B 正确.设042sin x θ=+,032cos yθ=+,则()002114sin 2cos 11x y θθθϕ+=++=++,其中1tan 2ϕ=.则002x y +的取值范围为11⎡-+⎣,选项C 正确.又22000086210x y x y +--+=,则2200008621x y x y +=+-,因此()2200000231061820sin 12cos 4040x y x x y θθθα+++=+-=++=++其中3tan 5α=.则2200023x y x +++的最大值为40,选项D 错误.故选:BC.10.在棱长为1正方体1111ABCD A B C D -中,点P 为线段1CC 上异于端点的动点,()A.三角形1D BP 面积的最小值为4B.直线1D B 与DP 所成角的余弦值的取值范围为0,3⎛⎫ ⎪ ⎪⎝⎭C.二面角1A BD P --的正弦值的取值范围为6,13⎛⎫⎪ ⎪⎝⎭D.过点P 做平面α,使得正方体的每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的取值范围为0,2⎛⎫⎪ ⎪⎝⎭【答案】AB 【解析】【分析】根据三角形的面积公式,转化为求P 到直线1BD 距离最小值,进而转化为异面直线1CC 和1BD 的距离,也就是直线1CC 到平面11BDD B 的距离,等于C 到BD 的距离,从而得到三角形1D BP 面积的最小值,判定A ;1BD 在平面1DC 中的射影为1CD ,设1BD 与1CD 所成的角为α,设直线DP 与直线1CD 所成的角为β,设直线1D B 与DP 所成角为γ,则根据射影三余弦定理cos cos cos γαβ=,计算求得其取值范围,进而判定B ;二面角的平面角的范围,可以排除C ;考虑到各种情况,取面积最大的的一个截面,可以排除D.【详解】对于A ,要使三角形1D BP 面积的最小,即要使得P 到直线1BD 距离最小,这最小距离就是异面直线1CC 和1BD 的距离,也就是直线1CC 到平面11BDD B 的距离,等于C 到BD 的距离,为2.由于1BD =,所以三角形1D BP 面积的最小值为1224=,故A 正确;对于B ,先证明一个引理:直线a 在平面M 中的射影直线为b ,平面M 中的直线c ,直线,,a b c 所成的角的余弦值满足三余弦定理,直线,a b 的角为α,直线,b c 的角为β,直线,a c 的角为γ,则cos cos cos γαβ=.证明:如上图,在平面M 内任意取一点O 为原点,取两条射线分别为,x y 轴,得到坐标平面xOy ,然后从O 作与平面M 垂直的射线作为z 轴,建立空间直角坐标系,设直线a 的方向向量为()111,,x y z ,则()11,,0x y 为射影直线b 的方向向量,设直线c 的方向向量坐标为()22,,0x y ,则cos α=,cos β=,cos γ=,所以cos cos αβ=,cos γ=,引理得证.如上图所示,根据正方体的性质可知1BD 在平面1DC 中的射影为1CD ,设1BD 与1CD 所成的角为α,cosα=设直线DP 与直线1CD 所成的角为β,,42ππβ⎛⎫∈⎪⎝⎭,2cos 0,2β⎛⎫∈ ⎪ ⎪⎝⎭.设直线1D B与DP所成角为γ,根据上面的引理可得:cos cos cos0,3γαββ⎛⎫==∈ ⎪⎪⎝⎭,故B正确;对于C,如上图所示,设AC、BD交点为M,连接1A M,PM,由正方体性质易知1,BD AC BD AA⊥⊥,11,,AC AA A AC AA⋂=⊂平面11ACC A,所以BD⊥平面11ACC A,故1,BD A M BD MP⊥⊥,1A MP∠为二面角1A BD P--的平面角,当P与1C重合时,111π2A MC A MA∠=-∠,11tan122AAA MAAM∠===>,所以1ππ43A MA<∠<,∴11π2A MC∠<,P在1C C上从下往上移动时,1A MP∠逐渐变大,最终是钝角,其正弦值可以等于1,故C错误;对于D,因为过正方体顶点与各棱所成的角的都相等的直线是体对角线所在的直线,所以过点P的平面与各棱所成的角相等必须且只需与某一条体对角线垂直,过P与对角线1BD垂直的截面中,当P为1CC中点时取得最大值,是一个边长为2的正六边形,如下图所示,面积为1223336sin6022242⨯⨯⨯⨯︒=>,不在区间0,2⎛⎫⎪⎪⎝⎭内,故D不正确.故选:AB【点睛】直线a 在平面M 中的射影直线为b ,平面M 中的直线c ,直线,,a b c 所成的角的余弦值满足三余弦定理,,a b 的角为α,,b c 的角为β,,a c 的角为γ,则cos cos cos γαβ=.这是常见的很好用的一个公式.11.已知直线1:880l ax y +-=与直线20:2l x ay a +-=,下列说法正确的是()A.当8a =时,直线1l 的倾斜角为45︒B.直线2l 恒过()0,1点C.若4a =,则1//l 2l D.若0a =,则12l l ⊥【答案】BD 【解析】【分析】利用直线斜率与倾斜角的关系判断A ,利用直线过定点的求解判断B ,利用直线平行与垂直的性质判断CD ,从而得解.【详解】A 中,当8a =时,直线1l 的斜率11k =-,设其倾斜角为,[0,π)αα∈,所以1tan 1k α==-,则135α=︒,所以A 不正确;B 中,直线20:2l x ay a +-=,整理可得2(1)0x a y +-=,令2010x y =⎧⎨-=⎩,可得0,1x y ==,即直线2l 恒过定点(0,1),所以B 正确;C 中,当4a =时,两条直线方程分别为:220,220x y x y +-=+-=,则两条直线重合,所以C 不正确;D 中,当0a =时,两条直线方程分别为:1,0y x ==,显然两条直线垂直,所以D 正确.故选:BD.12.正方体1111ABCD A B C D -棱长为4,动点P 、Q 分别满足1AP mAC nAD =+ ,其中()0,1m ∈,Rn ∈且0n ≠,14QB QC +=;R 在11B C 上,点T 在平面11ABB A 内,则()A.对于任意的(0,1)m ∈,R n ∈且0n ≠,都有平面ACP ⊥平面11A B DB.当1m n +=时,三棱锥1B A PD -的体积不为定值C.若直线RT 到平面1ACD的距离为1DD 与直线RT所成角正弦值最小为3.D.1AQ QD ⋅的取值范围为[]28,4-【答案】ACD 【解析】【分析】建空间直角坐标系,用向量知识求解四个选项.【详解】对于A ,以A 为坐标原点,AB ,AD ,1AA 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系,则()0,0,0A ,()0,4,0D ,()4,4,0C ,()10,4,4D ,()10,0,4A ,()14,0,4B ,()4,0,0B 设平面11A B D 的法向量为()111,,m x y z =,()114,0,0A B =,()10,4,4A D =- 则11111140440m A B x m A D y z ⎧⋅==⎪⎨⋅=-=⎪⎩ ,令11y =,则10x =,11z =,则()0,1,1m =,()4,4,0AC =,()10,4,4AD = ,()()()14,4,00,4,44,44,4AP mAC nAD m n m m n n =+=+=+,设平面ACP 的法向量为()222,,x n y z =,则()2222244044440n AC x y n AP mx m n y nz ⎧⋅=+=⎪⎨⋅=+++=⎪⎩ ,令21x =,则21y =-,21z =,则()1,1,1n =-,又()11110m n ⋅=-⨯+⨯=,所以m n ⊥,所以对于任意的(0,1)m ∈,R n ∈且0n ≠,都有平面ACP ⊥平面11A B D ,故A 正确;对于B ,当1m n +=时,()4,4,4P m n 设平面1A BD 的法向量为()333,,u x y z =()14,0,4BA =- ,()4,4,0BD =-,则133334+404+40u BA x z u BD x y ⎧⋅=-=⎪⎨⋅=-=⎪⎩ ,令31x =,则31y =,31z =,所以()1,1,1u =,又()4,4,4BP n n =-,点P 到平面1A BD的距离为3BP u d u⋅=== 又11B A PD P A BD V V --=,又因为1A BD 的面积为定值,所以三棱锥1B A PD -的体积为定值,故B 错误;对于C ,设()4,,4R b ,(),0,T a c ,则()4,,4RT a b c =---因为直线RT 到平面1ACD的距离为RT //平面1ACD ,()4,4,0AC =,()10,4,4AD = 设面1ACD 为()444,,k x y z =,则44144440440k AC x y k AD y z ⎧⋅=+=⎪⎨⋅=+=⎪⎩,令41y =-,则441,1x z ==,所以()1,1,1k =-所以440RT k a b c ⋅=-++-=,即8a b c ++=,又()4,,4AR b =,则AR k k⋅==2b =或14b =,若2b =,所以6a c +=,()4,2,4R ,又()10,0,4DD =,设直线1DD 与直线RT 所成角为θ,所以11cos RT DD RT DD θ⋅====当cos θ最大时,sin θ最小,令()22421224c g c c c -=-+,()()()224421224c c g c c c -'=-+,()g c 在[]0,4单调递增,所以()()max 142g c g ==,()()min 106g c g ==-,cos θ63=,所以sin θ最小为3,所以直线1DD 与直线RT 所成角正弦值最小为3;若14b =,所以6a c +=-,()4,14,4R ,根据对称性可得sin θ最小为33,故C 正确;对于D ,设(),,Q x y z 因为14QB QC += ,所以()4,,QB x y z =--- ,()4,4,4QC x y z =--- ,()182,42,42QB QC x y z +=---,所以14QB QC +=,整理得222844200x y z x y z ++---+=,即()()()2224224x y z -+-+-=所以点p 的运动轨迹为一个以()4,2,2为球心,半径为2的球面上一点,所以26x ≤≤,()()1,,4,,4,A Q x y z QD x y z =-=---所以222144208AQ QD x y z y z x ⋅=---++=- ,当6x =时,1AQ QD ⋅ 最小为28-,当2x =时,1AQ QD ⋅最大为4所以1AQ QD ⋅的取值范围为[]28,4-,故D 正确.故选:ACD.三、填空题(本大题共4小题,每小题5分,共20分.)13.直线()()()112360x y R λλλλ+--+-=∈被圆2225x y +=截得的弦长的最小值是______.【答案】8.【解析】【分析】首先化简直线求出直线恒过定点(0,3)P ,并判断点在圆内,由圆的性质知:当该直线与OP 垂直时,直线被圆截得的弦长最短.用弦长公式计算弦长即可.【详解】直线的方程可化简为:2360x x y y λλλ+-++-=,整理得:(26)(3)0x y x y λ+-+-+=.令26030x y x y +-=⎧⎨-+=⎩,解得:03x y =⎧⎨=⎩.所以直线恒过定点(0,3)P .又因为220325+<,所以点(0,3)P 在2225x y +=内.所以当该直线与OP 垂直时,直线被圆截得的弦长最短.3d ==,故最短弦长为.故答案为:8.【点睛】本题主要考查了含参直线恒过定点问题以及过圆内一点求最短弦长问题,考查了学生的图形转化计算的能力,属于中档题.14.若点()sin ,cos P θθ-与ππcos ,sin 44Q θθ⎛⎫⎛⎫⎛⎫++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭关于直线y x =对称,写出一个符合题意的θ值为______.【答案】3π8(答案不唯一)【解析】【分析】由,P Q 中点在直线y x =上且所成直线斜率为1-,并应用和角正余弦公式展开化简得πsin sin()4θθ=+且πcos cos 4θθ⎛⎫=-+ ⎪⎝⎭,进而求θ值.【详解】由题设,,P Q 中点ππsin cos()cos sin()44(,)22θθθθ++-++在直线y x =上,且1PQ k =-,所以ππsin cos()cos sin()4422θθθθ++-++=,且πsin()cos 41πcos()sin 4θθθθ++=-+-,即ππsin cos()cos sin()44θθθθ++=-++,且ππsin()cos sin cos(44θθθθ++=-+,所以sin cos sin cos cos sin 2222θθθθθθ+-=-++,且sin cos cos sin cos sin 2222θθθθθθ++=-+,πsin cos )4θθθθ=+=+πsin cos )4θθθθ=-=+,所以πsin sin(4θθ=+,且πcos cos(4θθ=-+,综上,π2(21)π,Z 4k k θ+=+∈,可得1π()π,Z 28k k θ=+-∈,显然3π8满足.故答案为:3π8(答案不唯一)15.如图,点C 是以AB 为直径的圆O 上的一个动点,点Q 是以AB 为直径的圆O 的下半个圆(包括A ,B两点)上的一个动点,,3,2PB AB AB PB ⊥==,则1)3AP BA QC +⋅(的最小值为___________.【答案】3-【解析】【分析】建立合适的平面直角坐标系,利用三角换元法和辅助间公式得到1)344AP BA QC ππαθ⎛⎫⎛⎫+⋅=+-+ ⎪ ⎪⎝⎭⎝⎭ (,最后根据正弦函数的性质即可得到答案.【详解】以O 为原点,以AB 为x 轴,以AB 的中垂线为y 轴建立平面直角坐标系O xyz -,则圆O 的半径为32,(3,2)AP = ,(3,0)BA =-,1(2,2)3AP BA ∴+= ,设3333cos ,sin ,cos ,sin 2222C Q ααθθ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,[)[]0,2π,π,0a θ∈∈-,则3333cos cos ,sin sin 2222QC αθαθ⎛⎫=-- ⎪⎝⎭,()()1ππ3cos cos 3sin sin 3344AP BA QC αθαθαθ⎛⎫⎛⎫⎛⎫∴+⋅=-+-=+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ [)[]0,2π,π,0a θ∈∈- ,ππ9ππ3ππ,,,442444αθ⎡⎫⎡⎤∴+∈+∈-⎪⎢⎢⎥⎣⎭⎣⎦,∴当π3πππ,4244αθ+=+=时,1)3AP BA QC +⋅ (取得最小值3-,故答案为:3-.【点睛】关键点点睛:本题的关键是建立合适的直角坐标系,利用三角换元法表示出相关点的坐标,最后计算向量数量积,再根据三角恒等变换和三角函数性质即可求出最值.16.已知A ,B是曲线||1x -=(0,1)C ,则CA CB +的取值范围是________.【答案】【解析】【分析】由曲线方程,结合根式的性质求x 的范围,进而判断曲线的形状并画出草图,再由圆的性质、数形结合法判断CA CB +的最值,即可得其范围.【详解】由||1x -=22(||1)(1)4x y -+-=.由||10x -=,所以1x ≤-或1x ≥.当1x ≤-时,22(1)(1)4x y ++-=;当1x ≥时,22(1)(1)4x y -+-=.所以||1x -=22:(1)(1)4P x y ++-=的左半部分和圆22:(1)(1)4Q x y -+-=的右半部分.当A ,B 分别与图中的M ,N 重合时,||||CA CB +取得最大值,为6;当A ,B 为图中E ,F ,G ,H 四点中的某两点时,||||CA CB +取得最小值,为.故||||CA CB +的取值范围是.故答案为:.四、解答题:写出必要的文字描述、解题过程.共6题.17.已知直线l :12y x =和两个定点(1,1),(2,2)A B ,问直线l 上是否存在一点P ,使得|22||||PA PB +取得最小值?若存在,求出点P 的坐标和22||||PA PB +的最小值;若不存在,说明理由.【答案】存在,95,910⎛⎫ ⎪⎝⎭,1910【解析】【分析】设()002,P x x ,根据坐标运算22||||PA PB +可转化为关于0x 的二次函数,利用二次函数的最值求解即可.【详解】假设直线l 上存在一点()002,P x x ,使得22||||PA PB +取得最小值,如图,则22||||PA PB +()()()()22222000000211222101810x x x x x x =-+-+-+-=-+,因为0R x ∈,所以当01892010x -=-=,即点P 的坐标为99,510⎛⎫⎪⎝⎭时,22||||PA PB +取得最小值,且最小值为1910.18.在平面直角坐标系xOy 中,设二次函数()()22f x x x b x =++∈R 的图像与两坐标轴有三个交点,经过这三个交点的圆记为C .(1)求实数b 的取值范围;(2)求圆C 的方程;(3)请问圆C 是否经过某定点(其坐标与b 无关)?请证明你的结论.【答案】(1){|1b b <,且0b ≠}(2)222(1)0x y x b y b ++-++=(1b <,且0b ≠);(3)过定点(0,1)和(2,1)-,证明见解析.【解析】【分析】(1)令0x =得抛物线与y 轴交点,此交点不能是原点;令()0f x =,则方程∆>0,即可求b 的范围.(2)设出所求圆的一般方程,令0y =得到的方程与220x x b ++=是同一个方程;令0x =得到的方程有一个根为b ,由此求得参数及圆C 的一般方程.(3)把圆C 方程里面的b 合并到一起,令b 的系数为零,得到方程组,求解该方程组,即得圆过的定点.【小问1详解】令0x =得抛物线与y 轴交点是(0,)b ;令2()20=++=f x x x b ,由题意0b ≠,且440b ∆=->,解得1b <,且0b ≠.即实数b 的取值范围{|1b b <,且0b ≠}.【小问2详解】设所求圆的一般方程为220x y Dx Ey F ++++=,由题意得函数()()22f x x x b x =++∈R 的图像与两坐标轴的三个交点即为圆220x y Dx Ey F ++++=和坐标轴的交点,令0y =得,20x Dx F ++=,由题意可得,这与220x x b ++=是同一个方程,故2D =,F b =.令0x =得,20y Ey F ++=,由题意可得,此方程有一个根为b ,代入此方程得出1E b =--,∴圆C 的方程为222(1)0x y x b y b ++-++=(1b <,且0b ≠).【小问3详解】把圆C 的方程改写为222(1)0x y x y b y ++---=,令22201x y x y y ⎧++-=⎨=⎩,解得01x y =⎧⎨=⎩或21x y =-⎧⎨=⎩,故圆C 过定点(0,1)和(2,1)-.19.如图,已知ABC V 的三个顶点分别为)(4,3A ,)(1,2B ,)(3,4C -.(1)试判断ABC V 的形状;(2)设点D 为BC 的中点,求BC 边上中线的长.【答案】(1)直角三角形;(2).【解析】【分析】(1)利用两点间距离公式直接计算三角形三边长即可判断作答.(2)求出点D 坐标,再用两点间距离公式计算作答.【小问1详解】根据两点间的距离公式,得AB ==,BC ==,CA ==((222+=,即222AB BC CA +=,所以ABC V 是直角三角形.【小问2详解】依题意,线段BC 的中点(2,1)D -,AD ==,所以BC 边上中线的长为.(2023·安徽省淮北市树人高级中学期中)20.如图,在三棱锥P ABC -中,1AB BC ==,PA PB PC AC ====,O 为棱AC 的中点(1)证明:平面PAC ⊥平面ABC ;(2)若点M 在棱BC 上,且PC 与平面PAM 所成角的正弦值为4,求二面角M PA C --的大小【答案】(1)证明见解析(2)30°【解析】【分析】对于(1),通过题目条件,可以分别得到BO 和PO 长度,分别通过勾股定理和等腰三角形的三线合一得到PO OB ⊥和PO AC ⊥,从而得到⊥PO 平面ABC ,从而得到平面PAC ⊥平面ABC ;对于(2),先建立空间直角坐标系,因为已知PC 与平面PAM 所成角的正弦值为4,同时点M 在棱BC 上,所以设点M 的坐标,从而分别求出PC和平面PAM 的法向量,并得到点M 的坐标。

山东省德州市2024-2025学年高二上学期11月期中考试数学试题含答案

山东省德州市2024-2025学年高二上学期11月期中考试数学试题含答案

高二数学试题(答案在最后)2024.11主考学校:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1-2页,第Ⅱ卷3-4页,共150分,测试时间120分钟.注意事项:选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案,不能答在测试卷上.第Ⅰ卷选择题(共58分)一、选择题(本题共8个小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合要求的.)1.已知直线l 320y --=,则l 的倾斜角为()A.30°B.60°C.120°D.150°【答案】A 【解析】【分析】由直线方程计算直线斜率,由斜率得到倾斜角.【详解】由题意得,直线斜率为3k =,即tan 3α=,又0180α≤< ,则30α=︒.故直线的倾斜角为30︒.故选:A.2.已知直线()1:1210l m x y +++=与直线2:310l x my ++=平行,则m 的值为()A.3-B.1- C.2D.3-或2【答案】A 【解析】【分析】由两直线平行公式计算m 的值,代入验证排除直线重合的情况即可得到结果.【详解】由两直线平行得:(1)230m m +-´=,解得2m =或3m =-.当2m =时,1:3210l x y ++=,2:3210l x y ++=,两直线重合,不合题意.当3m =-时,1:2210l x y -++=,即2210x y --=,23310:x y l -+=,两直线平行,符合题意.故m 的值为3-.故选:A.3.已知双曲线()2222:10,0x y E a b a b -=>>,若点()0,2到E的渐近线距离为3,则双曲线E 的离心率为()A.B.C.2D.3【答案】B 【解析】【分析】利用点到直线的距离公式结合已知条件求出ba的值,即可求出该双曲线的离心率的值.【详解】双曲线的渐近线方程为b y x a=±,即0bx y a ±=,因为点()0,2到E 的渐近线距离为233,即233=,解得ba=,因此,该双曲线的离心率为c e a ====.故选:B.4.在四面体O ABC -中,点D 为BC 的中点,点E 在AD 上,且2AE ED =,用向量OA ,OB ,OC 表示OE ,则OE =()A.111333OA OB OC-++u u ur u u u r u u u r B.1133OA OB OC-+u u u r u u u r u u u rC.111333OA OB OC +-u u ur u u u r u u u r D.111333OA OB OC ++【答案】D 【解析】【分析】利用空间向量的线性运算即可得到结果.【详解】如图,由题意得,()221332OE OA AE OA AD OA AB AC=+=+=+⋅+ ()11113333OA OB OA OC OA OA OB OC =+-+-=++ .故选:D.5.已知圆()()221x m y n -+-=不经过坐标原点,且与圆224x y +=相切,则mn 的最大值为()A.1B.32C.92D.814【答案】C 【解析】【分析】根据两圆相切以及()()221x m y n -+-=不过原点先求解出,m n 的关系式,然后结合基本不等式求解出最大值.【详解】因为()()221x m y n -+-=与224x y +=相切,21=+21=-,所以229m n +=或221m n +=,因为()()221x m y n -+-=不经过原点,所以221m n +≠,所以229m n +=,又因为222m n mn +≥,所以22922m n mn +≤=,当且仅当2m n ==±时取等号,所以mn 的最大值为92,故选:C.6.已知菱形ABCD 的边长为2,60BAC ∠=︒,现将ACD 沿AC 折起,当BD =时,二面角D AC B--平面角的大小为()A.30︒B.60︒C.120︒D.150︒【答案】B 【解析】【分析】设AC BD E = ,由菱形的性质得出BED ∠就是二面角D AC B --的平面角,求出BED 的边长可得答案.【详解】设AC BD E = ,菱形ABCD 满足2AB BC ==,60BAC ∠=︒,则ABC V 和ADC △都为等边三角形,所以2AC =,BE DE ==,又AC BD ⊥,则,BE AC DE AC ⊥⊥,所以BED ∠就是二面角D AC B --的平面角,由于BD =,所以BE DE BD ==,所以BED 是等边三角形,所以60BED ∠=︒,即二面角D AC B --平面角的大小为60︒.故选:B.7.已知椭圆()2222:10x y C a b a b +=>>上存在两点M 、N 关于直线10x y --=对称.若椭圆离心率为33,则MN 的中点坐标为()A.()5,4 B.()4,3 C.()3,2 D.()2,1【答案】C 【解析】【分析】设点1,1、2,2,线段MN 的中点为()00,E x y ,由已知条件可得出2223b a =,利用点差法以及点M 在直线10x y --=上,可得出关于0x 、0y 的值,解出这两个量的值,即可得出线段MN 的中点坐标.【详解】设点1,1、2,2,线段MN 的中点为()00,E x y ,则12012022x x x y y y +⎧=⎪⎪⎨+⎪=⎪⎩,由题意,椭圆的离心率为3c e a ===,可得2223b a =,因为M 、N 关于直线10x y --=对称,且直线10x y --=的斜率为1,则12121MN y y k x x -==--,将点M 、N 的坐标代入椭圆方程可得22112222222211x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩,上述两个等式作差可得22221212220x x y y a b--+=,可得222121212222121212y y y y y y b x x x x x x a -+-=⋅=--+-,即()0022123y x ⋅-=-,即0023y x =,即0023x y =,①又因为点()00,E x y 在直线10x y --=上,则0010x y --=,②联立①②可得0032x y =⎧⎨=⎩,故线段MN 的中点为()3,2E .故选:C.8.已知四棱锥P ABCD -的各侧棱与底面所成的角都相等,其各个顶点都在球O 的球面上,满足4PA =,6AB AD ==,120BCD ∠=︒,则球O 的表面积为()A.100πB.64πC.36πD.32π【答案】B 【解析】【分析】首先根据侧棱与底面所成角相等推出顶点在底面的射影是底面外接圆的圆心,然后利用底面四边形的条件求出底面外接圆的半径,再结合四棱锥的棱的长度求出该几何体外接球的半径,最后根据球的表面积公式求出表面积即可.【详解】因为四棱锥P ABCD -的各侧棱与底面所成的角都相等,所以顶点P 在底面ABCD 的射影O '是底面四边形ABCD 外接圆的圆心.因为6AB AD ==,所以△ABD 为等腰三角形.因为120BCD ∠=︒,所以60BAD ∠=︒,故△ABD 为等边三角形,则6BD =.设底面四边形ABCD 外接圆半径为r ,则根据正弦定理得2sin BD r BAD =∠,即62sin60r =,解得r =.设线段BD 的中点E ,则AE BD ⊥,那么由勾股定理可知AE ===,所以32AE r =,故O '是等边三角形ABD 的中心,则2PO '===.设球O 的半径为R ,根据题意可知球心O 在射线PO '上,当球心O 在线段PO '上时,如图1所示,则222OA O A O O ''=+,即222(2)R r R =+-,解得4R =,此时220R -=-<,不符合题意舍去.当球心O 在射线PO '上且在平面ABD 的下方时,如图2所示,222OA O A O O ''=+,即222(2)R r R =+-,解得4R =,此时220R -=>符合题意,故球O 的半径4R =,所以根据球体的表面积公式知该四棱锥外接球的表面积为24π64πR =.故选:B.【点睛】求解几何体外接球问题的关键是通过找到球体球心的位置确定球体的半径.二、选择题(本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.)9.已知空间中四点()0,1,0A ,()2,2,0B ,()1,3,1C -,()1,1,1D ,则()A.3AB = B.AC BD⊥ C.BC 在AD上的投影数量为 D.,AB AD为锐角【答案】BCD 【解析】【分析】A :表示出AB的坐标,利用模长公式计算;B :表示出,AC BD 的坐标,然后根据数量积判断是否垂直;C :计算出,BC AD AD ⋅ ,根据BC AD AD⋅可计算出投影数量;D :根据AB AD ⋅的正负并结合是否共线作判断.【详解】A :因为()2,1,0AB =,所以AB == ,故错误;B :因为()()1,2,1,1,1,1AC BD =-=-- ,所以1210AC BD ⋅=-+= ,所以AC BD ⊥ ,故正确;C :因为()()3,1,1,1,0,1BC AD =-= ,所以312BC AD ⋅=-+=-,AD == ,所以BC 在AD上的投影数量为BC AD AD ⋅==,故正确;D :因为()()2,1,0,1,0,1AB AD == ,所以20AB AD ⋅=>,由坐标可知,AB AD不共线,所以,AB AD 为锐角,故正确;故选:BCD.10.已知直线:0-+=l kx y k ,圆22:430C x y x +-+=,()00,P x y 为圆C 上任意一点,则()A.直线l 过定点()1,0B.若圆C 关于直线l 对称,则0k =C.00y x的最大值为3D.2200x y +的最大值为3【答案】BC 【解析】【分析】A :将直线方程化为():10l k x y +-=,根据100x y +=⎧⎨=⎩可确定出定点坐标;B :考虑直线经过圆心的情况;C :根据0y x 的几何意义,考虑OP 与圆相切;D :根据2200x y +的几何意义,先计算max OP ,然后可求结果.【详解】22:430C x y x +-+=化为标准方程为()22:21C x y -+=,圆心为2,0,半径为1;A :因为():0:10l kx y k l k x y -+=⇔+-=,令100x y +=⎧⎨=⎩,可得10x y ⎧⎨⎩=-=,所以l 过定点()1,0-,故错误;B :若圆C 关于l 对称,则l 过圆心2,0,所以200k k -+=,解得0k =,故正确;C :0y x 表示OP 连线的斜率,设:OP y kx =,即:0OP kx y-=,如下图,当:0OP kx y -=与()22:21C x y -+=相切时,此时k 取最值,1=,解得3k =±,所以k的最大值为3,即00yx的最大值为3,故正确;D :2200x y +表示2OP ,因为max 213OP OC r =+=+=,所以()2max9OP=,故错误;故选:BC.11.在直三棱柱111ABC A B C -中,AB AC ⊥,AB =,1AC =,12AA =,点M 为线段1CC 的中点,N 为线段1A M 上的动点,则()A.1BM A M⊥B.存在点N 使得1C N 垂直于平面1A BM C.若1//C N 平面ABM ,则1A N NM =D.直线BN 与平面11ACC A 所成角的最大值为π4【答案】ACD 【解析】【分析】建立空间直角坐标系,利用空间向量逐项判断即可.【详解】如图,以A 为原点,以1,,AB AC AA 所在直线为,,x y z 轴建立空间直角坐标系,则())()()()()110,0,0,,0,1,0,0,0,2,0,1,2,0,1,1A BC A C M ,对于A,因为()()1,0,1,1BM A M ==-,所以()1011110BM A M ⋅=+⨯+⨯-=,则1BM A M ⊥,即1BM A M ⊥,故A 正确;对于B ,由A知,()()1,0,1,1BM A M ==-,设()1101A N A M λλ=≤≤ ,则()10,,A N λλ=-,即()0,,2N λλ-,所以()10,1,C N λλ=--,又1C N ⊥平面1A BM ,则1111010C N BM C N A M λλλλ⎧⋅=--=⎪⎨⋅=-+=⎪⎩ ,无解,所以不存在点N 使得1C N 垂直于平面1A BM ,故B 错误;对于C ,由B 知,设()1101A N A M λλ=≤≤ ,可得()10,1,C N λλ=--,又()(),0,1,1BM AM ==,设平面ABM 的一个法向量为 =1,1,1,则11111100m BM y z m A M y z ⎧⋅=++=⎪⎨⋅=+=⎪⎩ ,令11y =,得()0,1,1m =- ,因为1//C N 平面ABM ,所以1C N m ⊥,则110C m N λλ⋅=-+= ,解得12λ=,此时1A N NM =,故C 正确;对于D ,由B 知,设()1101A N A M λλ=≤≤,可得()0,,2N λλ-,所以(),2BN λλ=- ,易知平面11ACC A 的一个法向量为()1,0,0n =,设直线BN 与平面11ACC A 所成角为θ,则sin cos ,BN n BN n BN nθ⋅===⋅,所以当1λ=时,sin θ取得最大值2,即直线BN 与平面11ACC A 所成角的最大值为π4,故D 正确.故选:ACD.第Ⅱ卷非选择题(共92分)三、填空题(本题共3小题,每小题5分,共15分)12.已知ABC V 的三个顶点()2,1A -,()2,13B ,()5,12C ,则AB 边上的高为________.【答案】10【解析】【分析】求出直线AB 的方程,再利用点到直线的距离公式即可.【详解】131322AB k -==+,则直线AB 的方程为()132y x -=+,即370x y -+=,则点()5,12C 到直线AB 351271010⨯-+=,则AB 10.10.13.在三棱锥P ABC -中,已知1AB AC AP ===,2BC =P 到AC ,AB 的距离均为32,那么点P 到平面ABC 的距离为________.【答案】22【解析】【分析】如图,取BC 中点为D ,连接PD ,AD ,过P 作AD 垂线,垂足为G ,可证PG 与平面ABC 垂直及D 和G 重合,即可得答案.【详解】过P 作AC ,AB 垂线,垂足为E ,F ,由题,则32PE PF ==.又π2PA PA PE PF PEA PFA ==∠=∠=,,,则PAE PAF ≅△△,又1AP =,32PE PF ==,则1212AE AF FB EC ==⇒==.则1212AE AF FB EC ==⇒==,又由勾股定理,可得1PB PC ==.取BC 中点为D ,连接PD ,AD .由以上分析可知PD BC AD BC ⊥⊥,.因PD AD D PD AD ⋂=⊂,,平面PAD ,则⊥BC 平面PAD .过P 作AD 垂线,垂足为G ,则PG AD ⊥,又PG ⊂平面PAD ,则PG BC ⊥.因BC AD D BC AD ⋂=⊂,,平面ABC ,则PG ⊥平面ABC ,即PG 为P 到平面ABC 的距离.在PBC △中,因1PB PC ==,2BC =,则22PD =.又在ABC V 中,12AB AC BC ===,,则22AD =;又1AP =,则APD △为以D 为直角顶点的直角三角形,则PD AD⊥即D 和G 重合,则22PD PG ==.故答案为:2214.已知直线24y x =-+与抛物线()220y px p =>交于A 、B 两点,且OA OB ⊥(O 为坐标原点),则p =________;AOB V 的面积为________.【答案】①.1②.17【解析】【分析】设点1,1、2,2,将直线AB 的方程与抛物线的方程联立,列出韦达定理,由题意可得出0OA OB ⋅= ,结合韦达定理可求得p 的值,然后利用三角形的面积公式可求得AOB V 的面积.【详解】设点1,1、2,2,联立2242y x y px =-+⎧⎨=⎩可得240y py p +-=,2160p p ∆=+>,由韦达定理可得12y y p +=-,124y y p =-,所以,221212*********y y OA OB x x y y y y p p⋅=+=+=-= ,解得1p =,所以,121y y +=-,124y y =-,则()2121212411617y y y y y y -=+-=+=,直线24y x =-+交x 轴于点()2,0E ,所以,12112171722OAB S OE y y =⋅-=⨯= 故答案为:117.四、解答题(本题共5小题,共77分,解答应写出必要的文字说明、证明过程或演算步骤.)15.在平面直角坐标系xOy 中,已知圆C 过点(3,()3,2,且圆关于x 轴对称.(1)求圆C 的标准方程;(2)已知直线l 经过点()0,1,与圆C 交于A ,B 两点,若2AB =,求直线l 的方程.【答案】(1)()2234x y -+=(2)770x y -+=或10x y +-=【解析】【分析】(1)设出圆心并根据圆上的两点坐标,即可得出圆心和半径可得圆C 的标准方程;(2)利用弦长公式计算求得圆心到直线的距离,即可求得直线方程.【小问1详解】由圆关于x 轴对称可知圆心在x 轴上,设圆心(),0C a ,半径为r ;即可得()(()()2222203302a a -+-=-+-,解得3a =,半径2r =,所以圆C 的标准方程为()2234x y -+=【小问2详解】当直线l 的斜率不存在时,直线方程为0x =,显然不合题意;当直线l 的斜率存在时,设方程为1y kx =+;易知圆心到直线1y kx =+的距离d =又AB ==可解得17k =或1k =-,即直线l 的方程为770x y -+=或10x y +-=.16.已知点F 为抛物线()220y px p =>的焦点,点()2,P m 在抛物线上,且4PF =.(1)求抛物线的方程及m ;(2)斜率为2的直线l 与抛物线的交点为A 、B (A 在第一象限内),与x 轴的交点为M (M 、F 不重合),若2AM MB =,求ABF △的周长.【答案】(1)抛物线方程为28y x =,4m =±(2)14+【解析】【分析】(1)由抛物线的定义结合4=PF 可求得p 的值,可得出抛物线的方程,再将点P 的坐标代入抛物线方程,即可求得m 的值;(2)设点(),0M n ,则2n ≠,可得直线l 的方程为12x y n =+,设点1,1、2,2,则10y >,由平面向量的坐标运算可得出122y y =-,将直线l 的方程与抛物线方程联立,结合韦达定理可求出n 、1y 、2y 的值,进而可求得ABF △的周长.【小问1详解】抛物线的焦点为,02p F ⎛⎫ ⎪⎝⎭,准线方程为2p x =-,由抛物线的定义可得242p PF =+=,可得4p =,所以,抛物线的方程为28y x =,将点P 的坐标代入抛物线方程可得28216m =´=,解得4m =±.【小问2详解】设点(),0M n ,则2n ≠,因为直线l 的斜率为2,则直线l 的方程为12x y n =+,设点1,1、2,2,则10y >,由2AM MB =,可得()()1122,2,n x y x n y --=-,则122y y -=,可得122y y =-,联立2128x y n y x ⎧=+⎪⎨⎪=⎩,可得2480y y n --=,16320n ∆=+>,可得12n >-,由韦达定理可得124y y +=,128y y n =-,所以,1211111422y y y y y +=-==,可得18y =,24y =-,所以,12832n y y -==-,可得4n =,所以,12122AB y y =-=⨯=,()12121484284142AF BF x x y y +=++=+++=++=,所以,ABF △的周长为14AF BF AB ++=+.17.如图,在四棱锥P ABCD -中,底面是边长为2的正方形,4PA =,60PAD ∠=︒,120PDC ∠=︒.(1)求证:AD PC ⊥;(2)求平面DPA 与平面BPA 所成角的余弦值.【答案】(1)证明见详解;(2)1313【解析】【分析】(1)通过线面垂直的判定定理证明AD ⊥平面PCD 即可证得;(2)建立空间直角坐标系,利用向量法求解即可.【小问1详解】在PAD △中,由余弦定理得222142cos cos 602242PD PAD +-∠===⨯⨯ ,解得23PD =所以222PD AD PA +=,故AD PD ⊥,又,,,AD CD CD PD D CD PD ⊥=⊂ 平面PCD ,所以AD ⊥平面PCD ,又PC ⊂平面PCD ,所以AD PC ⊥;【小问2详解】以D 为坐标原点,,DA DC 分别为,x y 轴,建立如图所示的空间直角坐标系,则(0,0,0),(2,0,0),(2,2,0),(0,3,3)D A B P -,所以(2,0,0),(0,3,3),(0,2,0),(2,3,3)DA DP AB AP ====--,设平面DPA 的一个法向量为111(,,)m x y z = ,则11120330m DA x m DP z ⎧⋅==⎪⎨⋅=+=⎪⎩ ,令11z =,则110,3x y ==3,1)m = ,设平面BPA 的一个法向量为222(,,)n x y z = ,则222220230n AB y n AP x z ⎧⋅==⎪⎨⋅=--+=⎪⎩ ,令23x =,则220,2y z ==,所以(3,0,2)n = ,故cos ,13m n m n m n ⋅=== ,所以平面DPA 与平面BPA所成角的余弦值为13.18.已知双曲线G22−22=1>0,>0过点2,30y -=.(1)求双曲线C 的标准方程;(2)若点P 为双曲线右支上一点,()(),00A t t >,求PA 的最小值;(3)过点()2,0F 的直线与双曲线C 的右支交于M ,N 两点,求证:11||||MF NF +为定值.【答案】(1)2213y x -=(2)答案见解析(3)证明见解析【解析】【分析】(1)根据题意列方程组,即可求得答案;(2)设()000,,1P x y x ≥,表示出PA ,结合二次函数性质,讨论即可得答案;(3)讨论直线斜率是否存在,存在时,设直线方程并联立双曲线方程,可得根与系数关系,求出11||||MF NF +的表达式,化简即可证明结论.【小问1详解】由题意知双曲线G 22−22=1>0,>0过点2,30y -=,则22491a b b a⎧-=⎪⎪⎨⎪=⎪⎩,解得1a b =⎧⎪⎨=⎪⎩故双曲线C 的标准方程为2213y x -=;【小问2详解】点P 为双曲线右支上一点,设()000,,1P x y x ≥,()(),00A t t >,则PA ====当14t ≤,即04t <≤时,PA1t =-,当14t >,即4t >时,PA;【小问3详解】当过点()2,0F 的直线斜率不存在时,方程为2x =,此时不妨取(2,3),(2,3)M N -,则11112||||333MF NF +=+=;当当过点()2,0F 的直线斜率存在时,设直线方程为()()1122(2),,,,y k x M x y N x y =-,不妨令122,12x x ><<,联立22(2)13y k x y x =-⎧⎪⎨-=⎪⎩,得()222234430k x k x k -+--=,由于直线过双曲线的右焦点,必有0∆>,直线与双曲线C 的右支交于M ,N两点,需满足k >k <则22121222443,33k k x x x x k k---+==--,则11MF NF +=()()121212112222x x x x x x ⎛⎫-=+=⎪----⎭()12121224x x x x x x -=+--1212=222433k k=-----⎪--⎝⎭293k=-26129933k --===--,综合以上可知11||||MF NF +为定值.【点睛】难点点睛:本题考查了直线和双曲线位置关系的综合应用,综合性强,计算量大,难点在于证明定值问题,解答时要注意计算的准确性,基本都是字母参数的运算,需要十分细心.19.已知椭圆的中心为坐标原点,左、右焦点分别为1F ,2F 1-,直线:l y x m =+与椭圆交于A 、B 两点(其中点A 在x 轴上方,点B 在x 轴下方),当AB 过1F 时,2ABF △的周长为.(1)求椭圆的标准方程;(2)将平面xOy 沿x 轴折叠,使y 轴正半轴和x 轴所确定的半平面(平面12A F F ')与y 轴负半轴和x 轴所确定的半平面(平面12B F F ')垂直.①当B 为椭圆的下顶点时,求折叠后直线1A F '与平面2A B F ''所成角的正弦值;②求三棱锥12A B F F ''-体积的最大值.【答案】(1)2212x y +=(2)①15025;②1445【解析】【分析】(1)由题意列出方程组,解得,,a b c 的值,直接写出椭圆方程;(2)①求出平面中,A B 坐标,再建立空间直角坐标系得到,A B ''坐标,利用空间向量求得线面角的正弦值;②在平面内求出,A B 坐标的关系,再建立空间直角坐标系得到,A B ''坐标,从而列出三棱锥的体积的表达式,利用二次函数求得最大值.【小问1详解】由题意可得221442ABF a c C a ⎧-=⎪⎨==⎪⎩ 21a c ⎧=⎪⎨=⎪⎩1b =,∴椭圆的标准方程为:2212x y +=,【小问2详解】翻折后,如图:①当B 为椭圆的下顶点时,由题意知()0,1B -,直线:1l y x =-,联立方程组可得22112y x x y =-⎧⎪⎨+=⎪⎩,解得4313x y ⎧=⎪⎪⎨⎪=⎪⎩或01x y =⎧⎨=-⎩,∴41,33A ⎛⎫ ⎪⎝⎭令原来y 轴负半轴为z 轴,则41,,033A ⎛'⎫ ⎪⎝⎭,()0,0,1B ',()11,0,0F -,()21,0,0F ,∴171,,033A F ⎛⎫=--⎪⎝⎭' ,41,,133A B ''⎛⎫=-- ⎪⎝⎭ ,211,,033A F ⎛⎫=--⎪⎝⎭' ,设 =s s 为平面2A B F ''的一个法向量,则24103311033A B n a b c A F n a b ⎧⋅=--+=⎪⎪⎨⎪⋅=⎪⎩'-''-= ,令1a =,所以111a b c =⎧⎪=-⎨⎪=⎩,即()1,1,1n =- ,设直线1A F '与平面2A B F ''的夹角为θ,则()1122212271015033sin cos ,257111133A F n A F n A F n θ-++⋅===⎛⎫⎛⎫-+-⨯+-+ '''⎪ ⎪⎝⎭⎝⎭ ,②联立方程组2212x y y x m ⎧+=⎪⎨⎪=+⎩,整理得2234220x mx m ++-=,()()222Δ443222480m m m =-⨯⨯-=->,∴33m -<<,设1,1,2,2,则1243m x x +=-,212223m x x -=,()()222212121212224542333m m m m y y x m x m x x x x m m ---=++=+++=-+=,()11,,0A x y ',()22,0,B x y -,∴()121212112111542233239A B F F B F F y y m m V y S y y ''-'-++==⨯⨯⨯-=-= ,令函数()(2542,f m m m m =-++<,由二次函数的对称轴:25m =,∴()21455f m f ⎛⎫≤= ⎪⎝⎭,所以当25m =时,12A B F F ''-的体积最大,此时121445A B F F V ''-=.【点睛】方法点睛:本题由平面解析几何转变成立体几何,需要自己建立新的坐标系,并能通过平面直角坐标系的点坐标得到对应在空间直角坐标系的坐标,然后利用立体几何的知识来解得答案.。

江西省景德镇市2024-2025学年高二上学期11月期中考试数学试题含答案

江西省景德镇市2024-2025学年高二上学期11月期中考试数学试题含答案

乐平2024-2025学年度上学期期中考试高二数学试卷(答案在最后)满分:150分考试时间:120(分钟)命题人:第一部分选择题(共58分)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知直线l 过点()1,2A ,()3,4B ,则直线l 的倾斜角为()A.π6-B.π3-C.π4 D.π3【答案】C 【解析】【分析】求出直线的斜率,由斜率与倾斜角关系即可求解.【详解】由题可得:42131l k -==-,所以直线l 的倾斜角为:45︒;故选:C2.直线210x y -+=的方向向量是()A.()2,1 B.()2,1- C.()1,2 D.()1,2-【答案】A 【解析】【分析】根据直线的斜率及方向向量定义判断即可.【详解】直线210x y -+=的斜率为12,所以方向向量是()2,1.故选:A.3.“13m =-”是“两条直线10x my +-=,()3210m x y -+-=平行”的()A .充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】C 【解析】【分析】利用直线平行的条件计算可得结论.【详解】当13m =-时,两条直线330x y --=,310x y -+=,两直线平行,所以“13m =-”是“两条直线10x my +-=,()3210m x y -+-=平行”的充分条件;因为直线()3210m x y -+-=的斜率存在且为23m -,由两直线平行,所以10x my +-=的斜率存在且为1m-,所以123m m -=-,解得1m =或13m =-,当1m =时,直线方程均为10x y +-=,此时直线重合,故1m =不符合题意,舍去;所以“13m =-”是“两条直线10x my +-=,()3210m x y -+-=平行”的充要条件.故选:C .4.定义:通过24小时内降水在平地上的积水厚度(mm )来判断降雨程度;其中小雨(0mm 10mm -),中雨(10mm 25mm -),大雨(25mm 50mm -),暴雨(50mm 100mm -);小明用一个圆锥形容器(如图)接了24小时的雨水,则这天降雨属于哪个等级()A .小雨B.中雨C.大雨D.暴雨【答案】B 【解析】【分析】计算圆锥的体积,进而可得降雨高度,即可判断.【详解】做出容器的轴截面,如图所示,则200AB =,300OC =,150CF =,则F 为OC 中点,则11002DE AB ==,50DF =,由已知在直径为200mm 的圆柱内的降雨总体积231π125000πmm 3V DF CF =⋅⋅⋅=,则降雨高度为2125000π12.5mm π10000πV OA ==⋅,所以降雨级别为中雨,故选:B.5.直线3y x =关于=1对称直线l ,直线l 的方程是()A.20y +-= B.20y ++=C.20x +-=D.20x +=【答案】C 【解析】【分析】根据题意可知直线3y x =与直线1x =交于点(1,3A ,求出原点关于直线1x =对称的对称点B ,利用两点坐标求直线斜率公式和直线的点斜式方程即可得出结果.【详解】如图,直线33y x =与直线1x =交于点(1,3A ,直线33y x =过原点(0,0),因为直线33y x =与直线l 关于直线1x =对称,所以原点关于直线1x =的对称点为(2,0)B ,且直线l 过点A 、B ,则直线l 的斜率为03123l k -==--,所以直线l 的方程为0(2)3y x -=--,即20x +-=.故选:C6.若P 是ABC V 所在平面外一点,且PA BC ⊥,PB AC ⊥,则点P 在ABC V 所在平面内的射影O 是ABC V 的()A.内心B.外心C.重心D.垂心【答案】D 【解析】【分析】根据且PA BC ⊥,PB AC ⊥,利用线面垂直的判定定理得到BC OA ⊥,OB AC ⊥即可.【详解】解:如图所示:因为,⊥⊥PA BC PO BC ,且PA PO P =I ,所以⊥BC 平面PAO ,则BC OA ⊥,同理得OB AC ⊥,所以O 是ABC V 的垂心.故选:D7.四边形ABCD 是矩形,3AB AD =,点E ,F 分别是AB ,CD 的中点,将四边形AEFD 绕EF 旋转至与四边形BEFC 重合,则直线,ED BF 所成角α在旋转过程中()A.逐步变大B.逐步变小C.先变小后变大D.先变大后变小【答案】D 【解析】【分析】根据初始时刻ED 与BF 所成角可判断BC ,由题可知D 在平面BCFE 内的投影P 一直落在直线CF上,进而某一时刻EP BF ⊥,可得DE 与BF 所成角为π2,可判断AD.【详解】由题可知初始时刻ED 与BF 所成角为0,故B C ,错误,在四边形AEFD 绕EF 旋转过程中,,EF DF EF FC ⊥⊥,,,DF FC F DF FC =⊂ 平面DFC ,所以⊥EF 平面DFC ,EF ⊂平面EFCB ,所以平面DFC⊥平面EFCB ,故D 在平面BCFE 内的投影P 一直落在直线CF 上,所以一定存在某一时刻EP BF ⊥,而DP⊥平面EFCB ,DP BF ⊥,又,,DP PE P DP PE =⊂ 平面DPE ,所以BF ⊥平面DPE ,此时DE 与BF 所成角为π2,然后α开始变小,故直线,ED BF 所成角α在旋转过程中先变大后变小,故选项A 错误,选项D 正确.故选:D.8.半径是()A.1+B.+ C.+ D.【答案】D 【解析】【分析】根据条件求出以三个小球的球心1O 、2O 、3O 构成的三角形的外接圆半径,再通过勾股定理求解即可.【详解】三个小球的球心1O 、2O 、3O 构成边长为的正三角形,则其外接圆半径为2.设半球的球心为O ,小球1O 与半球底面切于点A .如图,经过点O 、1O 、A 作半球的截面,半圆O 的半径OC OA ⊥,1O B OC ⊥于点B .则12OA O B ==.在1Rt OAO 中,由(()2222R R =+⇒=.故选:D二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列命题中,正确的有()A.若向量a 、b 与空间任意向量都不能构成一组基,则//a b r rB.若非零向量a ,b ,c满足a b ⊥ ,b c ⊥ ,则有//a cr r C.“倾斜角相等”是“斜率相等”的充要条件D.若{},,a b b c c a +++ 是空间的一组基,则{},,a b c也是空间的一组基【答案】AD 【解析】【分析】根据空间向量共线、垂直、基底、共面、倾斜角和斜率的关系、充要条件等知识对选项进行分析,从而确定正确答案.【详解】A 选项,∵a ,b与任何向量都不构成空间向量的基底,∴a ,b 只能为共线向量,∴//a b r r,A 对;B 选项,取()1,0,1a = ,()1,1,1b =- ,()1,2,1c =-,显然满足a b ⊥ ,a c ⊥ ,但b 与c不平行,B 不对;C 选项,倾斜角相等时,可能倾斜角都是90︒,此时直线没有斜率,所以C 选项错误.D 选项,∵a b + ,b c + ,c a +为一组基底,∴对于空间任意向量d,存在实数m ,n ,t ,使()()()()()()d m a b n b c t c a m t a m n b n t c =+++++=+++++,∴a ,b ,c也是一组基底,D 对;故选:AD10.用一个平面去截正方体,所得截面不.可能是()A.直角三角形 B.直角梯形C.正五边形D.正六边形【答案】ABC 【解析】【分析】根据正方体的几何特征,我们可分别画出用一个平面去截正方体得到的几何体的图形,然后逐一与四个答案中的图形进行比照,即可判断选项.【详解】当截面为三角形时,可能出现正三角形,但不可能出现直角三角形;截面为四边形时,可能出现矩形,平行四边形,等腰梯形,但不可能出现直角梯形;当截面为五边形时,不可能出现正五边形;截面为六边形时,可能出现正六边形,故选:ABC .11.如图,在正方体1111ABCD A B C D -中,点P 在线段1B C 上运动,则下列结论正确的是()A.直线1BD ⊥平面11A C DB.三棱锥11P AC D -的体积为定值C.异面直线AP 与1A D 所成角的取值范围是ππ,42⎡⎤⎢⎥⎣⎦D.直线1C P 与平面11A C D 所成角的正弦值的最大值为3【答案】ABD 【解析】【分析】在选项A 中,利用线面垂直的判定定理,结合正方体的性质进行判断即可;在选项B 中,根据线面平行的判定定理、平行线的性质,结合三棱锥的体积公式进行求解判断即可;在选项C 中,根据异面直线所成角的定义进行求解判断即可;在选项D 中,以D 为原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴,建立空间直角坐标系,利用向量法进行求解即可.【详解】在选项A 中,∵1111AC B D ⊥,111A C BB ⊥,1111B D BB B ⋂=,且111,B D BB ⊂平面11BB D ,∴11A C ⊥平面11BB D ,1BD ⊂平面11BB D ,∴111A C BD ⊥,同理,11DC BD ⊥,∵1111A C DC C ⋂=,且111,AC DC ⊂平面11A C D ,∴直线1BD ⊥平面11A C D ,故A 正确;在选项B 中,∵11//A D B C ,1A D ⊂平面11A C D ,1B C ⊄平面11A C D ,∴1//B C 平面11A C D ,∵点P 在线段1B C 上运动,∴P 到平面11A C D 的距离为定值,又11A C D 的面积是定值,∴三棱锥11P AC D -的体积为定值,故B 正确;在选项C 中,∵11//A D B C ,∴异面直线AP 与1A D 所成角为直线AP 与直线1B C 的夹角.易知1AB C △为等边三角形,当P 为1B C 的中点时,1AP B C ⊥;当P 与点1B 或C 重合时,直线AP 与直线1B C 的夹角为π3.故异面直线AP 与1A D 所成角的取值范围是ππ,32⎡⎤⎢⎥⎣⎦,故C 错误;在选项D 中,以D 为原点,DA 为x 轴,DC 为y 轴,1DD 为z轴,建立空间直角坐标系,如图,设正方体1111ABCD A B C D -的棱长为1,则(),1,P a a ,()10,1,1C ,()1,1,0B ,()10,0,1D ,所以()1,0,1C P a a =- ,()11,1,1D B =-.由A 选项正确:可知()11,1,1D B =-是平面11A C D 的一个法向量,∴直线1C P 与平面11A C D所成角的正弦值为:1111C P D B C P D B⋅==⋅ ∴当12a =时,直线1C P 与平面11A C D所成角的正弦值的最大值为3,故D 正确.故选:ABD第二部分非选择题(共92分)三、填空题:本题共3小题,每小题5分,共15分.12.设直线1l ,2l 的方向向量分别为()2,2,1a =-,()3,2,b m =- ,若12l l ⊥,则m =__________.【答案】10【解析】【分析】根据向量垂直的坐标表示可得方程,解方程即可.【详解】由已知12l l ⊥,即a b ⊥,则()()232210a b m ⋅=-⨯+⨯-+⨯=,解得10m =,故答案为:10.13.有一根高为3π,底面半径为1的圆柱形铁管,用一段铁丝在铁管上缠绕2圈,并使铁丝的两个端点落在圆柱的同一母线的两端,则铁丝的最短长度为________.【答案】5π【解析】【分析】考虑圆柱的侧面展开图,将其延展一倍后矩形的对角线的长度即为铁丝的最短长度.【详解】如图,把圆柱的侧面展开图再延展一倍,所以铁丝的最短长度即为AB 的长,又5AB π==,填5π.【点睛】几何体表面路径最短问题,往往需要考虑几何体的侧面展开图,把空间问题转为平面问题来处理.14.如图,已知正三棱锥P ABC -的侧棱长为l ,过其底面中心O 作动平面α,交线段PC 于点S ,交PA ,PB 的延长线于M ,N 两点.则111PS PM PN++=______.【解析】【分析】利用空间向量的线性运算得到333PA PB PC PO PM PN PS x y z=⋅+⋅+⋅ ,再利用空间四点共面的性质即可得解.【详解】依题意,设,,PM x PN y PS z ===,则PA PA PM x =⋅ ,PB PB PN y =⋅ ,PC PC PS z=⋅,由O 为底面ABC V 中心,连接PO ,OA ,()2132PO PA AO PA AB AC =+=+⨯+ ()()133PA PB PC PA PB PA PC PA ++⎡⎤=+-+-=⎣⎦ 111333zPA PB PC PM PN PS x y =⨯⋅+⨯⋅+⨯⋅ 333PA PB PC PM PN PS x y z =⋅+⋅+⋅ ,又因为,,,S M N O 四点共面,所以+1333PA PB PCx y z += 且PA PB PC l === ,所以+1333l l l x y z +=,即1113+x y z l+=,即1113PS PM PN l++=.【点睛】关键点睛:空间向量的有效运用:空间向量是解决空间几何问题的有力工具.通过设定向量的关系,可以有效地将几何问题转化为代数问题,简化求解过程.共面条件的判断:四点共面的条件在空间几何中非常重要.利用这一条件,可以将空间中的复杂关系转化为简单的线性关系,方便求解.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知直线():20R l x ky k k -++=∈.(1)若直线l 不经过...第一象限,求k 的取值范围;(2)若直线l 交x 轴负半轴于A ,交y 轴正半轴于B ,AOB V 的面积为S (O 为坐标原点),求S 的最小值和此时直线l 的方程.【答案】(1)[]2,0-(2)S 的最小值为4,此时直线l 的方程为240x y -+=【解析】【分析】(1)验证0k =时,直线l 是否符合要求,当0k ≠时,将直线方程化为斜截式,结合条件列不等式求k 的取值范围;(2)先求直线在x 轴和y 轴上的截距,表示AOB V 的面积,利用基本不等式求其最小值.【小问1详解】当0k =时,方程20x ky k -++=可化为2x =-,不经过第一象限;当0k ≠时,方程20x ky k -++=可化为121y x k k=++,要使直线不经过第一象限,则10210k k⎧≤⎪⎪⎨⎪+≤⎪⎩解得20k -≤<.综上,k 的取值范围为[]2,0-.【小问2详解】由题意可得0k >,由20x ky k -++=取0y =得2x k =--,取0x =得2k y k+=,所以()11214124442222k S OA OB k k k k ⎛⎫+⎛⎫==⋅⋅+=++≥+= ⎪ ⎪ ⎪⎝⎭⎝⎭,当且仅当4k k =时,即2k =时取等号,综上,此时min 4S =,直线l 的方程为240x y -+=.16.如图,AE ⊥平面ABCD ,//CF AE ,//AD BC ,AD AB ⊥,1AB AD ==,22AE BC CF ===.(1)求证://BF 平面ADE ;(2)求直线CE 与平面BDE 所成角的正弦值;【答案】(1)证明见解析(2)49【解析】【分析】(1)根据题意可利用面面平行的判定定理证明平面//BCF 平面ADE ,再由面面平行的性质可得结论;(2)由几何体特征建立以A 为原点的空间直角坐标系A xyz -,利用空间向量求出直线CE 的方向向量与平面BDE 的法向量,即可求出直线CE 与平面BDE 所成角的正弦值.【小问1详解】由//CF AE ,CF ⊂/平面ADE ,AE ⊂平面ADE ,则//CF 平面ADE ,由//AD BC ,BC ⊂/平面ADE ,AD ⊂平面ADE ,则//BC 平面ADE ,而CF BC C = ,,CF BC ⊂平面BCF ,故平面//BCF 平面ADE ,又BF ⊂平面BCF ,则//BF 平面ADE ;【小问2详解】AE ⊥平面ABCD ,,AB AD ⊂平面ABCD ,则AE AB ⊥,AE AD ⊥,又AD AB ⊥,以A 为原点,分别以,,AB AC AE 为,,x y z 轴构建空间直角坐标系A xyz -,如下图所示:又1AB AD ==,22AE BC CF ===,所以()1,0,0B ,()1,2,0C ,()0,1,0D ,()0,0,2E ,则(1,2,2)CE =-- ,(1,0,2)BE =- ,(0,1,2)DE =- ,令平面BDE 的一个法向量(),,m x y z = ,则2020m BE x z m DE y z ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩ ,令1z =,则2,2x y ==,即(2,2,1)m = ,所以44cos ,339m CE m CE m CE⋅〈〉===⨯ ,即直线CE 与平面BDE 所成角的正弦值为49.17.如图,PDCE 为矩形,ABCD 为梯形,平面PDCE ⊥平面ABCD ,90BAD ADC ∠=∠=︒,112AB AD CD ===,2PD =(1)若M 为PA 中点,求证://AC 平面MDE ;(2)求直线PB 与直线CD 所成角的大小;(3)设平面PAD ⋂平面EBC l =,试判断l 与平面ABCD 能否垂直?并证明你的结论.【答案】(1)证明见解析(2)π3(3)能垂直,证明见解析【解析】【分析】(1)先证明MN AC ∥,再利用线面垂直的判定定理即可证明;(2)利用线线平行可得PBA ∠是直线PB 与直线CD 所成角,利用面面垂直可得PD AB ⊥,结合已知条件可得PA =,利用线面垂直可得AB PA ⊥,可得出tan PBA ∠的值,即可求解.(3)根据题意可得EC l ∥,利用平行的传递性,可证明l ⊥平面ABCD .【小问1详解】连结PC ,交DE 于N ,连接MN ,∵PDCE 为矩形,∴N 为PC 的中点,在PAC 中,M ,N 分别为PA ,PC 的中点,∴MN AC ∥,因为MN ⊂面MDE ,AC ⊄面MDE ,所以AC ∥平面MDE .【小问2详解】∵90BAD ADC ∠=∠=︒,∴AB CD ∥,∴PBA ∠是直线PB 与直线CD 所成角.∵PDCE 为矩形,∴PD CD ⊥,∵平面PDCE ⊥平面ABCD ,又PD ⊂平面PDCE ,平面PDCE ⋂平面ABCD CD =,∴PD ⊥平面ABC ,∵,AD AB ⊂平面ABCD ,∴PD AD ⊥,PD AB ⊥,在Rt PDA 中,∵1AD =,PD =PA =,∵90BAD ∠=︒,∴AB AD ⊥,又∵PD AB ⊥,=PD AD D ⋂,PD ⊂平面PAD ,AD ⊂平面PAD ,∴AB ⊥平面PAD ,∵PA ⊂平面PAD ,∴AB PA ⊥,在Rt PAB △中,∵1AB =,∴tan PA PBA AB ∠==∴π3PBA ∠=,从而直线PB 与直线CD 所成的角为π3;【小问3详解】l 与平面ABCD 垂直.证明如下:∵PDCE 为矩形,∴EC PD ∥,∵PD ⊂平面PAD ,EC ⊄平面PAD ,∴EC ∥平面PAD ,EC ⊂平面EBC ,∵平面PAD ⋂平面EBC l =,∴EC l ∥,则∥l PD ,由(2)可知PD ⊥平面ABCD ,∴l ⊥平面ABCD .18.如图,平行六面体1111ABCD A B C D -的所有棱长均为,底面ABCD 为正方形,11π3A AB A AD ∠=∠=,点E 为1BB 的中点,点F 为1CC 的中点,动点P 在平面ABCD 内.(1)若O 为AC 中点,求证:1A O AO ⊥;(2)若//FP 平面1D AE ,求线段CP 长度的最小值.【答案】(1)证明见解析(2)5【解析】【分析】(1)由条件先求1AD AA ⋅ ,1AB AA ⋅ ,AD AB ⋅ ,再证明10AO AO ⋅= ,由此完成证明;(2)建立空间直角坐标系,设(),,0P m n ,求平面1D AE 的法向量和直线FP 的方向向量,由条件列方程确定,m n 的关系,再求CP 的最小值即可.【小问1详解】由已知1AB A A AD ===1π3A AD ∠=,1π3A AB ∠=,π2BAD ∠=,所以11π122cos 232AD AA ⋅=⨯⨯⨯= ,11π122cos 232AB AA ⋅=⨯⨯⨯= ,0AD AB ⋅= ,因为O 为AC 中点,所以111222AO AC AB AD ==+ ,又()11111112222A O AO AO AA AO AB AD AA AB AD ⎛⎫⎛⎫⋅=-⋅=+-⋅+ ⎪ ⎪⎝⎭⎝⎭ ,所以111110002244A O AO ⋅=+++--= ,所以1AO AO ⊥ 所以1A O AO⊥【小问2详解】连接1A D ,1A B ,∵12A A AD ==1π3A AD ∠=∴12A D =,∵12A A AB ==,1π3A AB ∠=∴12A B =连接BD ,由正方形的性质可得,,B O D 三点共线,O 为BD 的中点,所以1AO BD ⊥,由第一问1A O AO ⊥,,AO BD ⊂平面ABCD ,AO BD O = ,所以1A O ⊥平面ABCD ,以O 为坐标原点,1,,OA OB OA 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系()1,0,0A 、()0,1,0D -、()10,0,1A 、()0,1,0B 、()1,0,0C -()112,1,1AD AD AA =+=-- 1131,1,222AE AB BE AB AA ⎛⎫=+=+=- ⎪⎝⎭,设平面1D AE 法向量为n ,(),,n x y z =r,则100n AD n AE ⎧⋅=⎪⎨⋅=⎪⎩ ,所以203022x y z z x y --+=⎧⎪⎨-++=⎪⎩,∴73022x z -+=,令3x =,则7z =,1y =.∴()3,1,7n =为平面1D AE 的一个法向量,因为点P 在平面ABCD 内,故设点P 的坐标为(),,0m n ,因为()112FP OP OF OP OC CF OP OC AA =-=-+=-- ,所以31,,22FP m n ⎛⎫=+- ⎪⎝⎭ ,0FP n ⋅= ,则310m n ++=,所以CP ==== ,所以当25m =-时,CP有最小值,最小值为5.19.在空间直角坐标系中,若平面α过点()000,,P x y z ,且平面α的一个法向量为 =s s ,则平面α的方程为()()()0000a x x b y y z z z -+-+-=,该方程称为平面α的点法式方程,整理后为0ax by cz t +++=(其中000t ax by cz =---),该方程称为平面α的一般式方程.如图,在四棱柱1111ABCD A B C D -中,底面ABCD 是平行四边形,BC ,BD ,1BC 两两垂直,1AD =,BD =,直线1CC 与平面ABCD 所成的角为π4,以B 为坐标原点,BC ,BD ,1BC 的方向分别是x ,y ,z 轴的正方向,建立如图所示的空间直角坐标系.(1)求平面11DC D 的一般式方程.(2)求1A 到直线11C D 的距离.(3)在棱1BB 是否存在点M ,使得平面1A DM ⊥平面11C D M ?若存在,求出1MB BB 的值;若不存在,请说明理由.【答案】(10y ++-=(2)2(3)存在,且14MB BB =-【解析】【分析】(1)根据直线1CC 与平面ABCD 所成的角求得1BC ,根据平面的点法式方程求得正确答案.(2)利用等面积法来求得1A 到直线11C D 的距离.(3)设出M 点的坐标,利用面面垂直列方程,化简求得正确答案.【小问1详解】由于11,,,,BC BC BC BD BC BD B BC BD ⊥⊥⋂=⊂平面ABCD ,所以1⊥BC 平面ABCD ,所以1C BC ∠是直线1CC 与平面ABCD 所成的角,所以14πC BC ∠=,所以11BC BC ==.所以()()()()111,0,0,1,1,0,0,1,D C C CD C D =-= ,所以()()()111110,0,11,BD BC C D BC CD =+=+=+-=- ,()11,0,1DD =- ,设平面11DC D 的法向量为(),,n x y z = ,则11100n C D x n DD x z ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩,故可设n = ,D ∈平面11DC D ,则平面11DC D的方程为()(()0100x y z -+⋅-+-=,0y +=.【小问2详解】在Rt BCD △中,π2CBD ∠=,1,2BC BD CD ===,设B 到CD 的距离为h,则1121,222h h ⨯==,由于平行四边形ABCD 和平行四边形1111D C B A 全等,所以1A 到直线11C D 的距离等于设B 到CD 的距离,即1A 到直线11C D 的距离为32.【小问3详解】()11,0,1B -,()11,0,1BB =-,()A -,()()()1111,0,1BA BA AA BA BB =+=+=-+-=- ,即()1A -,而()()1,1,D D -,所以()12,0,1DA =- ,设1,01MB BB λλ=≤≤,则()1,0,BM BB λλλ==- ,即(),0,M λλ-,所以()12,1A M λλ=--,(),DM λλ=-,()11,1D M λλ=--,()11C D =- ,设平面1A DM 的法向量为()111,,u x y z =,则111111200u DA x z u DM x z λλ⎧⋅=-+=⎪⎨⋅=--+=⎪⎩,故可设,u λ= .设平面11C D M 的法向量为()222,,v x y z = ,则()()112212220110v C D x v D M x z λλ⎧⋅=-=⎪⎨⋅=-+-=⎪⎩,故可设)v λ=-- ,若平面1A DM ⊥平面11C D M ,则0u v ⋅= ,即()()23116830λλλλλλ-+-+=+-=,解得4λ=-,负根舍去,所以存在符合题意的点M,且14MB BB =-.。

2024-2025学年湖南省长沙市长郡中学高二上学期期中考试数学试卷(含答案)

2024-2025学年湖南省长沙市长郡中学高二上学期期中考试数学试卷(含答案)

2024-2025学年湖南省长沙市长郡中学高二上学期期中考试数学试卷一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.直线x+y−12=0的倾斜角是( )A. π4B. π2C. 3π4D. π32.已知点B是点A(3,4,5)在坐标平面Oxy内的射影,则|OB|等于A. 5B. 34C. 41D. 523.长轴长是短轴长的3倍,且经过点P(3,0)的椭圆的标准方程为A. x29+y2=1 B. x281+y29=1C. x29+y2=1或y281+x29=1 D. y29+x2=1或x281+y29=14.已知方程x22+m −y2m+1=1表示双曲线,则m的取值范围为A. (−2,−1)B. (−∞,−2)∪(−1,+∞)C. (1,2)D. (−∞,1)∪(2,+∞)5.在正四棱锥P−ABCD中,PA=4,AB=2,E是棱PD的中点,则异面直线AE与PC所成角的余弦值是( )A. 612B. 68C. 38D. 56246.已知椭圆C:x29+y25=1的右焦点为F,P是椭圆上任意一点,点A(0,23),则▵APF的周长的最大值为A. 9+21B. 14C. 7+23+5D. 15+37.已知A(−3,0),B(0,3),从点P(0,2)射出的光线经x轴反射到直线AB上,又经过直线AB反射到P点,则光线所经过的路程为A. 210B. 6C. 26D. 268.已知A,B两点的坐标分别是(−1,0),(1,0),直线AM,BM相交于点M,且直线AM的斜率与直线BM的斜率的差是2,则点M的轨迹方程为A. y=−x2+1(x≠±1)B. y=x2+1(x≠±1)C. x=−y2+1(y≠±1)D. x=y2+1(y≠±1)二、多选题:本题共3小题,共18分。

在每小题给出的选项中,有多项符合题目要求。

9.已知A(−3,−4),B(6,3)两点到直线l:ax+y+1=0的距离相等,则a的值可取A. −13B. 13C. −79D. 7910.已知双曲线C:x2a2−y2b2=1(a>0,b>0)的左、右焦点分别为F1、F2,过点F1的直线与C的左支相交于P,Q两点,若PQ⊥PF2,且4|PQ|=3|PF2|,则( )A. |PQ|=4aB. 3PF1=PQC. 双曲线C的渐近线方程为y=±223x D. 直线PQ的斜率为411.已知椭圆C1:x29+y25=1,将C1绕原点O沿逆时针方向旋转π2得到椭圆C2,将C1上所有点的横坐标、纵坐标分别伸长到原来的2倍得到椭圆C3,动点P,Q在C1上,且直线PQ的斜率为−12,则A. 顺次连接C1,C2的四个焦点构成一个正方形B. C3的面积为C1的4倍C. C3的方程为4x29+4y25=1D. 线段PQ的中点R始终在直线y=109x上三、填空题:本题共3小题,每小题5分,共15分。

山东省济南市山东省实验中学2024-2025学年高二上学期11月期中考试数学试题(含答案)

山东省济南市山东省实验中学2024-2025学年高二上学期11月期中考试数学试题(含答案)

山东省实验中学2024~2025学年第一学期期中高二数学试题 2024.11(选择性必修—检测)说明:本试卷满分150分,分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷为第1页至第2页,第Ⅱ卷为第3页至第4页.试题答案请用2B 铅笔或0.5mm 签字笔填涂到答题卡规定位置上,书写在试题上的答案无效。

考试时间120分钟。

第Ⅰ卷(共58分)一、单选题(本题包括8小题,每小题5分,共40分。

每小题只有一个选项符合题意)1.已知空间向量,,,若,,共面,则实数( )A.1B.2C.3D.42.“”是“直线与直线平行”的( )A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件3.给出下列说法,其中不正确的是()A.若,则,与空间中其它任何向量都不能构成空间的一个基底向量B.若,则点是线段的中点C.若,则,,,四点共面D.若平面,的法向量分别为,,且,则3.若三条直线,,不能围成三角形,则实数的取值最多有( )A.2个B.3个C.4个D.5个4.实数,满足,则的最小值为( )A. B.7C. D.36.若直线与曲线有两个不同的交点,则实数的取值范围是( )A.()1,2,0a = ()0,1,1b =- ()2,3,c m = a b cm =1m =-()1:2310l mx m y +++=2:30l x my ++=a b ∥a b c2PM PA PB =+M AB 2OA OB OC OD =+-A B C D αβ()12,1,1n =- ()21,,1n t =-αβ⊥3t =1:43l x y +=2:0l x y +=3:2l x my -=m x y 2222x y x y +=-3x y -+3+:20l kx y --=:1C x =-k k >5k <≤k <<1k <≤7.在三棱锥中,为的重心,,,,,,若交平面于点,且,则的最小值为( )A.B.C.1D.8.已知椭圆的左、右焦点分别为,,点在上且位于第一象限,圆与线段的延长线,线段以及轴均相切,的内切圆为圆.若圆与圆外切,且圆与圆的面积之比为4,则的离心率为( )A.C.二.多选题(本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,有选错的得0分,部分选对的得部分分.)9.下列说法正确的是()A.若直线的倾斜角越大,则直线的斜率就越大B.圆与直线必有两个交点C.在轴、轴上的截距分别为,的直线方程为D.设,,若直线与线段有交点,则实数的取值范围是10.已知椭圆的离心率为,长轴长为6,,分别是椭圆的左、右焦点,是一个定点,是椭圆上的动点,则下列说法正确的是( )A.焦距为2B.椭圆的标准方程为P ABC -G ABC △PD PA λ= PE PB μ= 12PF PC =λ()0,1μ∈PG DEF M 12PM PG =λμ+122343()2222:10x y C a b a b+=>>1F 2F P C 1O 1F P 2PF x 12PF F △2O 1O 2O 1O 2O C 123522:4O x y +=10mx y m +--=x y a b 1x y a b+=()2,2A -()1,1B :10l ax y ++=AB a (]322⎡⎫-∞-+∞⎪⎢⎣⎭,,()2222:10x y E a b a b +=>>23F F '()1,1A P E E 22195x y +=C.D.的最大值为11.立体几何中有很多立体图形都体现了数学的对称美,其中半正多面体是由两种或两种以上的正多边形围成的多面体,半正多面体因其最早由阿基米德研究发现,故也被称作阿基米德体.如图,这是一个棱数24,棱长为的半正多面体,它所有顶点都在同一个正方体的表面上,可以看成是由一个正方体截去八个一样的四面体所得的,下列结论正确的有()A.平面B.,,,四点共面C.点到平面的距离为D.若为线段上的动点,则直线与直线所成角的余弦值范围为第Ⅱ卷(非选择题,共92分)三、填空题(本题共3小题,每小题5分,共15分,其中14题第一空2分,第二空3分.)12.已知直线的倾斜角,则直线的斜率的取值范围为______.13.如图,已知点,,从点射出的光线经直线反射后再射到直线上,最后经直线反射后又回到点,则光线所经过的路程是______.14.杭州第19届亚运会的主会场——杭州奥体中心体育场,又称“大莲花”(如图1所示).会场造型取意于杭州丝绸纹理与纺织体系,建筑体态源于钱塘江水的动态,其简笔画如图2所示.一同学初学简笔画,先AF '=PA PF +6AG ⊥BCDG A F C D B ACD E BC DE AF 12⎡⎢⎣l 2,43ππθ⎛⎫∈⎪⎝⎭l ()8,0A ()0,4B -()3,0P AB OB OB P画了一个椭圆与圆弧的线稿,如图3所示.若椭圆的方程为,下顶点为,为坐标原点,为圆上任意一点,满足,则点的坐标为______;若为椭圆上一动点,当取最大值时,点恰好有两个,则的取值范围为______.图1 图2 图3四、解答题(本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.)15.(13分)已知两直线和的交点为.(1)直线过点且与直线平行,求直线的一般式方程;(2)圆过点且与相切于点,求圆的一般方程.16.(15分)已知椭圆,且过点.(1)求椭圆的方程;(2)若斜率为的直线与椭圆交于,两点,且点在第一象限,点,分别为椭圆的右顶点和上顶点,求四边形面积的最大值.17.(15分)在梯形中,,,,为的中点,线段与交于点(如图1).将沿折起到位置,使得(如图2).图1 图2(1)求证:平面平面;(2)线段上是否存在点,使得与平面的值;若不存在,请说明理由.E()222210x ya ba b+=>>10,2A⎛⎫-⎪⎝⎭O P C2PO PA=C Q QC Q a1:20l x y++=2:3210l x y-+=Pl P310x y++=lC()1,01l P C()2222:10x yC a ba b+=>>⎛⎝C12l C M N M A B CAMBN SABCD AB CD∥3BADπ∠=224AB AD CD===P AB AC DP O ACD△AC ACD'△D O OP'⊥D AC'⊥ABCPD'Q CQ BCD'PQPD'18.(17分)已知直线,半径为2的圆与相切,圆心在轴上且在直线的右上方.(1)求圆的方程;(2)直线与圆交于不同的,两点,且,求直线的斜率;(3)过点的直线与圆交于,两点(在轴上方),问在轴正半轴上是否存在定点,使得轴平分?若存在,请求出点的坐标:若不存在,请说明理由.19.(17分)已知点,是平面内不同的两点,若点满足(,且),则点的轨迹是以有序点对为“稳点”的-阿波罗尼斯圆.若点满足,则点的轨迹是以为“稳点”的-卡西尼卵形线.已知在平面直角坐标系中,,.(1)若以为“稳点”的-阿波罗尼斯圆的方程为,求,,的值;(2)在(1)的条件下,若点在以为“稳点”的5-卡西尼卵形线上,求(为原点)的取值范围;(3)卡西尼卵形线是中心对称图形,且只有1个对称中心,若,,求证:不存在实数,,使得以—阿波罗尼斯圆与—卡西尼卵形线都关于同一个点对称.:40l x ++=C l C x l C 2y kx =-C M N 120MCN ︒∠=2y kx =-()0,1M C A B A x y N y ANB ∠N A B P PAPBλ=0λ>1λ≠P (),A B λQ ()0QA QB μμ⋅=>Q (),A B μ()2,0A -()(),2B a b a ≠-(),A B λ221240x y x +-+=a b λQ (),A B OQ O 0b =λ=a μ(),A B μ山东省实验中学2024~2025学年第一学期期中高二数学试题参考答案 2024.11选择题1234567891011ABCBDDCCBDBCDABD填空题12..13.,.解答题15.【答案】(1)(2).【详解】(1)直线与直线平行,故设直线为,……1分联立方程组,解得.直线和的交点.……3分又直线过点,则,解得,即直线的方程为.……5分(2)设所求圆的标准方程为,的斜率为,故直线的斜率为1,由题意可得,……8分解得,……11分故所求圆的方程为.(()1,-∞-+∞ ,20,3⎛⎫-⎪⎝⎭a >340x y ++=221140333x y x y +++-=l 310x y ++=l 130x y C ++=203210x y x y ++=⎧⎨-+=⎩11x y =-⎧⎨=-⎩∴1:20l x y ++=2:3210l x y -+=()1,1P --l P 1130C --+=14C =l 340x y ++=()()222x a y b r -+-=1:20l x y ++=1-CP ()()()()2222221110111a b r a b r b a ⎧--+--=⎪⎪-+-=⎨⎪+⎪=+⎩216162518a b r ⎧=-⎪⎪⎪=-⎨⎪⎪=⎪⎩2211256618x y ⎛⎫⎛⎫+++= ⎪ ⎪⎝⎭⎝⎭化为一般式:.……13分16.【答案】(1)(2)【详解】(1)由椭圆,解得,……2分由椭圆过点,得,联立解得,,……4分所以椭圆的方程为.……5分(2)由题意可设,点在第一象限,,……6分设,,点,到直线的距离分别为,,由,消可得,,,……8分10分,,直线的一般式方程:,,,,……12分14分当时,有最大值为……15分17.【答案】(1)证明见解析(2)存在,【详解】(1)证明:在梯形中,,22114333x y x y+++-=2214xy+=2222:1x yCa b+==2a b= C⎛⎝221314a b+=2a=1b=C2214xy+=1:2l y x m=+M11m∴-<<()11,M x y()22,N x y A B l1d2d221412xyy x m⎧+=⎪⎪⎨⎪=+⎪⎩y222220x mx m++-=122x x m∴+=-21222x x m=-MN∴===()2,0A()0,1B l220x y m-+=1d∴=2d=12d d∴+=()121122AMN BMNS S S MN d d∴=+=⋅+==△△m=S13ABCD AB CD∥,,为的中点,,,,……1分是正三角形,四边形为菱形,,,……3分,,又,,平面,平面,……5分平面,平面平面.……6分(2)存在,,理由如下:……8分平面,,,,两两互相垂直,如图,以点为坐标原点,,,所在直线为,,轴建立空间直角坐标系.则,,,,,,设平面的一个法向量为,则,即,令,则,,,……11分设,,,, (12)分设与平面所成角为,则,即,,解得,224AB AD CD ===3BAD π∠=P AB CD PB ∴∥CD PB =BC DP =ADP ∴△DPBC AC BC ∴⊥AC DP ⊥AC D O ⊥' D O OP '⊥AC OP O = AC OP ⊂ABC D O ∴'⊥ABC D O ⊂' D AC '∴D AC '⊥ABC 13PQ PD '=D O ⊥' BAC OP AC ⊥OA ∴OP OD 'O OA OP OD 'x y z ()C ()2,0B ()0,0,1D '()0,1,0P )2,1BD ∴'=- )CD '=CBD '(),,n x y z =00n BD n CD ⎧⋅=⎪⎨⋅=⎪⎩'' 200y z z -+=+=⎪⎩1x =0y =z =(1,0,n ∴=()01PQ PD λλ'=≤≤)CP =()0,1,1PD =-'),CQ CP PQ CP PD λλλ∴=+=+=- CQ BCD 'θsin cos ,CQ n CQ n CQ n θ⋅====23720λλ-+=01λ≤≤ 13λ=线段上存在点,且,使得与平面……15分18.【答案】(1)(2)(3)【详解】(1)设圆心,则,……2分解得或(舍),故圆的方程为.……4分(2)由题意可知圆心到直线的距离为,……6分,解得.……8分(3)当直线的斜率存在时,设直线的方程为,,,,由得,……10分,……12分若轴平分,则,即,即,即,即,即,……14分当时,上式恒成立,即;……15分当直线的斜率不存在或斜率为0时,易知满足题意;综上,当点的坐标为时,轴平分.……17分19.【答案】(1),,(2)(3)证明见解析【详解】(1)因为以为“稳点”的—阿波罗尼斯圆的方程为,设是该圆上任意一点,则,……1分所以,……3分∴PD 'Q 13PQ PD '=CQ BCD '224x y +=k =()0,4N ()(),04C a a >-422a +=0a =8a =-C 224x y +=C 2y kx =-2sin 301︒=1=k =AB AB ()10y kx k =+≠()()0,0N t t >()11,A x y ()22,B x y 224,1x y y kx ⎧+=⎨=+⎩()221230k x kx ++-=12221k x x k -∴+=+12231x x k -=+y ANB ∠AN BN k k =-12120y t y t x x --+=1212110kx t kx tx x +-+-+=()()1212210kx x t x x +-+=()()22126011t k k k k -⨯--+=++40k kt -+=4t =()0,4N AB ()0,4N N ()0,4y ANB ∠2a =0b =λ=[]1,3(),A B λ221240x y x +-+=(),P x y 22124x y x +=-()()()()22222222222222244162212224PA x y x y x x x y ax by a b a x by a bx a y b PB+++++===+--++--+-+-+-因为为常数,所以,,且,……5分所以,,.……6分(2)解:由(1)知,,设,由,所以,……7分,整理得,即,所以,……9分,……10分由,得,即的取值范围是.……12分(3)证明:若,则以—阿波罗尼斯圆的方程为,整理得,该圆关于点对称.……15分由点,关于点对称及,可得—卡西尼卵形线关于点对称,令,解得,与矛盾,所以不存在实数,,使得以—阿波罗尼斯圆与—卡西尼卵形线都关于同一个点对称……17分22PA PB2λ2240a b -+=0b =2a ≠-2a =0b =λ==()2,0A -()2,0B (),Q x y 5QA QB ⋅=5=()222242516x y x ++=+2240y x =--≥42890x x --≤()()22190x x +-≤209x ≤≤OQ ==209x ≤≤13OQ ≤≤OQ []1,30b =(),A B ()()222222x y x a y ⎡⎤++=-+⎣⎦()22244240x y a x a +-++-=()22,0a +()2,0A -(),0B a 2,02a -⎛⎫⎪⎝⎭QA QB μ⋅=μ2,02a -⎛⎫⎪⎝⎭2222a a -+=2a =-2a ≠=-a μ(),A B μ。

2024-2025学年黑龙江省哈尔滨市高二上学期11月期中考试数学检测试题(含解析)

2024-2025学年黑龙江省哈尔滨市高二上学期11月期中考试数学检测试题(含解析)

2024-2025学年黑龙江省哈尔滨市高二上学期11月期中考试数学检测试题一、单选题(本大题共10小题)1.直三棱柱中,若,则( )111ABC A B C -1,,CA a CB b CC c === 1A B =A .B .a b c+-r r ra b c-+r r r C .D .a b c -++ a b c-+- 2.已知点,,若直线的斜率为,则( )()1,0A (),B n m AB 21n m -=A .B .C .D .22-1212-3.已知,则( )()()1,5,1,3,2,5a b =-=-a b -= A .B .C .D .()4,3,6--()4,3,6--()4,3,6-()4,3,64.已知焦点在轴上的椭圆的焦距为6,则实数等于( )x 2213x y m +=mA .B .C .12D .3421412-5.已知正方体的棱长为1,则( )1111ABCD A B C D -A .B .C .D .11ACB D ⊥1AC BC⊥1B D BC⊥1B D AC^6.已知圆,圆,则这两圆的位置关系为( 22:(2)(4)25E x y -+-=22:(2)(2)1F x y -+-=)A .内含B .相切C .相交D .外离7.设直线的方向向量为,平面的法向量为,若,则( )l a αb0a b ⋅= A .B .C .D .或//l αl α⊂l α⊥l α⊂//l α8.与平行,则( )1:10l ax y -+=2:2410l x y +-==aA .B .C .D .21212-2-9.经过点,斜率为的直线方程为( )(3,1)12A .B .210x y --=250x y +-=C .D .250x y --=270x y +-=10.已知,则该圆的圆心坐标和半径分别为( )221:202C x y x y ++-+=A .,B .,1,12⎛⎫- ⎪⎝⎭()1,2-C .,D .,1,12⎛⎫ ⎪⎝⎭()1,2-二、多选题(本大题共2小题)11.下列结论错误的是( )A .过点,的直线的倾斜角为()1,3A ()3,1B -30︒B .若直线与直线平行,则2360x y -+=20ax y ++=23a =-C .直线与直线之间的距离是240x y +-=2410x y ++=D .已知,,点在轴上,则的最小值是5()2,3A ()1,1B -P x PA PB+12.以A (1,1),B (3,-5)两点的线段为直径的圆,则下列结论正确的是()A .圆心的坐标为(2,2)B .圆心的坐标为(2,-2)C .圆心的坐标为(-2,2)D .圆的方程是()222)210x y ++-=(E .圆的方程是22(2)(2)10x y -++=三、填空题(本大题共4小题)13.已知平面的法向量是,平面的法向量是,若,则的α()2,3,1-β()4,,2λ-//αβλ值是.14.直线与圆的位置关系是.34120x y ++=()()22119-++=x y 15.三条直线与相交于一点,则的值为.280,4310ax y x y +-=+=210x y -=a16.在空间直角坐标系中,直线的一个方向向量为,平面的一个法向l ()1,0,3m =-α量为,则直线与平面所成的角为.()2n =l α四、解答题(本大题共3小题)17.求满足下列条件的直线方程(要求把直线的方程化为一般式):(1)已知,,,求的边上的中线所在的直线方程.(1,2)A (1,4)B -(5,2)C ABC V AB (2)直线经过点,倾斜角为直线的倾斜角的2倍,求的方程.l (2,1)B --12y x=l 18.如图,在棱长为2的正方体中,分别是的中点,G 在棱CD 上,且,E F 1,DD DB ,H 是的中点.建立适当的空间直角坐标系,解决下列问题:13CG CD=1C G(1)求证:;1EF B C ⊥(2)求异面直线EF 与所成角的余弦值.1C G 19.已知圆C 经过坐标原点O 和点(4,0),且圆心在x 轴上(1)求圆C 的方程;(2)已知直线l :34110x y +-=与圆C 相交于A 、B 两点,求所得弦长的值.AB答案1.【正确答案】D【详解】.()11111A A B B a b B A B cCC C CB =+=-+=-+--+ 故选:D .2.【正确答案】C【详解】若直线的斜率为,则,AB 221mn =-所以,211n m -=故选:C.3.【正确答案】C【详解】向量,则.()()1,5,1,3,2,5a b =-=- (4,3,6)a b -=- 故选:C4.【正确答案】C【详解】由题意知,,3,3m a b c >==又,所以,222a b c =+3912m =+=即实数的值为12.m 故选:C5.【正确答案】D 【详解】以为原点,为单位正交基底建立空间直角坐标系,D {}1,,DA DC DD 则,,,,,,()0,0,0D A (1,0,0)1(1,0,1)A ()1,1,0B ()11,1,1B ()0,1,0C 所以,,,.()11,1,1A C =-- ()11,1,1B D =--- ()1,0,0BC =- ()1,1,0AC =-因为,所以.111111,1,1,0AC B D AC BC BC B D AC B D ⋅=⋅==⋅=⋅ 1B D AC ^故选:D.6.【正确答案】A【详解】圆的圆心为,半径;22:(2)(4)25E x y -+-=E (2,4)15r =圆的圆心为,半径,22:(2)(2)1F x y -+-=F (2,2)11r =,故,所以两圆内含;2=12EF r r <-故选:A7.【正确答案】D【详解】∵直线的方向向量为,平面的法向量为且,即,l a αb0a b ⋅= a b ⊥ ∴或.l α⊂//l α故选:D8.【正确答案】B【详解】由与平行,得,所以.1:10l ax y -+=2:2410l x y +-=11241a -=≠-12a =-故选:B9.【正确答案】A【详解】经过点,斜率为的直线方程为,即.(3,1)1211(3)2y x -=-210x y --=故选:A.10.【正确答案】A【详解】的标准方程为,故所求分别为221:202C x y x y ++-+= ()2213124x y ⎛⎫++-= ⎪⎝⎭,1,12⎛⎫- ⎪⎝⎭故选:A.11.【正确答案】AC 【详解】对于A ,,即,故A 错误;131tan 312AB k α-===--30α≠︒对于B ,直线与直线平行,所以,解得,故B 2360x y -+=20ax y ++=123a =-23a =-正确;对于C ,直线与直线(即)之间的距离为240x y +-=2410x y ++=1202x y ++=C 错误;d 对于D ,已知,,点在轴上,如图()2,3A ()1,1B -P x取关于轴的对称点,连接交轴于点,此时()1,1B -x ()1,1B '--AB 'x P,5=所以的最小值是5,故D 正确;PA PB+故选:AC.12.【正确答案】BE 【详解】AB 的中点坐标为,则圆心的坐标为()2,2-()2,2-=r =所以圆的方程是22(2)(2)10x y -++=故选:BE13.【正确答案】6【详解】∵,∴的法向量与的法向量也互相平行.//αβαβ∴,∴.23142λ-==-6λ=故6.14.【正确答案】相交【详解】圆的圆心为,半径为,()()22119x y -++=()1,1-3因为圆心到直线,()1,1-34120x y ++=1135<所以直线与圆相交.34120x y ++=()()22119x y -++=故相交15.【正确答案】3【详解】由,即三条直线交于,431042102x y x x y y +==⎧⎧⇒⎨⎨-==-⎩⎩(4,2)-代入,有.280ax y +-=44803a a --=⇒=故316.【正确答案】π6【分析】应用向量夹角的坐标表示求线面角的正弦值,即可得其大小.【详解】设直线与平面所成的角为,l απ20θθ⎛⎫≤≤ ⎪⎝⎭则,所以.1sin cos ,2m n m n m n θ⋅====π6θ=故π617.【正确答案】(1)x +5y ﹣15=0(2)4x ﹣3y +5=0【详解】(1)因为,则的中点,(1,2),(1,4)A B -AB (0,3)D 因为的边上的中线过点,ABC V AB (5,2),(0,3)C D 所以的方程为,即,CD 233050y x --=--()5150x y +-=故的边上的中线所在的直线方程为;ABC V AB 5150x y +-=(2)设直线的倾斜角为, 则,则所求直线的倾斜角为,12y x=απ0,4α⎛⎫∈ ⎪⎝⎭2α因为,所以,1tan 2α=22tan 4tan 21tan 3ααα==-又直线经过点,故所求直线方程为,即4x ﹣3y+5=0;(2,1)B --4123y x +=+()18.【正确答案】(1)证明见解析【详解】(1)证明:如图,以D 为原点,以射线DA 、DC 、分别为x 轴、y 轴、1DD z 轴的正半轴,建立空间直角坐标系,D xyz -则,,,,,()0,0,0D E (0,0,1)()1,1,0F ()0,2,0C ()10,2,2C ,,()12,2,2B 40,,03G ⎛⎫ ⎪⎝⎭所以,,()1,1,1EF =- ()12,0,2B C =--所以,()()()()()11,1,12,0,21210120EF B C ⋅=-⋅--=⨯-+⨯+-⨯-=所以,故.1EF B C ⊥1EF B C ⊥(2)因为,所以120,,23C G ⎛⎫=-- ⎪⎝⎭1C G =因为,EF =()12241,1,10,,22333EF C G ⎛⎫⋅=-⋅--=-+=⎪⎝⎭所以.1114cos ,3EF C G EF C G EF C G ⋅=====19.【正确答案】(1)()2224x y -+=(2)【分析】(1)求出圆心和半径,写出圆的方程;(2)求出圆心到直线距离,进而利用垂径定理求出弦长.(1)由题意可得,圆心为(2,0),半径为2.则圆的方程为()2224x y -+=;(2)由(1)可知:圆C 半径为2r =,设圆心(2,0)到l 的距离为d ,则61115d -==,由垂径定理得:AB ==。

江苏省连云港市灌云县第一中学2024-2025学年高二上学期11月期中考试数学试题(含答案)

江苏省连云港市灌云县第一中学2024-2025学年高二上学期11月期中考试数学试题(含答案)

灌云县第一中学高二年级上学期期中考试数学试卷一、单选题:本题共8小题,每小题5分,共40分。

1.已知数列2, 6,2 2, 10,⋯, 2n +2,⋯,则 46是这个数列的( )A. 第20项B. 第21项C. 第22项D. 第19项2.已知经过点A (1,2),B (m ,4)的直线l 的斜率为2,则m 的值为A. ―1B. 0C. 1D. 23.等比数列{a n }中,a 2=4,a 3⋅a 4=128,则a 5的值为( )A. 8B. 16C. 32D. 644.若双曲线经过点(― 3,6),且它的两条渐近线方程是y =±3x ,则此双曲线的离心率是( )A. 103 B. 113 C. 2 33 D. 1435.如图的形状出现在南宋数学家杨辉所著的《详解九章算法⋅商功》中,后人称为“三角垛”.“三角垛”的最上层有1个球,第二层有3个球,第三层有6个球⋯⋯,设各层球数构成一个数列{a n },则a 21=( )A. 58B. 225C. 210D. 2316.已知圆C 的圆心在直线x ―y ―5=0上,并且圆C 经过圆x 2+y 2+6x ―4=0与圆x 2+y 2+ 6y ―28=0 的交点,则圆C 的圆心是( )A. (92,―12)B. (12,―92)C. (1,―4)D. (4,―1)7.已知数列{a n }的前n 项和为S n ,且a 1=1,a 2=2,a n +1+a n =3n ,则( )A. S 19=300B. n 为奇数时,S n =3n 2+14C. S 31=720D. a 4=68.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)上有一点A ,它关于原点的对称点为B ,点F 为椭圆的右焦点,且AF ⊥BF ,∠ABF =π12,则椭圆的离心率为( )A. 63 B. 12 C. 33 D.22二、多选题:本题共3小题,共18分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二上学期期中数学考试试卷及答案Document number【980KGB-6898YT-769T8CB-246UT-18GG08】高二年级上学期期中考试数学试卷一、单项选择题(每小题5分,共40分,请将正确选项填到答题栏里面去)1、设,0<<b a 则下列不等式中不.成立的是Ab a 11> B ab a 11>- C b a -> D b a ->- 2、原点O 和点A (1,1)在直线x+y=a 两侧,则a 的取值范围是 A a <0或 a >2 B 0<a <2 C a=0或 a=2 D 0≤a ≤2 3、在⊿ABC 中,已知bac b a 2222+=+,则∠C= A 300 B 1500 C 450 D 1350 4、等差数列}a {n 中,已知前15项的和90S 15=,则8a 等于A245 B 12 C 445D 6 5、若a,b,c 成等比数列,m 是a,b 的等差中项,n 是b,c 的等差中项,则=+ncm a A 4 B 3 C 2 D 1 6、等比数列{a n }中,a 1+a 2+a 3+…+a n =2n -1,则a 12+a 22+a 32+…+a n 2等于A 2)12(-nB )12(31-nC 14-nD )14(31-n7、若c b a 、、成等比数列,则关于x 的方程02=++c bx ax A 必有两个不等实根B 必有两个相等实根C 必无实根D 以上三种情况均有可能8、下列结论正确的是A 当2lg 1lg ,10≥+≠>xx x x 时且 B 21,0≥+>xx x 时当C 21,2的最小值为时当x x x +≥D 无最大值时当xx x 1,20-≤<二、填空题(每小题5分,共30分,请将正确选项填到答题栏里面去)9、若0<a <b 且a +b=1则 21, a , 2a b , 22b a +,中的最大的是 .10、若x 、y ∈R +, x +4y =20,则xy 的最大值为 .11、飞机沿水平方向飞行,在A 处测得正前下方地面目标C 得俯角为30°,向前飞行10000米,到达B 处,此时测得目标C 的俯角为75°,这时飞机与地面目标的水平距离为12、实数x 、y 满足不等式组⎪⎩⎪⎨⎧≤--≥-≥02200y x y x y ,则13+-=x y k 的取值范围为 .13、数列 121, 241, 381, 4161, 5321, …, n n 21, 的前n 项之和等于 .14、设.11120,0的最小值,求且yx y x y x +=+>> .试 卷 答 题 栏 班级______姓名__________分数_________二、填空题:(每小题5分,共30分)9、 10、 11、12、 13、. 14、 三、解答题15、在⊿ABC 中,已知030,1,3===B b c .(Ⅰ)求出角C 和A ; (Ⅱ)求⊿ABC 的面积S ;16、已知等差数列{}n a 的首项为a ,公差为b ,且不等式2)6x 3ax (log 22>+- 的解集为{}1|x x x b <>或 .(Ⅰ)求数列{}n a 的通项公式及前n 项和n S 公式 ;(Ⅱ)求数列{11+⋅n n a a }的前n 项和T n17、解关于x的不等式ax2-2(a+1)x+4<0.18、某纺纱厂生产甲、乙两种棉纱,已知生产甲种棉纱1吨需耗一级子棉2吨、二级子棉1吨;生产乙种棉纱需耗一级子棉1吨、二级子棉2吨,每1吨甲种棉纱的利润是600元,每1吨乙种棉纱的利润是900元,工厂在生产这两种棉纱的计划中要求消耗一级子棉不超过300吨、二级子棉不超过250吨.甲、乙两种棉纱应各生产多少(精确到吨),能使利润总额最大19、设,4,221==a a 数列}{n b 满足:,1n n n a a b -=+ .221+=+n n b b (Ⅰ)求证数列}2{+n b 是等比数列(要指出首项与公比), (Ⅱ)求数列}{n a 的通项公式.20、(Ⅰ)设不等式2x -1>m (x 2-1)对满足22≤≤-m 的一切实数m 的取值都成立,求x 的取值范围;(7分)(Ⅱ)是否存在m 使得不等式2x -1>m (x 2-1)对满足22≤≤-x 的实数x 的取值都成立.(7分)高二年级期中考试数学试卷参考答案二、填空题:(每小题5分,共30分)9、 22b a + 10、 25 11、5000米12、-3≤K ≤31- 13、n n n 21222-++ 14、3+22 15、(1)bcB C =sin sin,23sin =C 000030,120,90,60,,====∴>>A C A C B C b c 此时或者此时(2)S==43,23 16、解 :(Ⅰ)∵不等式2)6x 3ax (log 22>+-可转化为02x 3ax 2>+-, 所给条件表明:02x 3ax 2>+-的解集为{}b x or 1x |x ><,根据不等式解集的意义可知:方程02x 3ax 2=+-的两根为1x 1=、b x 2=. 利用韦达定理不难得出2b ,1a ==. 由此知1n 2)1n (21a n -=-+=,2n s n = (Ⅱ)令)121121(21)12()12(111+--=+⋅-=⋅=+n n n n a a b n n n则⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛+--++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+-=++++=12112171515131)3111(21321n n b b b b T n n =⎪⎭⎫⎝⎛+-121121n17、解:当a =0时,不等式的解为x >2; 当a ≠0时,分解因式a (x -a2)(x -2)<0当a <0时,原不等式等价于(x -a2)(x -2)>0,不等式的解为x >2或x <a2;当0<a <1时,2<a2,不等式的解为2<x <a2;当a >1时,a2<2,不等式的解为a2<x <2;当a =1时,不等式的解为 Φ 。

18、分析:将已知数据列成下表:解:设生产甲、乙两种棉纱分别为x 吨、y 吨,利润总额为z 元,那么⎪⎪⎩⎪⎪⎨⎧≥≥≤+≤+0025023002y x y x y x z =600x +900y .作出以上不等式组所表示的平面区域(如图),即可行域.作直线l :600x +900y =0,即直线l :2x +3y =0,把直线l 向右上方平移至l 1的位置时,直线经过可行域上的点M ,且与原点距离最大,此时z =600x +900y 取最大值.解方程组产品 甲种棉纱 (1吨) 乙种棉纱 (1吨) 资源限额 (吨) 一级子棉(吨) 2 1 300 二级子棉(吨) 1 2 250 利 润(元) 600 9005050xy2x+y=300x+2y=250资源消耗量⎩⎨⎧=+=+2502;3002y x y x 得M 的坐标为x =3350≈117,y =3200≈67. 答:应生产甲种棉纱117吨,乙种棉纱67吨,能使利润总额达到最大.19、解:(1)),2(222211+=+⇒+=++n n n n b b b b ,2221=+++n n b b又42121=-=+a a b , ∴ 数列}2{+n b 是首项为4,公比为2的等比数列.(2)2224211-=⇒⋅=+∴+-n n n n b b . .221-=-∴-n n n a a 令),1(,,2,1-=n n 叠加得)1(2)222(232--+++=-n a n n ,22)2222(32+-++++=∴n a nn .222212)12(21n n n n -=+---=+20.(1)解:令f (m )=2x -1-m (x 2-1)=(1-x 2)m +2x -1,可看成是一条直线,且使|m |≤2的一切实数都有2x -1>m (x 2-1)成立。

所以,⎩⎨⎧ 02)f( 0)2(>->f ,即⎩⎨⎧032x 2x 012x 2x 22<-+>--,即⎪⎪⎩⎪⎪⎨⎧271x 271x 231x 231+->或--<+<<- 所以,213x 217+<<-。

(2) 令f (x )= 2x -1-m (x 2-1)= -mx 2+2x +(m -1),使|x |≤2的一切实数都有2x -1>m (x 2-1)成立。

当0=m 时,f (x )= 2x -1在221<≤x 时,f (x )0≥。

(不满足题意)当0≠m 时,f (x )只需满足下式:⎪⎪⎩⎪⎪⎨⎧>--≤<>-0)2(21)0(,0f m m m 或⎪⎪⎩⎪⎪⎨⎧<∆<<-<>-0012)0(,0m m m 或⎪⎩⎪⎨⎧>->><-0)2(0)2()0(,0f f m m解之得结果为空集。

故没有m满足题意。

相关文档
最新文档