时间序列分析--第五章 非平稳序列的随机分析

合集下载

时间序列分析第五章非平稳序列的随机分析

时间序列分析第五章非平稳序列的随机分析
xt xt xt1
考察差分运算对该序列线性趋势信息的提 取作用
2020/3/12
时间序列分析
差分前后时序图
原序列时序图
差分后序列时序图
2020/3/12
时间序列分析
例5.2
尝试提取1950年——1999年北京市民用 车辆拥有量序列的确定性信息
2020/3/12
时间序列分析
Green函数递推公式
1 1 1 2 1 1 2 2

j 1 j1 pd j pd j
t


2
,
E(
t
s
)

0,
s

t
Exs t 0,s t
2020/3/12
时间序列分析
ARIMA 模型族
d=0 ARIMA(p,d,q)=ARMA(p,q)
P=0 ARIMA(P,d,q)=IMA(d,q)
q=0 ARIMA(P,d,q)=ARI(p,d)
d=1,P=q=0 ARIMA(P,d,q)=random walk model
差分后序列时序图
一阶差分
二阶差分
2020/3/12
时间序列分析
例5.3
差分运算提取1962年1月——1975年12月平均 每头奶牛的月产奶量序列中的确定性信息
2020/3/12
时间序列分析
差分后差分
2020/3/12
时间序列分析
过差分
足够多次的差分运算可以充分地提取原 序列中的非平稳确定性信息
2020/3/12
时间序列分析
随机游走模型( random walk)
模型结构

时 间 序 列 分 析 实 验 报 告实例

时 间 序 列 分 析 实 验 报 告实例

应用时间序列分析实验报告实验名称第五章非平稳序列的随机分析专业班级姓名学号一、上机练习程序及其结果分析:data ex3_1;input x@@;time=_n_;cards;0.30 -0.45 0.36 0.00 0.17 0.45 2.154.42 3.48 2.99 1.74 2.40 0.11 0.960.21 -0.10 -1.27 -1.45 -1.19 -1.47 -1.34-1.02 -0.27 0.14 -0.07 0.10 -0.15 -0.36-0.50 -1.93 -1.49 -2.35 -2.18 -0.39 -0.52-2.24 -3.46 -3.97 -4.60 -3.09 -2.19 -1.210.78 0.88 2.07 1.44 1.50 0.29 -0.36-0.97 -0.30 -0.28 0.80 0.91 1.95 1.771.80 0.56 -0.11 0.10 -0.56 -1.34 -2.470.07 -0.69 -1.96 0.04 1.59 0.20 0.391.06 -0.39 -0.162.07 1.35 1.46 1.500.94 -0.08 -0.66 -0.21 -0.77 -0.52 0.05;procgplot data=ex3_1;plot x*time=1;symbol1c=red I=join v=star;run;结果分析:上图是数据对应的时序图,从图上曲线分析来看,数据并没有周期性或者趋向性规律,因而可以初步判断这是平稳数列。

procarima data=ex3_1;identifyVar=x nlag=8;run;结果分析:本过程中,我们建立了8阶自回归分析模型,图上依次是变量的描述性统计量、样本自相关图、样本逆相关图和样本偏自相关图。

由于本次实验探究的是平稳序列,因而样本逆相关图先不作分析。

从自相关图来看,自相关系数趋于0的速度是比较快的,再结合时序图来看,可以确定这组数列是属于平稳数列。

【2019年整理】时间序列分析--第五章非平稳序列的随机分析

【2019年整理】时间序列分析--第五章非平稳序列的随机分析

尝试提取1950年——1999年北京市民用 车辆拥有量序列的确定性信息
4/8/2019
时间序列分析
差分后序列时序图

一阶差分

二阶差分
4/8/2019
时间序列分析
例5.3

差分运算提取1962年1月——1975年12月平均 每头奶牛的月产奶量序列中的确定性信息
4/8/2019
时间序列分析
差分后序列时序图
4/8/2019
时间序列分析
差分方式的选择



序列蕴含着显著的线性趋势,一阶差分 就可以实现趋势平稳 序列蕴含着曲线趋势,通常低阶(二阶 或三阶)差分就可以提取出曲线趋势的 影响 对于蕴含着固定周期的序列进行步长为 周期长度的差分运算,通常可以较好地 提取周期信息
时间序列分析
4/8/2019
例5.1
时间序列分析
ARIMA模型建模步骤
获 得 观 察 值 序 列 平稳性 检验 N 差分 运算 Y 白噪声 检验 N 拟合 ARMA 模型
时间序列分析
Y
分 析 结 束
4/8/2019
例5.6

对1952年——1988年中国农业实际国民 收入指数序列建模
4/8/2019
时间序列分析
一阶差分序列时序图
第五章
非平稳序列的随机分析
4/8/2019
时间序列分析
本章结构


差分运算 ARIMA模型 Auto-Regressive模型 异方差的性质 方差齐性变化 条件异方差模型
4/8/2019
时间序列分析
5.1 差分运算

差分运算的实质 差分方式的选择 过差分

时间序列分析--第五章非平稳序列的随机分析

时间序列分析--第五章非平稳序列的随机分析

50
乘积季节模型
使用场合
序列的季节效应、长期趋势效应和随机波动之间有着复 杂地相互关联性,简单的季节模型不能充分地提取其中 的相关关系
构造原理
短期相关性用低阶ARMA(p,q)模型提取
季节相关性用以周期步长S为单位的ARMA(P,Q)模型提取
假设短期相关和季节效应之间具有乘积关系,模型结构
3
差分运算的实质
差分方法是一种非常简便、有效的确定 性信息提取方法
Cramer分解定理在理论上保证了适当阶 数的差分一定可以充分提取确定性信息
差分运算的实质是使用自回归的方式提 取确定性信息
d
d xt (1 B)d xt (1)i Cdi xti i0
5/10/2019
模型中有部分系数省缺了,那么该模型 称为疏系数模型。
5/10/2019
课件
34
疏系数模型类型
如果只是自相关部分有省缺系数,那么该疏系 数模型可以简记为ARIMA(( p1,, pm ), d, q)
p1,, pm 为非零自相关系数的阶数
如果只是移动平滑部分有省缺系数,那么该疏 系数模型可以简记为 ARIMA( p, d, (q1,, qn ))
26
建模
定阶
ARIMA(0,1,1)
参数估计
(1 B)xt 4.99661 (1 0.70766 B) t
Var(t ) 56.48763
模型检验
模型显著 参数显著
5/10/2019
课件
27
ARIMA模型预测
原则
最小均方误差预测原理
Green函数递推公式
一阶差分

时间序列实验5

时间序列实验5

实验五非平稳序列的随机分析一、实验目的:利用arima,autoreg,进行非平稳序列的随机性分析。

对arima 模型,auto-regressive模型及garch模型进行拟合并分析结果。

二、实验内容三、习题#1data example5_1;input x@@;t=_n_;cards;304 303 307 299 296 293 301 293 301 295 284 286 286 287 284282 278 281 278 277 279 278 270 268 272 273 279 279 280 275271 277 278 279 283 284 282 283 279 280 280 279 278 283 278270 275 273 273 272 275 273 273 272 273 272 273 271 272 271273 277 274 274 272 280 282 292 295 295 294 290 291 288 288290 293 288 289 291 293 293 290 288 287 289 292 288 288 285282 286 286 287 284 283 286 282 287 286 287 292 292 294 291288 289;proc print data=example5_1;proc gplot data=example5_1;plot x*t=1;symbol1c=red i=join v=star;run;得到时序图可以看出序列含有一定的周期性,故进行差分平稳,又从上述时序图呈现曲线形式,故对原序列作二阶差分,差分程序及时序图如下:data example5_1;input x@@;difx=dif(dif(x));t=_n_;cards;304 303 307 299 296 293 301 293 301 295 284 286 286 287 284282 278 281 278 277 279 278 270 268 272 273 279 279 280 275271 277 278 279 283 284 282 283 279 280 280 279 278 283 278270 275 273 273 272 275 273 273 272 273 272 273 271 272 271273 277 274 274 272 280 282 292 295 295 294 290 291 288 288290 293 288 289 291 293 293 290 288 287 289 292 288 288 285282 286 286 287 284 283 286 282 287 286 287 292 292 294 291288 289;proc print data=example5_1;proc gplot data=example5_1;plot x*t difx*t;symbol1c=black i=join v=star;proc arima;identify var=x(1,1);estimate q=1;forecast lead=5id=time;run;从图中可以看出该序列的差分序列为平稳序列。

应用时间序列分析时间序列分析简介

应用时间序列分析时间序列分析简介
1931年,移动平均(MA)模型,ARMA模型
关键阶段
和 G.M.Jenkins
1970年,出版《Time Series Analysis Forecasting and Control》
提出ARIMA模型(Box—Jenkins 模型) Box—Jenkins模型实际上是主要利用于单
变量、同方差场合旳线性模型
常用软件
S-plus,Matlab,Gauss,TSP,Eviews, Spss 和SAS
推荐软件——SAS
在SAS系统中有一种专门进行计量经济与时间序列 分析旳模块:SAS/ETS。SAS/ETS编程语言简洁, 输出功能强大,分析成果精确,是进行时间序列分 析与预测旳理想旳软件
因为SAS系统具有全球一流旳数据仓库功能,所以 在进行海量数据旳时间序列分析时它具有其他统计 软件无可比拟旳优势
事件旳发展一般都具有一定旳惯性,这种惯性用统 计旳语言来描述就是序列值之间存在着一定旳有关 关系,这种有关关系一般具有某种统计规律。
目旳
寻找出序列值之间有关关系旳统计规律,并拟合出 合适旳数学模型来描述这种规律,进而利用这个拟 合模型预测序列将来旳走势
特点
理论基础扎实,操作环节规范,分析成果易于解释, 是时间序列分析旳主流措施
x1, x2 , , xn
随机序列和观察值序列旳关系
观察值序列是随机序列旳一种实现 我们研究旳目旳是想揭示随机时序旳性质 实现旳手段都是经过观察值序列旳性质进行推断
1.3 时间序列分析措施
描述性时序分析
统计时序分析
描述性时序分析(直接观察分析法)
经过直观旳数据比较或绘图观察,寻找 序列中蕴含旳发展规律,这种分析措施 就称为描述性时序分析
描述性时序分析措施具有操作简朴、直 观有效旳特点,它一般是人们进行统计 时序分析旳第一步。

时间序列分析--第五章非平稳序列的随机分析

时间序列分析--第五章非平稳序列的随机分析
第五章
非平稳序列的随机分析
2020/6/14
课件
1
本章结构
差分运算 ARIMA模型 Auto-Regressive模型 异方差的性质 方差齐性变化 条件异方差模型
2020/6/14
课件
2
5.1 差分运算
差分运算的实质 差分方式的选择 过差分
2020/6/14
课件
3
差分运算的实质
方差大
Var(xt ) Var(at at1)
2 2
Var(2xt ) Var(at 2at1 at2 )
6 2
2020/6/14
课件ቤተ መጻሕፍቲ ባይዱ
14
5.2 ARIMA模型
ARIMA模型结构 ARIMA模型性质 ARIMA模型建模 ARIMA模型预测 疏系数模型 季节模型
2020/6/14
1 1 1 2 1 1 2 2
j 1 j1 pd j pd j
2020/6/14
课件
28
预测值
xtl ( tl 1 tl1 l1 t1) ( l t l1 t1 )
et (l)
xˆt (l)
E[et (l)] 0
Var[et (l)]
(1
2 1
2 l 1
)
2
2020/6/14
课件
29
例5.7
已知ARIMA(1,1,1)模型为
(1 0.8B)(1 B)xt (1 0.6B) t
且 xt1 4.5
xt 5.3
t 0.8
2
1
求 xt3 的95%的置信区间
2020/6/14
课件
30
预测值
等价形式
(11.8B 0.8B2 )xt (1 0.6B)t xt 1.8xt1 0.8xt2 t 0.6t1

非平稳时间序列

非平稳时间序列
值为-1.95. 小于此值,拒绝
3 工程项目管理规划
三种情况的 的临界值是不一样的
进行单位根检验必须选择合适的回归模型. 一个简单的原 则,如果数据没有明显的趋势,则在回归模型中包括常数 项;如果有明显的趋势,则在回归模型中既要包含常数项 和时间趋势项
3 工程项目管理规划
四个问题
数据生成过程未知,有可能包括滑动平均部分 可能包括不止一个滞后项,如果实际数据生成过程是
E [Yt+s | Yt ] Yt ts (11)ts1 (11 s1)t1
预测方差为{1+(1
2 1
)
(1
2 1
2 s-1
)}
2
3 工程项目管理规划
动态乘子的比较
趋势平稳过程
xt t+(B)t
动态乘子:
xt
t
s
趋势平稳过程满足
,
j0
所以
2 j
lims
xt s
t
0.
3 工程项目管理规划
t
s
因为
|
i0
i
|
, 所以s的增加
s趋于0.
3 工程项目管理规划
非平稳过程
多数经济变量的时间序列都有随着时间增加而增长的趋势, 不具有均值回复的特点.
两种刻画:
带趋势的平稳随机过程(前面已讲) 单位根过程
3 工程项目管理规划
随机趋势过程
有一类随机过程, 如果再 t 时刻扰动项发生变化, 那么它 的影响会一直存在下去,不会随着时间 t 增大会立刻衰 减到0. 这样过程成为随机趋势过程。
41 3 工程项目管理规划
如果拒绝零假设, 这时检验 量,拒绝得出结论平稳,否则非平稳.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
j
k
2013-8-8
时间序列分析
疏系数模型类型

如果只是自相关部分有省缺系数,那么该疏系 数模型可以简记为 ARIMA(( p1 ,, pm ), d , q)

p1 ,, pm 为非零自相关系数的阶数


如果只是移动平滑部分有省缺系数,那么该疏 系数模型可以简记为 ARIMA( p, d , (q1 ,, qn )) q1 ,, q n 为非零移动平均系数的阶数 如果自相关和移动平滑部分都有省缺,可以简 记为 ARIMA(( p ,, p ), d , (q ,, q ))
差分运算的实质



差分方法是一种非常简便、有效的确定 性信息提取方法 Cramer分解定理在理论上保证了适当阶 数的差分一定可以充分提取确定性信息 差分运算的实质是使用自回归的方式提 取确定性信息
i d xt (1 B) d xt (1) i C d xt i i 0 d

尝试提取1950年——1999年北京市民用 车辆拥有量序列的确定性信息
2013-8-8
时间序列分析
差分后序列时序图

一阶差分

二阶差分
2013-8-8
时间序列分析
例5.3

差分运算提取1962年1月——1975年12月平均 每头奶牛的月产奶量序列中的确定性信息
2013-8-8
时间序列分析
差分后序列时序图
时间序列分析
一阶差分序列自相关图
2013-8-8
时间序列分析
一阶差分后序列白噪声检验
延迟阶数 6 12 18
2 统计量
P值 0.0178 0.1060 0.1344
15.33 18.33 24.66
2013-8-8
时间序列分析
拟合ARMA模型

偏自相关图
2013-8-8
时间序列分析
建模

2013-8-8
时间序列分析
差分方式的选择



序列蕴含着显著的线性趋势,一阶差分 就可以实现趋势平稳 序列蕴含着曲线趋势,通常低阶(二阶 或三阶)差分就可以提取出曲线趋势的 影响 对于蕴含着固定周期的序列进行步长为 周期长度的差分运算,通常可以较好地 提取周期信息
时间序列分析
2013-8-8
例5.1
ARIMA模型建模步骤
获 得 观 察 值 序 列 平稳性 检验 N 差分 运算 Y 白噪声 检验 N 拟合 ARMA 模型
时间序列分析
Y
分 析 结 束
2013-8-8
例5.6

对1952年——1988年中国农业实际国民 收入指数序列建模
2013-8-8
时间序列分析
一阶差分序列时序图
2013-8-8

模型结构
xt xt 1 t E ( t ) 0,Var( t ) 2 , E ( t s ) 0, s t Ex 0, s t s t

模型产生典故

Karl Pearson(1905)在《自然》杂志上提问:假如有个 醉汉醉得非常严重,完全丧失方向感,把他放在荒郊 野外,一段时间之后再去找他,在什么地方找到他的 概率最大呢?
12
2统 计量
P值
待估 参数
t统
计量
P值
2.09
0.7191
1
4
5.48
<0.0001
10.99 0.3584
-3.41 <0.0001
2013-8-8
时间序列分析
拟合效果图
2013-8-8
时间序列分析
乘积季节模型

使用场合

序列的季节效应、长期趋势效应和随机波动之间有着复 杂地相互关联性,简单的季节模型不能充分地提取其中 的相关关系 短期相关性用低阶ARMA(p,q)模型提取 季节相关性用以周期步长S为单位的ARMA(P,Q)模型提取 假设短期相关和季节效应之间具有乘积关系,模型结构 如下
时间序列分析
预测值

等价形式
(1 1.8B 0.8B 2 ) xt (1 0.6 B) t xt 1.8 xt 1 0.8 xt 2 t 0.6 t 1

计算预测值
ˆ xt (1) 1.8 xt 0.8 xt 1 0.6 t 5.46 ˆ ˆ xt (2) 1.8 xt (1) 0.8 xt 5.59 ˆ ˆ ˆ xt (3) 1.8 xt (2) 0.8 xt (1) 5.69
定阶

ARIMA(0,1,1)

参数估计
(1 B) xt 4.99661 (1 0.70766 B) t Var( t ) 56.48763

模型检验

模型显著 参数显著
时间序列分析
2013-8-8
ARIMA模型预测

原则

最小均方误差预测原理

Green函数递推公式
1 1 1 2 1 1 2 2 j 1 j 1 p d j p d j
1 (1 B) xt 4 t 1 0.26633 B 0.33597 B

参数估计

模型检验

模型显著 参数显著
时间序列分析
2013-8-8
季节模型

简单季节模型 乘积季节模型
2013-8-8
时间序列分析
简单季节模型

简单季节模型是指序列中的季节效应和 其它效应之间是加法关系
差分后序列偏自相关图
2013-8-8
时间序列分析
模型拟合

定阶

ARIMA((1,4),(1,4),0)

参数估计
1 (1 B)(1 B ) xt 4 t 1 0.44746 B 0.28132 B
4
2013-8-8
时间序列分析
模型检验
残差白噪声检验 参数显著性检验
延迟 阶数 6
【例1.1】1964年——1999年中国纱年产 量序列蕴含着一个近似线性的递增趋势。 对该序列进行一阶差分运算
xt xt xt 1
考察差分运算对该序列线性趋势信息的提 取作用
2013-8-8
时间序列分析
差分前后时序图

原序列时序图

差分后序列时序图
2013-8-8
时间序列分析
例5.2

d=0
ARIMA(p,d,q)=ARMA(p,q) P=0

ARIMA(P,d,q)=IMA(d,q)

q=0 ARIMA(P,d,q)=ARI(p,d) d=1,P=q=0 ARIMA(P,d,q)=random walk model
时间序列分析

2013-8-8
随机游走模型( random walk)
2013-8-8
时间序列分析
计算置信区间

Green函数值 1 1.8 0.6 1.2 2 1.8 1 0.8 1.36
方差
2 Var[e(3)] (1 12 2 ) 2 4.2896


95%置信区间
ˆ ˆ ( xt (3) 1.96 Var(e(3)) , xt (3) 1.96 Var(e(3)) ) (1.63,9.75)
第五章
非平稳序列的随机分析
2013-8-8
时间序列分析
本章结构


差分运算 ARIMA模型 Auto-Regressive模型 异方差的性质 方差齐性变化 条件异方差模型
2013-8-8
时间序列分析
5.1 差分运算

差分运算的实质 差分方式的选择 过差分
2013-8-8
时间序列分析
xt S t Tt I t

简单季节模型通过简单的趋势差分、季 节差分之后序列即可转化为平稳,它的 模型结构通常如下
( B) D xt t ( B)
d
2013-8-8
时间序列分析
例5.9

拟合1962——1991年德国工Hale Waihona Puke 季度失业率序列2013-8-8
时间序列分析
差分平稳
2 1
2013-8-8 时间序列分析
2 l 1
)
2
例5.7

已知ARIMA(1,1,1)模型为
(1 0.8B)(1 B) xt (1 0.6 B) t
且 xt 1 4.5

xt 5.3
t 0.8 2 1
求 xt 3 的95%的置信区间
2013-8-8

构造原理

( B ) S ( B ) xt t ( B) S ( B)
d D S
时间序列分析
2013-8-8
例5.10 :拟合1948——1981年美国女性月度失业率序列
2013-8-8
时间序列分析
差分平稳

一阶、12步差分
2013-8-8
时间序列分析
例5.6续:对中国农业实际国民收入指 数序列做为期10年的预测
2013-8-8
时间序列分析
疏系数模型


ARIMA(p,d,q)模型是指d阶差分后自相关 最高阶数为p,移动平均最高阶数为q的 模型,通常它包含p+q个独立的未知系 数: 1 ,, p ,1 ,, q 如果该模型中有部分自相关系数 ,1 j p 或部分移动平滑系数 ,1 k q 为零,即原 模型中有部分系数省缺了,那么该模型 称为疏系数模型。
相关文档
最新文档