时间序列分析第三章平稳时间序列分析

合集下载

时间序列分析-第三章-滑动平均模型和自回归滑动平均模型

时间序列分析-第三章-滑动平均模型和自回归滑动平均模型
第三章
滑动平均模型与 自回归滑动平均模型
本章结构
滑动平均模型 ARMA模型
§3.1 滑动平均模型
模型引入 MA(q)和MA(q)序列 最小序列 MA(q)系数的递推计算 MA(q)模型举例
q步相关
平稳序列{Xt}的自协方差函数若满足 q 0, k 0, k q ,则称{Xt} 是q步相关的。
(1.5)
MA序列的谱密度
定理1.1 MA(q)序列{Xt}的自协方差函数 是q步截尾的:
q 2bq 0, k 0,| k | q.
并且有谱密度
(1.6)
(1.7) f
()
2 2
|
B(ei ) |2
1
2
q
keik , [ , ].
k q
MA(q)序列的充要条件
定理1.3 设零均值平稳序列{Xt} 有自协
0 2 (1 b12 b22 ) 7.4084 1 2 (b1 b1b2 ) 2.664 2 2b2 3.4 k 0, k 2
(1, 2 ) (0.3596, 0.4589).
§3.2自回归滑动平均模型
ARMA(p,q)模型及其平稳解 ARMA(p,q)序列的自协方差函数 ARMA(p,q)模型的可识别性 ARMA序列的谱密度和可逆性 例子
定义1.1 设{t }是 WN(0, 2) ,如果实数
b1, b2 , bq (bq 0) 使得
则称
q
B(z) 1 bj z j 0,| z | 1, j 1
q
X t t bjt j , t Z
(1.2)
j 1
是q阶滑动平均模型,简称为MA(q)模型;
称由(1.2)决定的平均序列 {Xt} 是滑动平 均模型,简称为MA(q)序列。

《时间序列分析》讲义 第三章 平稳时间序列分析

《时间序列分析》讲义 第三章 平稳时间序列分析

k
1 k1 2 k2,k
2
自相关系数
自相关系数的定义
k
k 0
平稳AR(p)模型的自相关系数递推公式
k 1k 1 2 k 2 p k p
常用AR模型自相关系数递推公式
AR(1)模型 k 1k , k 0
AR(2)模型
1,
k
1
1 2
1k1 2 k2
k 0 k 1 k2
自回归系数多项式
(B) 11B 2B2 pBp
特征方程
中心化AR(p)模型
xt 1 xt1 2 xt2 p xt p t
可以看成p阶常系数非齐次线性差分方程
xt 1 xt1 2 xt2 p xt p t
它对应的齐次方程的特征方程为
p 1 p1 p1 p 0
1 12
协方差函数
在平稳AR(p)模型两边同乘xt-k,再求期望
E(xt xtk ) 1E(xt1xtk ) p E(xt p xtk ) E(t xtk )
根据
E( t xtk ) 0 ,k 1
得协方差函数的递推公式
k 1 k1 2 k 2 p k p
例题
例3.3 求平稳AR(1)模型的协方差
12
2 2
,
0,
k 0 k 1
k 2 k 3
偏自相关系数
滞后k偏自相关系数由Yule-Walker方程 确定
zt a1 zt1 a2 zt2 a p zt p h(t)
齐次线性差分方程
zt a1 zt1 a2 zt2 a p zt p 0
齐次线性差分方程的解
特征方程
p a1p1 a2p2 ap 0
特征方程的根称为特征根,记作1,2,…,p

第三章平稳时间序列分析

第三章平稳时间序列分析

第 3章 安稳时间序列剖析一个序列经过预办理被辨别为安稳非白噪声序列,那就说明该序列是一个包含着有关信息的安稳序列。

3.1 方法性工具 3.1.1 差分运算 一、 p 阶差分记x t 为 x t 的 1 阶差分:x t x t x t 1记2x t 为 x t 的 2 阶差分:2x tx tx t 1xt2x t 1xt 2以此类推:记 px t 为 x t 的 p 阶差分:px tp 1x tp 1x t 1二、 k 步差分记 k xt 为 x t 的 k 步差分: kxtx t x t k延缓算子一、定义延缓算子相当与一个时间指针,目前序列值乘以一个延缓算子,就相当于把目前序列值的时间向过去拨了一个时辰。

记 B 为延缓算子,有x t 1 Bx t x t 2 B 2x tx t pB P x t二、用延缓算子表示差分运算 1、 p 阶差分 2 、 k 步差分 3.2ARMA 模型的性质AR 模型延缓算子的性质:1. B 0 12. 若 c 为任一常数,有 B(c x t ) c B( x t ) c x t 13. 对随意俩个序列 { x t } 和 { y t } ,有 B( x ty t )x t 1yt 14. Bnx t x t nnn! 5. (1 B)n( 1) i C n i B i ,此中 C n ii 0i!( n i )!定义拥有以下构造的模型称为p 阶自回归模型,简记为AR(p):xt 0 1xt 1 2xt 2pxt p tp0, E( t ) 0,Var ( t )2, E( s t ) 0, s tEx s t0, s t(3.4)AR(p) 模型有三个限制条件:条件一:p0 。

这个限制条件保证了模型的最高阶数为p 。

条件二: E( t ) 0,Var ( t )2, E( s t ) 0, s t 。

这个限制条件其实是要求随机扰乱序列{ t } 为零均值白噪声序列。

第3章 线性平稳时间序列分析

第3章 线性平稳时间序列分析

延迟算子
定义:设B为一步延迟算子,如果当前序列乘
以一个延迟算子,就表示把当前序列值的时间
向过去拨一个时刻,即 BXt=Xt-1。
性质: B0 1
B(c
X
t
)
c
B(
X
t
)
c
X
t
1,
c为任意常数
B(
X
t
Yt )
X t1
Yt1
(1
B)n
n
(1)i Cni Bi
B
n
X
t
i0
X t n
线性差分方程
EXt
常数方差:
var Xt var t 1t1
q t q
1 12
2 2
q2
2 a
【注】MA(q)模型一定为平稳模型。
MA(q)模型的可逆性
可逆MA模型定义
若一个MA模型能够表示成无穷阶的自回归模型, 则称该MA模型称为可逆的。
例:(1)X t t 2t1 (2)X t t 0.5t1
非齐次线性差分方程的解
非齐次线性差分方程的特解
使得非齐次线性差分方程成立的任意一个解
zt a1zt1 a2 zt2 a p zt p h(t)
非齐次线性差分方程的通解 zt
齐 方
次 程
线性差
的特z解t

方程的 之和

解zt
和非齐次线性差分
zt zt zt
一阶差分方程
P33
yt yt1 t
(1)Xt 1 2Bt (2)Xt 1 0.5Bt
(1)t 1/ 1 2B Xt
(2)t 1/ 1 0.5B Xt 0.5Bn Xt 0.5n Xtn

第三章线性平稳时间序列模型

第三章线性平稳时间序列模型
(2) Exsεt = 0, ∀s < t 那么我们就说xt遵循一个一阶自回归或AR(1)随机过程。
可见,AR(1)模型中,xt在t时刻值依赖于两部分,一部分依 模型中, 时刻值依赖于两部分, 可见 模型中 时刻值依赖于两部分 赖于它的前一期的值x 另一部分是依赖于与x 赖于它的前一期的值 t-1;另一部分是依赖于与 t-1不相关 的部分ε 的部分 t 可将AR(1)模型写成另一种形式: 模型写成另一种形式: 可将 模型写成另一种形式
xt = ϕ1xt −1 + ϕ2 xt −2 +L+ ϕ p xt − p + εt
其中: (1) p ≠ 0 (2) εt是白噪声序列 (3) Exsε t = 0, ∀s < t
E (ε t ) = 0,Var (ε t ) = σ ε2 , E (ε t ε s ) = 0, s ≠ t
那么我们就说xt遵循一个p阶自回归或AR(p)随机过程。
例如: ARIMA(2,1,2)表示先对时间序列进行一阶差分,使之 转化为平稳序列,然后对平稳序列建立ARMA(2,2)模型。 ARIMA(p,0,q)就相当于ARMA(p,q)。 ARIMA(p,0,0)就相当于AR(p)。 ARIMA(0,0,q)就相当于MA(q)。 对于一个ARIMA(p,d,q)也可以用推移算子B表示如下 ϕ (B )(1 − B) d xt = θ ( B)ε t 其中: ϕ (B ) = 1 − ϕ 1 B − ϕ 2 B 2 − L − ϕ p B p
(二).二阶自回归模型,AR(2)
1.设{xt}为零均值的随机序列,如果关于xt的合适模型为: 其中:
xt = ϕ1xt −1 + ϕ2 xt −2 + εt

时间序列分析第三章平稳时间序列分析

时间序列分析第三章平稳时间序列分析

注:图中,S号代表序列的观察值;连续曲线代表拟合序列曲线;虚线代表拟合序列的95%上下置信限。

所谓预测就是要利用序列以观察到的样本值对序列在未来某个时刻的取值进行估计。

目前对平稳序列最常用的预测方法是线性最小方差预测。

线性是指预测值为观察值序列的线性函数,最小方差是指预测方差达到最小。

在预测图上可以看到,数据围绕一个范围内波动,即说明未来的数值变化时平稳的。

二、课后习题第十七题:根据某城市过去63年中每年降雪量数据(单位:mm)得:(书本P94)程序:data example17_1;input x@@;time=_n_;cards;2579588397 110;proc gplot data=example17_1;plot x*time=1;symbol c=red i=join v=star;run;proc arima data=example17_1;identify var=x nlag=15minic p= (0:5) q=(0:5);run;estimate p=1;run;estimate p=1 noin;run;forecast lead=5id=time out=results;run;proc gplot data=results;plot x*time=1 forecast*time=2 l95*time=3 u95*time=3/overlay;symbol1c=black i=none v=start;symbol2c=red i=join v=none;symbol3c=green i=join v=none l=32;run;(1)判断该序列的平稳性与纯随机性该序列的时序图如下(图a)图a由时序图显示过去63年中每年降雪量数据围绕早70mm附近随机波动,没有明显趋势或周期,基本可以看成平稳序列,为了稳妥起见,做了如下自相关图(图b)图b时序图就是一个平面二维坐标图,通常横轴表示时间,纵轴表示序列取值。

线性平稳时间序列分析

线性平稳时间序列分析

线性平稳时间序列分析线性平稳时间序列分析是一种重要的时间序列分析方法,用于研究随时间变化的数据。

它基于一个核心假设,即数据的均值和方差在随时间推移的过程中保持不变。

线性平稳时间序列可以用数学模型来描述,通常使用自回归(AR)模型、滑动平均(MA)模型或自回归滑动平均(ARMA)模型。

这些模型基于该系列在某一时间点的值与该系列在过去时间点的值之间的线性关系。

为了进行线性平稳时间序列分析,首先需要检验数据是否满足平稳性的假设。

常用的检验方法包括ADF检验和单位根检验。

若数据不满足平稳性的假设,则需要通过差分操作将其转化为平稳时间序列。

在得到平稳的时间序列后,可以使用最小二乘法对时间序列进行模型拟合。

通过对数据进行模型拟合,我们可以得到模型的系数以及误差项的信息。

利用这些信息,可以进行时间序列的预测和分析。

在预测方面,线性平稳时间序列分析可以利用过去的观测值来预测未来的值。

预测方法包括简单的移动平均法和指数平滑法,以及更复杂的AR、MA和ARMA模型。

在分析时间序列方面,线性平稳时间序列分析可以通过模型的系数和误差项的信息来揭示数据的特征和规律。

例如,可以用模型的系数来检验是否存在滞后效应,用误差项的信息来检验模型的拟合程度。

总之,线性平稳时间序列分析是一种重要的时间序列分析方法,可以帮助我们研究随时间变化的数据。

通过对数据进行模型拟合、预测和分析,我们可以揭示数据的特征和规律,从而提供决策支持和预测能力。

线性平稳时间序列分析是一种重要的时间序列分析方法,它广泛应用于经济学、金融学、工程学等领域。

该方法基于数据的均值和方差在时间推移过程中保持不变的假设,旨在研究随时间变化的数据及其内在规律,以便进行预测、决策支持和其他分析。

在线性平稳时间序列分析中,首先需要检验数据是否符合平稳性的假设。

平稳性是指数据的均值和方差不随时间变化而发生显著变化。

为了检验平稳性,在实际应用中常常使用单位根检验或ADF检验等方法。

第3章 平稳时间序列分析(1)

第3章 平稳时间序列分析(1)

第3章平稳时间序列分析本章教学内容与要求:了解时间序列分析的方法性工具;理解并掌握ARMA 模型的性质;掌握时间序列建模的方法步骤及预测;能够利用软件进行模型的识别、参数的估计以及序列的建模与预测。

本章教学重点与难点:利用软件进行模型的识别、参数的估计以及序列的建模与预测。

型来息。

t x 为t x 的1阶差分: ▽1t t t x x x --=对1阶差分后的序列再进行一次1阶差分运算称为2阶差分,记▽2tx 为t x 的2阶差分:▽2t x =▽t x -▽1-t x以此类推,对p-1阶差分厚序列再进行一次1阶差分运算称为p 阶差分。

记▽p t x 为t x 的p 阶差分:▽p t x =▽p-1t x -▽p-11-t x (二)k 步差分kt x 为t x 的10,,1t = 10,,2 = 即2阶差分序列▽2t x :3,22,-63,-54,-6,16,-52,-40,10,,3t = 2步差分:▽29x x x 133=-= ▽234x x x 244=-=……▽2-28x x x 81010=-=即2步差分序列:9,34,-7,-26,12,21,-16,-28 二、延迟算子(滞后算子) (一)定义延迟算子类似于一个时间指针,当前序列值乘以一个延迟算子,就相x因此,15-18+6=343-30+9=222.k 步差分▽k =t k t k t k t t x )B 1(x B x x x -=-=--三、线性差分方程在实践序列的时域分析中,线性差分方程是非常重要的,也是极为有效的工具,事实上,任何一个ARMA模型都是一个现象差分方程。

因此,ARMA模型的性质往往取决于差分方程的性质。

为了更好地讨论ARMA 模型的性质,先简单介绍差分方程的一般性质。

设,,方程两边同除以,得特征方程(这是一个一元p次方程,应该至少有p个非零实根,称这p个实根为特征方程(3)的特征根,不防记作.特征根的取值情况不同,齐次线性差分方程的解会有不同的表达形式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

应用时间序列分析实验报告实验名称第三章平稳时间序列分析一、上机练习data example3_1;input x;time=_n_;cards;0.30 -0.45 0.036 0.00 0.17 0.45 2.154.42 3.48 2.99 1.74 2.40 0.11 0.960.21 -0.10 -1.27 -1.45 -1.19 -1.47 -1.34-1.02 -0.27 0.14 -0.07 0.10 -0.15 -0.36-0.50 -1.93 -1.49 -2.35 -2.28 -0.39 -0.52-2.24 -3.46 -3.97 -4.60 -3.09 -2.19 -1.210.78 0.88 2.07 1.44 1.50 0.29 -0.36-0.97 -0.30 -0.28 0.80 0.91 1.95 1.771.80 0.56 -0.11 0.10 -0.56 -1.34 -2.470.07 -0.69 -1.96 0.04 1.59 0.20 0.391.06 -0.39 -0.162.07 1.35 1.46 1.500.94 -0.08 -0.66 -0.21 -0.77 -0.52 0.05;procgplot data=example3_1;plot x*time=1;symbolc=red i=join v=star;run;建立该数据集,绘制该序列时序图得:根据所得图像,对序列进行平稳性检验。

时序图就是一个平面二维坐标图,通常横轴表示时间,纵轴表示序列取值。

时序图可以直观地帮助我们掌握时间序列的一些基本分布特征。

根据平稳时间序列均值、方差为常数的性质,平稳序列的时序图应该显示出该序列始终在一个常数值附近随机波动,而且波动的X围有界的特点。

如果观察序列的时序图,显示出该序列有明显的趋势性或周期性,那它通常不是平稳序列。

从图上可以看出,数值围绕在0附近随机波动,没有明显或周期,其本可以视为平稳序列,时序图显示该序列波动平稳。

procarima data=example3_1;identifyvar=x nlag=8;run;图一图二样本自相关图图三样本逆自相关图图四样本偏自相关图图五纯随机检验图实验结果分析:(1)由图一我们可以知道序列样本的序列均值为-0.06595,标准差为1.561613,观察值个数为84个。

(2)根据图二序列样本的自相关图我们可以知道该图横轴表示自相关系数,综轴表示延迟时期数,用水平方向的垂线表示自相关系数的大小。

我们发现样本自相关图延迟3阶之后,自相关系数都落入2倍标准差X围以内,而且自相关系数向0.03衰减的速度非常快,延迟5阶之后自相关系数即在0.03值附近波动。

这是一个短期相关的样本自相关图。

所以根据样本自相关图的相关性质,可以认为该序列平稳。

(3)根据图五的检验结果我们知道,在各阶延迟下LB检验统计量的P值都非常小(<0.0001),所以我们可以以很大的把握(置信水平>99.999%)断定该序列样本属于非白噪声序列。

procarima data=example3_1;identifyvar=x nlag=8minicp= (0:5) q=(0:5);run;IDENTIFY命令输出的最小信息量结果某个观察值序列通过序列预处理,可以判定为平稳非白噪声序列,就可以利用ARMA模型对该序列建模。

建模的基本步骤如下:A:求出该观察值序列的样本自相关系数(ACF)和样本偏自相关系数(PACF)的值。

B:根据样本自相关系数和偏自相关系数的性质,选择适当地ARMA(p,q)模型进行拟合。

C:估计模型中未知参数的值。

D:检验模型有效性。

如果拟合模型不通过检验,转向步骤B,重新选择模型再拟合。

E:模型优化。

如果拟合模型通过检验,仍然转向步骤B,充分考虑各种可能,建立多个拟合模型,从所有通过检验中选择最优模型。

F:利用拟合模型,预测序列的将来走势。

为了尽量避免因个人经验不足导致的模型识别问题,SAS系统还提供了相对最优模型识别。

最后一条信息显示,在自相关延迟阶数小于等于5,移动平均延迟阶数也小于等于5的所有ARMR(p,q)模型中,BIC信息量相对最小的是ARMR(0,4)模型,即MA(4)模型。

需要注意的是,MINIC只给出一定X围内SBC最小的模型定阶结果,但该模型的参数未必都能通过参数检验,即经常会出现MINIC给出的模型阶数依然偏高的情况。

estimateq=4;run;本例参数估计输出结果显示均值MU不显著(t的检验统计量的P值为0.9968),其他参数均显著(t 检验统计量的P值均小于0.00001),所以选择NOINT选项,除去常数项,再次估计未知参数的结果,即可输入第二条ESTIMATE命令:estimateq=4 noint;run;参数估计部分输出结果如图六所示:图六ESTIMATE命令消除常数项之后的输出结果显然四个未知参数均显著。

拟合统计量的值这部分输出五个统计量的值,由上到下分别是方差估计值、标准差估计值、AIC信息量、SBC信息量及残差个数,如图七所示:图七ESTIMATE命令输出的拟合统计量的值系数相关阵这部分输出各参数估计值的相关阵,如图八所示:图八ESTIMATE命令输出的系数相关阵残差自相关检验结果这部分的输出格式(图九)和序列自相关系数白噪声检验部分的输出结果一样。

本例中由于延迟各阶的LB统计量的P值均显著大于a(a=0.05),所以该拟合模型显著成立。

图九ESTIMATE命令输出的残差自相关检验结果拟合模型的具体形式ESTIMA TE命令输出的拟合模型的形式序列预测forecastlead=5id=time out=results;run;其中,lead是指定预测期数;id是指定时间变量标识;out是指定预测后的结果存入某个数据集。

该命令运行后输出结果如下:FORECAST命令输出的预测结果该输出结果从左到右分别为序列值的序号、预测值、预测值的标准差、95%的置信下限、95%的置信上限。

利用存储在临时数据集RESULTS里的数据,我们还可以绘制漂亮的拟合预测图,相关命令如下:procgplot data=results;plot x*time=1 forecast*time=2 l95*time=3 u95*time=3/overlay;symbol1c=black i=none v=start;symbol2c=red i=join v=none;symbol3c=green i=join v=none l=32;run;输出图像如下:拟合效果图注:图中,S号代表序列的观察值;连续曲线代表拟合序列曲线;虚线代表拟合序列的95%上下置信限。

所谓预测就是要利用序列以观察到的样本值对序列在未来某个时刻的取值进行估计。

目前对平稳序列最常用的预测方法是线性最小方差预测。

线性是指预测值为观察值序列的线性函数,最小方差是指预测方差达到最小。

在预测图上可以看到,数据围绕一个X围内波动,即说明未来的数值变化时平稳的。

二、课后习题第十七题:根据某城市过去63年中每年降雪量数据(单位:mm)得:(书本P94)程序:data example17_1;input x;time=_n_;cards;126.4 82.4 78.1 51.1 90.9 76.2 104.5 87.4110.5 25 69.3 53.5 39.8 63.6 46.7 72.979.6 83.6 80.7 60.3 79 74.4 49.6 54.771.8 49.1 103.9 51.6 82.4 83.6 77.8 79.389.6 85.5 58 120.7 110.5 65.4 39.9 40.188.7 71.4 83 55.9 89.9 84.8 105.2 113.7124.7 114.5 115.6 102.4 101.4 89.8 71.5 70.998.3 55.5 66.1 78.4 120.5 97 110;procgplot data=example17_1;plot x*time=1;symbolc=red i=join v=star;run;procarima data=example17_1;identifyvar=x nlag=15minicp= (0:5) q=(0:5);run;estimatep=1;run;estimatep=1 noin;run;forecastlead=5id=time out=results;run;procgplot data=results;plot x*time=1 forecast*time=2 l95*time=3 u95*time=3/overlay;symbol1c=black i=none v=start;symbol2c=red i=join v=none;symbol3c=green i=join v=none l=32;run;(1)判断该序列的平稳性与纯随机性该序列的时序图如下(图a)图a由时序图显示过去63年中每年降雪量数据围绕早70mm附近随机波动,没有明显趋势或周期,基本可以看成平稳序列,为了稳妥起见,做了如下自相关图(图b)图b时序图就是一个平面二维坐标图,通常横轴表示时间,纵轴表示序列取值。

时序图可以直观地帮助我们掌握时间序列的一些基本分布特征。

根据平稳时间序列均值、方差为常数的性质,平稳序列的时序图应该显示出该序列始终在一个常数值附近随机波动,而且波动的X围有界的特点。

如果观察序列的时序图,显示出该序列有明显的趋势性或周期性,那它通常不是平稳序列。

样本的自相关图我们可以知道该图横轴表示自相关系数,综轴表示延迟时期数,用水平方向的垂线表示自相关系数的大小。

我们发现样本自相关图延迟2阶之后,自相关系数都落入2倍标准差X围以内,自相关图显示该序列自相关系数一直都比较小,1阶开始控制在2倍的标准差X围以内,可以认为该序列自始自终都在零轴附近波动,这是随即性非常强的平稳时间序列。

纯随机性检验见下图:(图c)图c根据图c的检验结果我们知道,在6阶延迟下LB检验统计量的P值显著小于0.05,所以我们可以以很大的把握(置信水平>95%)断定这个拟合模型的残差序列属于非白噪声序列。

(2)如果序列平稳且非白躁声,选择适当模型拟合该序列的发展。

模型识别如下图(图d)图d假如某个观察值序列通过序列预处理,可以判定为平稳非白噪声序列,就可以利用ARMA模型对该序列建模。

建模的基本步骤如下:1:求出该观察值序列的样本自相关系数(ACF)和样本偏自相关系数(PACF)的值。

2:根据样本自相关系数和偏自相关系数的性质,选择适当地ARMA(p,q)模型进行拟合。

相关文档
最新文档