《固定化酶》PPT课件 (2)

合集下载

固定化酶技术ppt课件

固定化酶技术ppt课件
固定化酶应有最小的空间位阻。 酶与载体必须结合牢固,利于固定化酶的回收及反
复使用。 固定化酶应有最大的稳定性,所选载体不与废物、
产物或反应液发生化学反应。 固定化酶成本要低,以利于工业使用。
7
3.1 固定化酶的传统制备方法
3.1.1吸附法
吸附法是利用物理吸附法,将酶固定在纤维素、琼脂糖等多糖类或多孔玻 璃、离子交换树脂等载体上的固定方式。显著特点是:工艺简便及条件温 和,包括无机、有机高分子材料,吸附过程可同时达到纯化和固定化;酶 失活后可重新活化,载体也可再生。但要求载体的比表面积要求较大,有 活泼的表面。
酶与载体的结合部位不应当是酶的活性部位(酶 活性中心的氨基酸残基不发生变化)
避免那些可能导致酶蛋白高级结构破坏的条件。 由于酶蛋白的高级结构是凭借氢键、疏水键和离
子键等弱键维持,所以固定化时要采取尽量温和 的条件,尽可能保护好酶蛋白的活性基团。
6
固定化应该有利于生产自动化、连续化。 载体能抗一定的机械力。
(2)微囊型
把酶包埋在由高分 子聚合物制成的小 球内,制成固定化 酶。由于形成的酶 小球直径一般只有 几微米至几百微米, 所以也称为微囊化 法。
9
1.3结合法 酶蛋白分子上与不溶性固相支持物表面上通过离子键结合而使酶固定
的方法,叫离子键结合法。其间形成化学共价键结合的固定化方法叫 共价键结合法。共价键结合法结合力牢固,使用过程中不易发生酶的 脱落,稳定性能好。该法的缺点是载体的活化或固定化操作比较复杂, 反应条件也比较强烈,所以往往需要严格控制条件才能获得活力较高 的固定化酶。
11
3.2固定化酶的新型制备方法
3.2.1共价固定法 酶分子表面存在很多可供利用的化学基团。选择性地利用酶分子表面远离

固定化酶PPT课件

固定化酶PPT课件

A.重氮法
h
34
B 叠氮法
•例 • 用羧甲基纤维素叠氮衍生物制备固定化胰蛋
白酶,步骤如下:
• ⑴ 酯化 • ⑵ 肼解 • ⑶ 叠氮化 • (4) 偶联
h
35
B 叠氮法
• 对含有羧机基的载体,与肼基作用生成含有酰肼基团的载体, 再与亚硝酸活化,生成叠氮化合物。最后于酶偶联
h
36
C.烷基化反应法
• 含羟基的载体可用三氯三嗪等多卤代物进行活化, 形成含有卤素基团的活化载体。
乙酰 -DL — Ala 乙酸
L — Ala +
Ala Aminoacylase
乙酰 -D —
氨基酰化酶
h
67
A-L-Ala A-D-Ala
储 罐
固定化酶 柱子


离心机




反应产物
L-Ala A-D-Ala
晶体 L-Ala
h
68
2、固定化酶在医学上的应用(酶电极)
(1)葡萄糖电极
半透膜 酶胶层
感应电极
ß-D-葡萄糖+O2
酶电极示意图
D-葡萄糖酸-1,5-内酯+H2O
h
69
葡萄糖氧化酶
葡萄糖+醌+H2O
葡萄糖酸+氢醌
Pt
氢醌
醌+2H++2e-
铂电极
h
70
(2)脲电极
脲酶
Urea + 2H2O
2NH4++2HCO3-
产生的2NH4+为阳离子电极感应。
此外还有: 氨基酸电极 醇电极 尿酸电极 乳酸电极 青霉素电极 亚硝酸离子电极:菠菜亚硝酸还原酶产生NH3

酶与细胞的固定化课件.ppt

酶与细胞的固定化课件.ppt

采用明胶作载体,戊二醛作交联剂 制备固定化果胶酯酶(焦云鹏,2005)
固定化果胶酯酶的热稳定性
固定化果胶酯酶的pH稳定性
采用明胶作载体,戊二醛作交联剂 制备固定化果胶酯酶(焦云鹏,2005)
固定化果胶酯酶作用的最适温度
固定化果胶酯酶作用的最适pH值
5、酶的动力学特征 固定化酶的表观米氏常数Km随载体的带电性能变化。 二者电荷不同,因静电作用,固定化酶的表观Km值低于溶液的Km值; 电荷相同,由于亲和力降低,固定化酶的表观Km值显著增加。
Cefaclor(R1=H,R3=Cl) Cephalexin(R1=H,R3=Me) Cefadroxil(R1=OH,R3=Me)
酶促合成头孢类抗生素
CHCOOCH3 + H2N
NH2
O
S
Synthetase
N CH3
COOH
Esterase
CHCOOH +
NH2
CHCONH
NH2 O
S
N CH3
交联法有2种形式即酶直接交联法和酶辅助蛋白交联法。
酶直接交联法:在酶液中加入适量多功能试剂,使其形成不溶性衍生物。 固定化依赖酶与试剂的浓度、溶液pH和离子强度、温度和反应时间之间 的平衡。
酶辅助蛋白交联法:为避免分子内交联和在交联过程中因化学修饰而引起 酶失活,可使用第二个"载体"蛋白质(即辅助蛋白质,如白蛋白、明胶、 血红蛋白等)来增加蛋白质浓度,使酶与惰性蛋白质共交联。
二、固定化酶和固定化细胞的性质与表征 (一)固定化酶的性质 1、酶的活性 多数情况下固定化酶的活力常低于天然酶。原因:酶结构变化与空间
位阻。
2、酶的稳定性 大多数固定化酶具有较高的稳定性、较长的操作寿命和保存寿命。

固定化酶-PPT精品文档

固定化酶-PPT精品文档

世界第一例获得工业应用的固定化酶是 DEAESephadex A-25吸附的氨基酰化酶反应用于 DL-AA的光学分析。
锲而舍之,朽木不折。锲而不舍, 金石可镂 友友情分享O(∩_∩)O~
9
(二)、包埋法
锲而舍之,朽木不折。锲而不舍, 金石可镂 友友情分享O(∩_∩)O~
10
1、凝胶包埋法(胶格包埋法):
第七章 固定化酶
(Immobilized Enzyme)
锲而舍之,朽木不折。锲而不舍, 金石可镂 友友情分享O(∩_∩)O~
1
酶在水溶液中不稳定,一般不能反复使 用,而且不易与产物分离,不利于产物 的提纯和精制。 针对这些限制酶广泛应用的因素,将 水溶性酶或游离细胞经过化学或物理手 段处理,将酶束缚在一定的空间内,限 制酶分子在此区间进行活跃的催化作用, 成为不溶于水的固定化的酶或细胞。 固定化酶:固定在载体上,并在一定范 围内进行催化反应的酶。
锲而舍之,朽木不折。锲而不2.吸附法的优点、缺点
吸附法的优点:操作简单,可供选择的载体类型多, 吸附过程可同时达到纯化和固化的目的,所得到的 固定化酶使用失活后可以重新活化和再生。 吸附法的缺点:酶和载体的结合力不强,易脱落, 会导致催化活力的丧失和沾污反应产物。
离子结合法(ion binding)是指在适宜的pH和离子强度
条件下,利用酶的侧链解离基团和离子交换基间的 相互作用而达到酶固定化的方法(离子键)。
最常用的交换剂有CM-纤维素、DEAE-纤维素、DEAE-葡聚 糖凝胶等;其他离子交换剂还有各种合成的树脂如 Amberlite XE-97、Dowe X-50等。
锲而舍之,朽木不折。锲而不舍, 金石可镂 友友情分享O(∩_∩)O~
4
吸附法 包埋法 共价结合法 交联法

固定化酶的制备和应用 PPT课件

固定化酶的制备和应用 PPT课件

学习探究区
第8课时
(2)方法步骤
①乳糖酶的溶解:准确称取乳糖酶 100 mg,然后将其溶

解在 pH__7_.3__的磷酸缓冲液中,其中单体__A_r_c__浓度为
课 栏
质量分数 20%,交联剂__B_i_s __浓度为质量分数 5%。
目 开 关
②聚合:将含有 N,N,N′,N′-四甲基乙二胺和 _过__硫__酸__铵___的磷酸缓冲液迅速倒入乳糖酶的溶解液中,
本 4.固定化酶应用的常见方式
课 栏
(1)间歇式:每次反应完后,经_离__心__或__过__滤___法

收集酶后再重复利用。
开 关
(2)连续式:用固定化酶制成的_反__应__柱___进行不
间断的重复利用,如图。
图中①是反应柱,②是固定化酶,③是分布着
小孔的筛板,不允许酶颗粒通过,而反应液可
以自由流出。
加酶分解是用预先灭过菌的玻璃棒每隔一段时间轻轻搅
拌;固定化酶回收用的是缓冲液反复冲洗固定化酶。所
以 C 正确。 答案 C
学习探究区
第8课时
3.下列关于牛奶中乳糖的分解的检测的相关叙述,错误的是( B ) A.乳糖酶可以将乳糖分解为半乳糖和葡萄糖
B.还原糖可与双缩脲试剂反应产生砖红色沉淀
本 C.根据化合物颜色的深浅变化,可以了解乳糖酶的作用活性
2.方法步骤 (1)鲜牛奶的处理:取新鲜牛奶 0.5 kg 放入 1 000 mL 干净 烧杯中,__8_5_~__9_0__ ℃巴氏灭菌。将灭菌后的牛奶冷却至 __4_5_~__5_0___ ℃,_过__滤___后平均分为两部分,一部分放入 A 烧杯,另一部分放到 B 烧杯内作对照。
学习探究区
第8课时

《酶的固定化》PPT课件

《酶的固定化》PPT课件

第一节 酶固定化
定义 酶的固定化:将酶和菌体与不溶性载体结合的过程; 固定化酶:在一定空间内呈闭锁状态存在的酶,能连续 进行反应,反应后的酶可回收重复使用; 概念发展
“水不溶酶”(water insoluble enzyme) “固相酶”(solid phase enzyme)
1971年第一届国际酶工程会议正式采用“固定化酶(immobi lized enzyme)”
• 1、吸附法(link) • 2、包埋法(link) • 3、结合法(link) • 4、交联法(link) • 5、热处理法(link)
酶固定化方法示意图
吸附法 用固体吸附剂将酶或含酶菌体吸附在其表面上而使其固定的方法; 固体吸附剂:活性炭、硅藻土、多孔陶瓷、多孔玻璃等; (1)操作简单,条件温和,不会引起酶变性失活,载体廉价易得,可反复使用; (2)物理吸附结合能力弱,酶与载体结合不牢固易脱落.
(2)产物酸碱性对最适pH值的影响
酸性:固定化酶的最适pH值比游离酶的高 碱性:固定化酶的最适pH值比游离酶的低 中性:固定化酶的最适pH值一般不变 原因:载体障碍产物的扩散
(back)
底物的特异性
与底物分子量的大小有关; 作用于低分子量底物的酶,没有明显变化,如氨基 酰化酶、葡聚糖氧化酶等; 既可作用于大分子底物,又可作用于小分子底物的 酶,往往会发生变化。如,固定在羧甲基纤维素上 的胰蛋白酶,对二肽或多肽的作用保持不变,而对 酶蛋白的作用仅为游离酶的3%左右 原因:载体的空间位阻作用
Relative activity (%)
100
80
60
A
B 40
20
0 30 40 50 60 70 80 90 Temperature ( 篊 )

《固定化酶》课件

《固定化酶》课件
《固定化酶》课件

CONTENCT

• 酶的介绍 • 固定化酶的原理与技术 • 固定化酶的制备与表征 • 固定化酶的实际应用 • 固定化酶的发展前景与挑战
01
酶的介绍
酶的定义与特性
酶的定义
酶是由生物体产生的一种具有催化作 用的有机物,能够加速化学反应的速 率而自身不发生化学变化。
酶的特性
高效性、专一性和作用条件温和的特 性。
在化学工业中的应用
固定化酶在化学工业中广泛应用于有机合成和手性合成。通过固定化酶技术,可 以将酶固定在载体上,实现高效、环保的有机合成,降低生产成本和环境污染。
固定化酶还可以用于药物的生产和研发,通过酶促反应实现药物的合成和修饰, 提高药物的疗效和降低副作用。
在环境保护中的应用
固定化酶在环境保护中广泛应用于废水处理和污染物降解。通过固定化酶技术,可以将酶固定在载体上,实现高效、稳定的 废水处理和污染物降解,降低环境污染和生态风险。
固定化酶的技术方法
总结词
固定化酶的技术方法
详细描述
固定化酶的技术方法主要包括吸附法、包埋法、交联法和共价结合法等。这些方法各有特点,可根据不同的应用 需求选择适合的方法。
固定化酶的应用领域
总结词
固定化酶的应用领域
详细描述
固定化酶的应用领域广泛,包括生物传感器、生物反应器、药物制造、环境保护等领域。通过固定化 酶技术,可以实现酶的重复利用,提高反应效率,降低生产成本,为相关领域的发展提供有力支持。
智能化
通过与人工智能技术的结合,实现固定化酶的智能 化调控和优化,提高酶的利用效率和生产效益。
固定化酶面临的挑战
80%
稳定性问题
固定化酶在使用过程中可能会受 到环境因素的影响,如温度、pH 值等,导致酶的活性降低或失活 。

第五章固定化酶及固定化技术 ppt课件

第五章固定化酶及固定化技术  ppt课件
能对底物产生立体影响的 扩散层以及静电的相互作用等引起的变化。
载体与酶的相互作用:
载体与酶的直接作用可能表现为活力丧失、破坏酶结 构、封闭酶活性部位等。
改变之一:构象改变、立体屏蔽
构象改变: 酶分子构象发生某种扭曲,导致
酶与底物结合能力或催化能力下降
4.包埋法
是指将酶或含酶微生物包裹在多孔的载体中。 网格型; 微囊型。
网格法
——将酶分子或微生物包埋在凝胶格子里。 天然凝胶:琼脂凝胶、海藻酸钙凝胶、角叉菜胶、明胶等 合成材料:聚丙烯酰胺、聚乙烯醇和光敏树脂等。
网格型包埋法是固定化微生物中用得最多、最有效的方法。
微囊型
半透膜包埋法(微囊化法): 将酶包埋在有各种高分子聚合物制成的小囊中,
固定化酶的过程中还存在几个亟待解决解决的难题 :
酶的活性中心发生物理化学变化导致酶活力降低 酶固定化后多了空间屏障,增加了传质阻力 酶和载体结合不牢固,容易脱落,酶活力损失大 固定化颗粒成型困难
固定化技术的改进
定点固定化技术 抗体偶联、生物素-亲和素亲和、氨基酸置换(Cys)
质量转移效应:
分配效应(催化剂颗粒内外不同的溶质浓度),外部或内部(微孔)扩散效应;这些给 出了游离酶在合适反应条件下的效率。
稳定性:
操作稳定性(表示为工作条件下的活性降低),贮藏稳定性
效能:
生产力(产品量/单位活性或酶量),酶的消耗(酶单位数/公斤产品)
包括:
酶本身的变化:
主要由于活性中心的氨基酸残基、高级结构和电荷状 态等发生变化;
但是载体和酶的结合力比较弱,容易受缓冲液种 类或pH的影响,在离子强度高的条件下进行反应 时,酶往往会从载体上脱落。
共价结合法
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

包埋法
网格法 微囊法
化学结合法
交联法 共价结合法
1、物理吸附法
(physical adsorption)
• 是通过氢键、疏水键等作用力将酶吸附于不溶性载体的方法。
• 选择载体的原则
①要有巨大的比表面积
② 要有活泼的表面 ③ 便于装柱进行连续反应。
常用的载体有:
• (1)有机载体: • 纤维素、骨胶原、火棉胶及面筋、淀粉等。
第三章
酶的固定化
• 第一节 酶的固定化 • 第二节 辅酶的固定方法 • 第三节 固定化细胞 • 第四节 固定化酶的性质及其影响因素 • 第五节 固定化酶催化反应动力学
对于现代工业来说,酶不是一种理想的 催化剂
• 绝大多数水溶性的酶,酶蛋白对外界环境很敏 感,极易失活。催化结束后极难回收,只能进 行分批生产。
• 特点:
它的机械强度高,在包埋的同时使酶共价偶联到 高聚物上。
缺点:酶容易漏失,以低分子量蛋白质为甚。调 整交联剂浓度与交联程度可以得到克服。
• 海藻酸钠
它从海藻中提取出来,可被多价离子Ca2+、Al 3+凝胶化 ,操作简单经济。
• K-角叉莱胶(卡拉胶)
• 卡拉胶(K-Carrageenin)是由角叉菜(又称鹿角菜;Cawageen)中提取的一种多糖。
可以冷却成胶或与二、三价金属离子成胶。 包埋条件温和无毒性,机械强度好。固定化 的酶活回收率和稳定性都比聚丙烯酰胺法好 。
(2)微囊化包埋法
➢微囊法主要将酶封装在半透性聚合物膜的微 囊中(如胶囊、脂质体和中空纤维)。
➢胶囊和脂质体主要用于医学治疗; 中空纤维主要适于工业使用 。
➢主要包括
(1)界面沉淀法 (2)界面聚合法 (3)脂质体包埋法
• 离子交换剂的吸附容量一般大于物 理吸附剂。
• ⑴阴离子交换剂:
二乙基氨基乙基(DEAE)—纤维素、混合胺类(ECTEDLA)纤维素、四乙氨基乙基 (TEAE)-纤维素、DEAE-葡聚糖凝 胶、Amberlite IRA-93、410、900等。
• ⑵阳离子交换剂:
羧甲基(CM)—纤维素、纤维素柠檬酸盐、Amberlite CG50 、IRC—50、IR—200、 Dowex-50等。
慢得多。 6. 载体:非多孔性载体---颗粒越小吸附力越强。多孔
性载体--要考虑酶的大小和吸附面积的大小。
3、包埋法
包埋法是将酶物 理包埋在高聚物网 格内的固定化方法 。
如将聚合物的单体和酶溶 液混合后,再借助聚合促 进剂的作用进行聚合,将 酶包埋于聚合物中以达到 固定化的目的。
• 包括凝胶包埋和微囊化 包埋两种。
界面沉淀法
物理微囊化法。它是利用某些高聚物在水相和有机 相的界面上溶解度较低而形成的皮膜将酶包埋。此
法条件温和,酶失活少,但要完全除去膜上残留的有机溶剂很 麻烦。作为膜材料的高聚物有硝酸纤维素、聚苯乙烯和聚甲基 丙烯酸甲酯等。
界面聚合法
化学方法。将疏水性和亲水性单体在界面进行聚合 ,形成半透膜,将酶包埋于半透膜微囊中。所得的 微囊外观好,但不稳定,有些酶还会因在包埋过程 中发生化学反应而失活。
• ②工厂初始投资大
• (3)有利于工艺自动化和微电脑化 • ③只能用于可溶性底物 ,对大分子底物不适宜
• (4)多次使用 • ④与完整菌体相比,需
• (5)较游离酶相比能适应于多酶反应 要辅助因子的催化反应
• (6)产品质量高,成本低
不适宜于多酶反应
固定化酶的制备原则
• ①必须注意维持酶的催化活性及专一性。 • ②固定化的载体必须有一定的机械强度
即能通过简单的过滤或离心就可回收和重 复使用。
• ⑦固定化酶成本要低,以利于工业
使用。
• ⑧充分考虑到固定化酶制备过程 和应用过程中的安全因素。
固定化载体的选择标准
① 载体的形式 ② 载体的结构 ③ 载体的性质 ④ 酶偶联量或装载量和实效系数
二、固定化酶的制备方法
非化学结合法
结晶法 分散法 物理吸附法 离子结合法
• 解决办法??
第一节 酶的固定化
• 一、固定化酶(Immobilized Enzyme)
• 定义:是指在一定空间内呈闭锁状态存在的 酶,能连续地进行反应,反应后的酶可回收 重复使用。
固定化酶的优缺点
• 固定化酶优点:
• 固定化酶缺点:
• (1)简化了提纯工艺
• ①酶活力有损失
• (2)可以装塔连续反应
(1)凝胶包埋法:
• 将酶分子包埋在凝胶高聚物网格内的包埋 方法。
• 聚丙烯酰胺、海藻酸钠、K-角Байду номын сангаас菜胶(卡 拉胶)、胶原和明胶等
聚丙烯酰胺包埋
• 先把丙烯酰胺单体、交联剂(如N,N-甲叉双丙烯 酰胺)和悬浮在缓冲溶液中的酶混合,然后加入 聚合催化剂(如二甲氨基丙腈与过硫酸钾)使之 开始聚合,结果就在酶分子周围形成交联的高聚 物网络。
有利于生产自动化,连续化,不能因机械搅拌而破碎或脱 落。 • ③固定化酶应有最小的空间位阻
尽可能不妨碍酶与底物的接近,以提高产品的产量。 • ④酶与载体必须结合牢固 能回收贮藏,反复使用。 • ⑤固定化酶应有最大的稳定性
所选载体不与废物、产物或反应液发生化学反应。
固定化酶的制备原则
• ⑥固定化酶应容易与产物分离,
• 缺点:
酶与载体相互作用力弱导致酶易脱落。
吸附程度的影响因素:
1. pH:影响载体和酶的电荷变化,从而影响酶吸附
2. 离子强度:一般认为盐阻止吸附。 3. 蛋白质浓度:若吸附剂的量固定,随蛋白质浓度增加,
吸附量也增加,直至饱和。 4. 温度:蛋白质往往是随温度上升而减少吸附。 5. 吸附速度:蛋白质在固体载体上的吸附速度要比小分子
1969年,最早应用于工业生产的固定化氨基酰化酶就是 使用多糖类阴离子交换剂DEAE-Sephadex A-25固定化的。
吸附法特点
• 优点:
操作简单,可供选择的载体类型多,吸附过 程可同时达到纯化和固化的目的,所得到的 固定化酶使用失活后可以重新活化和再生。酶
活性中心不易被破坏和酶高级结构变化少,酶活力损失很少。
• (2)无机载体: • 氧化铅、皂土、白土、高岭土、多孔玻璃、二氧化钛等。 • 无机载体的吸附容量较低,而且酶容易脱落。
2、离子结合法
(在工业上具广泛的用途)
• 将酶与含有离子交换基团的水不溶载体相结合而达到固 定化的一种方法。
• 在适宜的pH和离子强度条件下 ,利用酶的侧链解离基团和离 子交换基团间的相互作用而达 到酶固定化的方法。
相关文档
最新文档