中考数学知识点复习 总复习资料大全(精华版)

合集下载

中考数学总复习知识点总结版

中考数学总复习知识点总结版

中考数学总复习知识点总结版一、代数与函数1.数的性质(1)整数的基本性质:加法、减法、乘法、除法(2)正数、负数、零的性质(3)有理数的性质:加法、减法、乘法、除法(4)无理数的性质:开方、近似2.代数式的运算(1)多项式的四则运算(2)平方差公式、完全平方公式(3)配方法则、公因式提取法、公式法3.一元一次方程与不等式(1)方程的定义、解的概念(2)等式的性质:等式的加减乘除、等式性质的保持(3)一元一次方程:解的判定、运算规则、解的性质(4)一元一次不等式:解的判定、运算规则、不等式性质的保持(5)一次方程与一次不等式的应用4.二元一次方程与不等式(1)二元一次方程:解的判定、运算规则、解的性质(2)二元一次不等式:解的判定、运算规则、不等式性质的保持(3)图像法解方程与不等式5.函数与方程(1)函数的概念与性质(2)函数关系与方程关系(3)画函数图像和考察函数关系6.一次函数(1)函数关系与表达式(2)函数图像及其性质(3)一次函数的应用7.二次函数(1)函数关系与表达式(2)函数图像及其性质(3)二次函数的最值与解的判定(4)二次函数的应用:消费问题、运动问题、面积体积问题二、几何与空间1.图形相似与相等(1)图形的基本概念和性质:点、线、面(2)图形的相似:形状相同、内角相等(3)图形的相等:边长、角度相等(4)判定图形相似和相等的条件2.角与弧(1)角的概念和性质:角的定义、对应角、相等角、补角、余角(2)弧的概念和性质:弧长、弧的度量、弧与角的关系、弧与弦的关系3.直线与平面(1)直线的性质:直线上的点、直线上的角(2)平面的性质:平面内的直线、平面内的角4.线段与射线(1)线段的性质:线段的长度、线段的中点(2)射线的性质:射线的起点、射线上的点5.平行线与垂直线(1)平行线的性质:平行线与转角、平行线的性质(2)垂直线的性质:垂线的性质、垂直线的判断6.三角形(1)三角形的概念和性质:三角形的定义、内角和、外角和(2)三角形的分类:按边长、按角度分类(3)三角形的相似:既相似又全等、全等不相似(4)三角形的性质:内角和、外角和、三角形中的中线、中位线、高线7.四边形(1)四边形的概念和性质:四边形的定义、四角和、四边和、对角线(2)矩形、正方形、菱形、平行四边形、梯形的性质8.圆(1)圆的基本概念和性质:圆的定义、圆心、半径、直径、弦、弧、弧度制(2)圆的相关性质:相等弧长对应的圆周角相等、相等弧相等(3)定点在圆上的直线与圆的位置关系三、数据与统计1.数据的描述(1)数据的收集、整理和描述(2)数据的中心趋势:平均数、中位数、众数(3)数据的离散程度:极差、标准差、方差2.数据的分析(1)统计图的绘制和分析:条形图、折线图、饼图、频率分布直方图(2)对比数据的分析:百分数、比值以上就是中考数学的总复习知识点总结,希望能对你的复习有所帮助。

数学中考全部知识点总结

数学中考全部知识点总结

数学中考全部知识点总结一、整式与方程1.整式的基本概念2.整式的四则运算3.方程的基本概念4.整式方程的解法5.二次根式与分式方程二、一次函数与方程1.一次函数的基本概念2.一次函数的性质3.一次函数的图像与性质4.一次函数方程的解法5.简单的实际问题与一元一次方程6.解一元一次方程的应用题三、二次函数与方程1.二次函数的基本概念2.二次函数的图像与性质3.求解二次方程4.应用题四、不等式1.一元一次不等式的解法2.一元二次不等式的解法3.简单的实际问题与不等式五、函数基本概念1.函数的定义2.函数的性质3.函数的图像4.函数的应用六、平面向量1.平面向量的基本概念2.平面向量的运算3.向量的模4.向量的数量积5.向量的应用七、三角函数1.角和弧度2.任意角的三角函数3.三角函数的诱导公式4.三角函数的性质5.特殊角的三角函数6.解三角函数方程八、平面解析几何1.平面直角坐标系2.点和点的位置关系3.直线的方程4.直线与圆的位置关系5.圆的方程6.解析几何应用题九、空间解析几何1.空间直角坐标系2.点、直线、平面的位置关系3.直线的方程4.平面的方程5.解析几何应用题十、立体几何1.平行线与全等三角形2.相似三角形3.勾股定理与直角三角形4.平行四边形与梯形5.圆的性质6.棱柱与棱锥7.棱台与圆柱8.球与球面十一、统计与概率1.数据的收集与整理2.频数分布3.图表的制作与分析4.概率的基本概念5.概率的计算6.概率应用题十二、数列与数学归纳法1.数列的基本概念2.等差数列3.等比数列4.数学归纳法的基本概念5.数学归纳法的应用以上是数学中考的全部知识点总结,希望对大家的复习有所帮助。

祝大家考试顺利!。

中考数学知识点总结最全提纲_中考数学知识点归纳总结大全

中考数学知识点总结最全提纲_中考数学知识点归纳总结大全

中考数学知识点总结最全提纲_中考数学知识点归纳总结大全一、代数与函数1.数的性质:整数的除法、整除性及定理、分数的加减乘除、有理数的加减乘除、实数的性质。

2.代数式:代数式的定义、整式、分式、多项式、同类项、合并同类项、整式的加减乘除。

3.一次函数:一次函数的定义、一次函数的图象、一次函数的性质、解一次函数方程、应用题。

4.二次函数:二次函数的定义、二次函数的图象、二次函数的性质、解二次函数方程、应用题。

5.四则运算:整式的加减乘除、分式的加减乘除、根式的加减乘除。

二、平面几何1.角:角的定义、角的分类、角的性质、角度计量。

2.三角形:三角形的分类、三角形的性质、三角形的判定、三角形的面积计算、相似三角形。

3.四边形:四边形的分类、四边形的性质、平行四边形的性质、长方形、正方形、菱形。

4.圆:圆的性质、弦长定理、切线定理、扇形面积和弓形面积的计算。

5.计算:角度计算、线段比例计算、面积计算。

三、立体几何1.空间几何体:点、线、面、多面体的定义、性质、种类、展开图。

2.体积:立方体的体积计算、长方体的体积计算、棱柱的体积计算、棱锥的体积计算、圆柱的体积计算、球的体积计算。

四、数据与概率1.统计:数据的收集与整理、频数表、频率表、柱状图、折线图、扇形图。

2.概率:随机事件、样本空间、概率的定义、概率的计算、发生与不发生。

五、函数图象的认识和运用1.坐标系:直角坐标系、象限、坐标的含义。

2.函数:函数的概念、函数的图象、函数的性质、函数的运算。

3.函数关系:函数关系的表达、函数关系的应用。

4.反比例函数:反比例函数的性质、反比例函数的图象、反比例函数的应用。

六、数与量1.等比数列:等比数列的概念、等比数列的通项公式及性质、等比数列的前n项和的计算、应用题。

2.数轴,绝对值,数线图以上是中考数学知识点的一些提纲,总结了中考的数学考试内容,包括代数与函数、平面几何、立体几何、数据与概率、函数图象的认识和运用以及数与量等各个方面的知识点。

2023中考数学总复习及知识点总结(绝版)

2023中考数学总复习及知识点总结(绝版)

2023中考数学总复习及知识点总结(绝版)
一、整数及有理数
1. 整数的概念及性质
2. 整数运算的四则运算及其规则
3. 绝对值的概念及性质
4. 有理数的概念及性质
5. 有理数的四则运算及其规则
二、代数式与方程
1. 代数式的概念及运算法则
2. 代数式的同类项合并与因式分解
3. 一元一次方程的概念及解法
4. 一元一次方程的应用问题
三、平面图形
1. 平面图形的基本概念和性质
2. 三角形的概念及分类
3. 三角形的周长与面积计算
4. 相似三角形的性质
5. 图形的旋转、平移和镜像
四、数型
1. 正数、负数和零的概念及性质
2. 小数的概念及运算性质
3. 小数与分数的换算
4. 百分数的概念及运用
五、函数与坐标
1. 函数的概念及函数图象
2. 直角坐标系的建立
3. 坐标的概念及坐标的运算
4. 图象与函数的关系
六、统计与概率
1. 数据的收集和整理
2. 数据的表示与分析
3. 概率的基本概念及计算
七、解决实际问题
1. 常见实际问题的解决方法
2. 解决实际问题的数学建模
以上是2023年中考数学总复习的知识点总结,希望对你的学习有所帮助!。

中考数学知识点复习 总复习资料大全(精华版)-精编

中考数学知识点复习 总复习资料大全(精华版)-精编

中考数学总复习资料大全第一章 实数★重点★ 实数的有关概念及性质,实数的运算 ☆内容提要☆ 一、重要概念1.数的分类及概念 数系表:说明:“分类”的原则:1)相称(不重、不漏) 2)有标准2.非负数:正实数与零的统称。

(表为:x ≥0) 常见的非负数有:性质:若干个非负数的和为0,则每个非负担数均为0。

3.倒数: ①定义及表示法②性质:A.a ≠1/a (a ≠±1);B.1/a 中,a ≠0;C.0<a <1时1/a >1;a >1时,1/a <1;D.积为1。

4.相反数: ①定义及表示法②性质:A.a ≠0时,a ≠-a;B.a 与-a 在数轴上的位置;C.和为0,商为-1。

5.数轴:①定义(“三要素”)②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。

6.奇数、偶数、质数、合数(正整数—自然数) 定义及表示: 奇数:2n-1实数无理数(无限不循环小数)0 (有限或无限循环性数) 整数分数正无理数负无理数实数负数整数分数无理数有理数正数整数分数 无理数有理数│a │ 2aa (a ≥0)(a 为一切实数)偶数:2n (n 为自然数) 7.绝对值:①定义(两种): 代数定义:几何定义:数a 的绝对值顶的几何意义是实数a 在数轴上所对应的点到原点的距离。

②│a │≥0,符号“││”是“非负数”的标志;③数a 的绝对值只有一个;④处理任何类型的题目,只要其中有“││”出现,其关键一步是去掉“││”符号。

二、 实数的运算1. 运算法则(加、减、乘、除、乘方、开方)2. 运算定律(五个—加法[乘法]交换律、结合律;[乘法对加法的]分配律) 3.运算顺序:A.高级运算到低级运算;B.(同级运算)从“左”到“右”(如5÷51×5);C.(有括号时)由“小”到“中”到“大”。

三、 应用举例(略)附:典型例题1. 已知:a 、b 、x 在数轴上的位置如下图,求证:│x-a │+│x-b │=b-a.2.已知:a-b=-2且ab<0,(a ≠0,b ≠0),判断a 、b 的符号。

中考数学重要知识点归纳

中考数学重要知识点归纳

中考数学重要知识点归纳
一、数与式
1.整数与分数的运算
2.整式与分式的运算
3.代数式的加减乘除运算
4.矩形的面积与周长计算
二、代数式与方程
1.一元一次方程求解
2.一元二次方程求解
3.线性方程组求解
4.不等式的解集表示
三、几何
1.平面直角坐标系
2.直线与线段的性质
3.圆的性质与计算
4.三角形的性质与计算
5.平行线与角的性质
6.平面图形的对称性
四、函数
1.线性函数与线性方程的关系
2.幂函数与指数函数的计算与图像
3.函数的平移、翻折与对称
4.函数的最值与极值
五、统计与概率
1.统计数据的收集与整理
2.平均数、中位数、众数的计算
3.概率的计算与事件的排列组合
4.抽样调查的设计与分析
六、三角函数
1.直角三角形中的三角函数计算
2.任意角的三角函数计算
3.三角恒等式的证明与应用
4.根据图像判断三角函数与角度的关系
七、利益问题
1.简单利息与复利的计算
2.等额本息与等本等息的还款计算
3.百分数与比例的计算
以上是中考数学的重要知识点的归纳,考生可以根据这些知识点进行
系统地学习和总结,以提高数学考试成绩。

当然,除了掌握基础知识,考
生还需注重练习和思维能力的培养,通过多做题目、深入理解和独立思考,才能真正掌握数学知识,提升解题能力。

中考数学知识点总结最全提纲_中考数学知识点归纳总结大全

中考数学知识点总结最全提纲_中考数学知识点归纳总结大全

中考数学知识点总结最全提纲_中考数学知识点归纳总结大全一、整数1.整数的概念和性质:正整数、负整数、零、相反数2.整数的比较和大小关系3.整数的加法、减法、乘法和除法运算的性质和规律4.整数的混合运算5.整数的应用题:温度计算、存款取款等二、分数1.分数的概念和性质:分子、分母、相等分数、真分数、假分数、带分数2.分数的比较和大小关系:通分、比较大小3.分数的加法、减法、乘法和除法运算的性质和规律4.分数的混合运算5.分数的应用题:物品分配、水果切分等三、小数1.小数的概念和性质:有限小数、无限小数、循环小数2.小数的运算:加法、减法、乘法和除法3.小数与分数的互化4.小数的应用题:长度、面积、体积等计算四、比例与比例问题1.比例的概念和性质:比例关系、比例的延长线2.比例的计算:比例的等价、比例的放大和缩小、比例的分配3.比例的应用题:速度、时间、价格等计算五、百分数1.百分数的概念和性质:基数、百分数、百分数的减法和加法2.百分数的转化:百分数与小数、分数的互化3.百分数的应用题:折扣、利率、增长率等计算六、图形的认识1.点、线段、射线、直线、角的概念和性质2.平行线、垂直线和相交线的判定方法3.三角形、四边形、多边形的概念和性质4.圆的概念和性质:圆心、半径、直径、弧5.图形的角度:锐角、直角、钝角、平角6.图形的面积和周长:三角形、四边形、圆的面积和周长的计算七、代数式与方程式1.代数式的概念和性质:代数式的字母、常数项、变量项、项数、次数2.代数式的计算:同类项的合并、多项式的加法和减法3.方程式的概念和性质:等式、未知数、方程的解4.一步方程式和一元一次方程式的解法5.方程的应用题:问题翻译为方程求解八、排列组合与概率1.排列与组合的基本概念和计算公式2.排列和组合的应用题:选委员、摆放顺序等3.概率的概念和性质:样本空间、事件、概率的计算公式4.概率的应用题:抽卡概率、事件概率等计算九、数据与统计1.数据的概念和性质:一维数据、二维数据、数据的收集和整理2.数据的表示和分析:表格、折线图、条形图、饼图的绘制和分析3.平均数、中位数和众数的计算和应用4.统计问题的分析和解决方法。

中考数学复习知识点归纳总结6篇

中考数学复习知识点归纳总结6篇

中考数学复习知识点归纳总结6篇篇1一、数与代数1. 数的基本概念:整数、分数、小数、百分数、比例、方程等。

2. 数的运算:加减乘除四则运算,乘方、开方运算,分数运算,小数运算等。

3. 代数表达式:用字母表示数,表达数量关系和变化规律。

4. 方程与不等式:解一元一次方程,解一元一次不等式,理解函数的概念。

二、几何与图形1. 几何概念:点、线、面、体,角、度数,平行、垂直等基本几何概念。

2. 图形与变换:平移、旋转、对称等图形变换,相似图形,全等图形。

3. 面积与体积:计算平面图形的面积,计算立体图形的体积。

4. 解析几何:理解直线的方程,理解圆及其方程。

三、函数与图像1. 函数的概念:理解变量间的关系,用解析式表示函数关系。

2. 函数的运算:函数的加减法,函数的乘法,复合函数。

3. 函数的图像:理解函数的图像及其变换,根据图像理解函数的性质。

4. 反函数与对称函数:理解反函数的概念,理解对称函数的概念。

四、数据与概率1. 数据收集与整理:理解数据收集的方法,会用统计图表表示数据。

2. 数据的计算:平均数、中位数、众数等统计量的计算,方差和标准差的计算。

3. 概率的概念:理解概率的基本概念,会计算事件的概率。

4. 概率的应用:理解概率在生活中的应用,会解决与概率相关的问题。

五、综合与实践1. 图形的变换与对称:运用几何知识解决实际问题,理解图形的变换和对称。

2. 函数的实际应用:理解函数在实际问题中的应用,如利润、成本等问题。

3. 数据的分析与决策:运用统计知识解决实际问题,理解数据的分析与决策。

4. 课题学习与研究性学习:理解课题学习与研究性学习的意义和方法。

在中考数学复习过程中,我们需要对以上知识点进行全面的梳理和总结,形成系统的知识框架。

同时,我们需要关注考试动态和命题趋势,结合历年真题进行有针对性的练习和巩固。

此外,我们还要注重解题技巧和策略的学习和应用,提高解题效率和准确性。

希望同学们能够认真复习备考,取得优异的成绩!篇2一、数与代数(一)数的认识复习要点:整数、小数、分数、百分数的认识及其关系,数的运算规则和运算性质。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学总复习资料大全第一章 实数★重点★ 实数的有关概念及性质,实数的运算 ☆内容提要☆ 一、 重要概念 1.数的分类及概念 数系表:说明:“分类”的原则:1)相称(不重、不漏) 2)有标准2.非负数:正实数与零的统称。

(表为:x ≥0) 常见的非负数有:性质:若干个非负数的和为0,则每个非负担数均为0。

3.倒数: ①定义及表示法②性质:A.a ≠1/a (a ≠±1);B.1/a 中,a ≠0;C.0<a <1时1/a >1;a >1时,1/a <1;D.积为1。

4.相反数: ①定义及表示法②性质:A.a ≠0时,a ≠-a;B.a 与-a 在数轴上的位置;C.和为0,商为-1。

5.数轴:①定义(“三要素”)②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。

6.奇数、偶数、质数、合数(正整数—自然数) 定义及表示: 奇数:2n-1偶数:2n (n 为自然数) 7.绝对值:①定义(两种): 代数定义:几何定义:数a 的绝对值顶的几何意义是实数a 在数轴上所对应的点到原点的距离。

②│a │≥0,符号“││”是“非负数”的标志;③数a 的绝对值只有一个;④处理任何类型的题目,实数 无理数(无限不循环小数)有理数 正分数 负分数 正整数0 负整数 (有限或无限循环性数) 整数 分数 正无理数负无理数0 实数 负数整数分数 无理数有理数 正数 整数 分数无理数有理数│a │ 2a a (a ≥0) (a 为一切实数)a(a≥0)-a(a<0)│a │=只要其中有“││”出现,其关键一步是去掉“││”符号。

二、 实数的运算 1. 运算法则(加、减、乘、除、乘方、开方) 2. 运算定律(五个—加法[乘法]交换律、结合律;[乘法对加法的]分配律) 3.运算顺序:A.高级运算到低级运算;B.(同级运算)从“左”到“右”(如5÷51×5);C.(有括号时)由“小”到“中”到“大”。

三、 应用举例(略) 附:典型例题 1. 已知:a 、b 、x 在数轴上的位置如下图,求证:│x-a │+│x-b │=b-a.2.已知:a-b=-2且ab<0,(a ≠0,b ≠0),判断a 、b 的符号。

第二章 代数式★重点★代数式的有关概念及性质,代数式的运算 ☆内容提要☆ 一、 重要概念 分类:1.代数式与有理式用运算符号把数或表示数的字母连结而成的式子,叫做代数式。

单独 的一个数或字母也是代数式。

整式和分式统称为有理式。

2.整式和分式含有加、减、乘、除、乘方运算的代数式叫做有理式。

没有除法运算或虽有除法运算但除式中不含有字母的有理式叫做整式。

有除法运算并且除式中含有字母的有理式叫做分式。

3.单项式与多项式没有加减运算的整式叫做单项式。

(数字与字母的积—包括单独的一个数或字母) 几个单项式的和,叫做多项式。

说明:①根据除式中有否字母,将整式和分式区别开;根据整式中有否加减运算,把单项式、多项式区分开。

②进行代数式分类时,是以所给的代数式为对象,而非以变形后的代数式为对象。

划分代数式类别时,是从外形来看。

如,xx 2=x,2x =│x │等。

4.系数与指数区别与联系:①从位置上看;②从表示的意义上看 5.同类项及其合并条件:①字母相同;②相同字母的指数相同 合并依据:乘法分配律 6.根式表示方根的代数式叫做根式。

含有关于字母开方运算的代数式叫做无理式。

注意:①从外形上判断;②区别:3、7是根式,但不是无理式(是无理数)。

7.算术平方根⑴正数a 的正的平方根(a [a ≥0—与“平方根”的区别]); ⑵算术平方根与绝对值单项式 多项式 整式 分式样有理式 无理式 代数式①联系:都是非负数,2a =│a │②区别:│a │中,a 为一切实数;a 中,a 为非负数。

8.同类二次根式、最简二次根式、分母有理化化为最简二次根式以后,被开方数相同的二次根式叫做同类二次根式。

满足条件:①被开方数的因数是整数,因式是整式;②被开方数中不含有开得尽方的因数或因式。

把分母中的根号划去叫做分母有理化。

9.指数(na —幂,乘方运算)⑴①a >0时,na >0;②a <0时,n a >0(n 是偶数),na <0(n 是奇数)⑵零指数:0a =1(a ≠0)负整指数:pa -=1/pa (a ≠0,p 是正整数) 二、 运算定律、性质、法则1.分式的加、减、乘、除、乘方、开方法则 2.分式的性质⑴基本性质:a b =am bm(m ≠0) ⑵符号法则:aba b a b -=-=- ⑶繁分式:①定义;②化简方法(两种)3.整式运算法则(去括号、添括号法则) 4.幂的运算性质:①ma ·na =nm a+;②m a ÷n a =nm a-;③n m a )(=mn a ;④nab )(=n a nb ;⑤n n n ba b a =)( 技巧:pp ba ab )()(=-5.乘法法则:⑴单×单;⑵单×多;⑶多×多。

6.乘法公式:(正、逆用)2222)(b ab a b a +±=± (a+b )(a-b )=22b a -(a ±b))(22b ab a + =33b a ±7.除法法则:⑴单÷单;⑵多÷单。

8.因式分解:⑴定义;⑵方法:A.提公因式法;B.公式法;C.十字相乘法;D.分组分解法;E.求根公式法。

9.算术根的性质:2a =a ;)0()(2≥=a a a ;b a ab ⋅=(a ≥0,b ≥0);ba ba =(a ≥0,b>0)(正用、逆用)10.根式运算法则:⑴加法法则(合并同类二次根式);⑵乘、除法法则;⑶分母有理化:A.a1;B.a ab a b =; C.bn a m -1. 11.科学记数法:na 10⨯(1≤a <10,n 是整数=)三、 应用举例(略) 四、 数式综合运算(略)第三章 统计初步a ·a …a=na n 个★重点★ ☆ 内容提要☆ 一、 重要概念 1.总体:考察对象的全体。

2.个体:总体中每一个考察对象。

3.样本:从总体中抽出的一部分个体。

4.样本容量:样本中个体的数目。

5.众数:一组数据中,出现次数最多的数据。

6.中位数:将一组数据按大小依次排列,处在最中间位置的一个数(或最中间位置的两个数据的平均数) 二、 计算方法 1.样本平均数:⑴)(121n x x x nx +++= ; ⑵若a x x -=1'1,a x x -=2'2,…,a x x n n -=',则a x x +='(a —常数,1x ,2x ,…,n x 接近较整的常数a); ⑶加权平均数:)(212211n f f f nf x f x f x x k kk =++++++=;⑷平均数是刻划数据的集中趋势(集中位置)的特征数。

通常用样本平均数去估计总体平均数,样本容量越大,估计越准确。

2.样本方差: ⑴])()()[(1222212x x x x x x ns n -++-+-=; ⑵若a x x -=1'1,a x x -=2'2,…,a x x n n-=',则])[(12'2'2'22'12x n x x x ns n -+++= (a —接近1x 、2x 、…、n x 的平均数的较“整”的常数);若1x 、2x 、…、n x 较“小”较“整”,则])[(12222212x n x x x ns n -+++= ;⑶样本方差是刻划数据的离散程度(波动大小)的特征数,当样本容量较大时,样本方差非常接近总体方差,通常用样本方差去估计总体方差。

3.样本标准差:2s s = 三、 应用举例(略)第四章 直线形★重点★相交线与平行线、三角形、四边形的有关概念、判定、性质。

☆ 内容提要☆ 一、 直线、相交线、平行线 1.线段、射线、直线三者的区别与联系 从“图形”、“表示法”、“界限”、“端点个数”、“基本性质”等方面加以分析。

2.线段的中点及表示3.直线、线段的基本性质(用“线段的基本性质”论证“三角形两边之和大于第三边”) 4.两点间的距离(三个距离:点-点;点-线;线-线) 5.角(平角、周角、直角、锐角、钝角) 6.互为余角、互为补角及表示方法 7.角的平分线及其表示8.垂线及基本性质(利用它证明“直角三角形中斜边大于直角边”) 9.对顶角及性质10.平行线及判定与性质(互逆)(二者的区别与联系)11.常用定理:①同平行于一条直线的两条直线平行(传递性);②同垂直于一条直线的两条直线平行。

12.定义、命题、命题的组成 13.公理、定理 14.逆命题二、 三角形分类:⑴按边分;⑵按角分 1.定义(包括内、外角)2.三角形的边角关系:⑴角与角:①内角和及推论;②外角和;③n 边形内角和;④n 边形外角和。

⑵边与边:三角形两边之和大于第三边,两边之差小于第三边。

⑶角与边:在同一三角形中,3.三角形的主要线段讨论:①定义 ②××线的交点—三角形的×心 ③性质①高线②中线③角平分线④中垂线⑤中位线⑴一般三角形⑵特殊三角形:直角三角形、等腰三角形、等边三角形4.特殊三角形(直角三角形、等腰三角形、等边三角形、等腰直角三角形)的判定与性质 5.全等三角形⑴一般三角形全等的判定(SAS 、ASA 、AAS 、SSS ) ⑵特殊三角形全等的判定:①一般方法②专用方法 6.三角形的面积⑴一般计算公式⑵性质:等底等高的三角形面积相等。

7.重要辅助线⑴中点配中点构成中位线;⑵加倍中线;⑶添加辅助平行线 8.证明方法⑴直接证法:综合法、分析法⑵间接证法—反证法:①反设②归谬③结论 ⑶证线段相等、角相等常通过证三角形全等 ⑷证线段倍分关系:加倍法、折半法 ⑸证线段和差关系:延结法、截余法 ⑹证面积关系:将面积表示出来三、 四边形分类表:1.一般性质(角) ⑴内角和:360°⑵顺次连结各边中点得平行四边形。

推论1:顺次连结对角线相等的四边形各边中点得菱形。

推论2:顺次连结对角线互相垂直的四边形各边中点得矩形。

⑶外角和:360° 2.特殊四边形⑴研究它们的一般方法:⑵平行四边形、矩形、菱形、正方形;梯形、等腰梯形的定义、性质和判定 ⑶判定步骤:四边形→平行四边形→矩形→正方形 ┗→菱形──↑等边 等角大边 大角 小边 小角角线 积称性轴对称中心对称⑷对角线的纽带作用:3.对称图形⑴轴对称(定义及性质);⑵中心对称(定义及性质) 4.有关定理:①平行线等分线段定理及其推论1、2 ②三角形、梯形的中位线定理 ③平行线间的距离处处相等。

相关文档
最新文档