(完整版)材料力学课后习题答案
材料力学课后答案.doc

材料力学课后答案第一章材料单向静拉伸载荷下的力学性能一、解释下列名词滞弹性:在外加载荷作用下,应变落后于应力现彖。
静力韧度:材料在静拉仲时单位体积材科从变形到断裂所消耗的功。
弹性极限:试样加载后再卸裁,以不出现残留的永久变形为标准,材料能够完全弹性恢复的最高应力。
比例极限:应力一应变曲线上符合线性关系的最高应力。
包中格效应:指原先经过少量塑性变形,卸载后同向加载,弹性极限(。
P)或屈服强度(。
S)增加;反向加载时弹性极限(。
P)或屈服强度3 s)降低的现象。
解理断裂:沿一定的晶体学平面产生的快速穿晶断裂。
晶体学平面一一解理面,一般是低指数,表面能低的晶面。
解理而:在解理断裂屮具冇低指数,表而能低的品体淫平而。
韧脆转变:材料力学性能从韧性状态转变到脆性状态的现象(冲击吸收功明显下降,断裂机理由微孔聚集型转变微穿晶断裂,断口特征出纤维状转变为结晶状)。
静力韧度:材料在静拉伸时单位体积材料从变形到断裂所消耗的功叫做静力韧度。
是一个强度与塑性的综合指标,是表示静载下材料强度与塑性的最佳配合。
二、金属的弹性模量主要取决于什么?为什么说它是一个对结构不敏感的力学姓能?答案:金屈的弹性模量主要取决于金屈键的本性和原子间的结合力,而材料的成分和组织对它的影响不大,所以说它是一个对组织不皱感的性能指标,这是弹性模量在性能上的主要特点。
改变材料的成分和组织会对材料的强度(如屈服强度、抗拉强度)有显著影响,但对材料的刚度影响不大。
三、什么是包辛格效应,如何解释,它冇什么实际意义?答案:包辛格效应就是指原先经过变形,然后在反向加载时弹性极限或屈服强度降低的现象。
特别是弹性极限在反向加载时几乎下降到零,这说明在反向加载吋犁性变形立即开始了。
包辛格效应可以用位错理论解释。
第一,在原先加载变形时,位错源在滑移而上产生的位错遇到障碍,塞积后便产生了背应力,这背应力反作用于位错源,当背应力(取决于塞积时产生的应力集中)足够大时,可使位错源停止开动。
完整版材料力学性能课后习题答案整理

完整版材料力学性能课后习题答案整理材料力学性能课后习题答案第一章单向静拉伸力学性能1、解释下列名词。
1弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。
2.滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。
3.循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。
4.包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。
5.解理刻面:这种大致以晶粒大小为单位的解理面称为解理刻面。
6.塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。
脆性:指金属材料受力时没有发生塑性变形而直接断裂的能力韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。
7.解理台阶:当解理裂纹与螺型位错相遇时,便形成一个高度为b的台阶。
8.河流花样:解理台阶沿裂纹前端滑动而相互汇合,同号台阶相互汇合长大,当汇合台阶高度足够大时,便成为河流花样。
是解理台阶的一种标志。
9.解理面:是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,因与大理石断裂类似,故称此种晶体学平面为解理面。
10.穿晶断裂:穿晶断裂的裂纹穿过晶内,可以是韧性断裂,也可以是脆性断裂。
沿晶断裂:裂纹沿晶界扩展,多数是脆性断裂。
11.韧脆转变:具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆性断裂,这种现象称为韧脆转变2、说明下列力学性能指标的意义。
答:E弹性模量G切变模量r规定残余伸长应力0.2屈服强度gt金属材料拉伸时最大应力下的总伸长率n应变硬化指数P153、金属的弹性模量主要取决于什么因素?为什么说它是一个对组织不敏感的力学性能指标?答:主要决定于原子本性和晶格类型。
合金化、热处理、冷塑性变形等能够改变金属材料的组织形态和晶粒大小,但是不改变金属原子的本性和晶格类型。
材料力学第3版习题答案

材料力学第3版习题答案第一章:应力分析1. 某材料在单轴拉伸下的应力-应变曲线显示,当应力达到200 MPa 时,材料发生屈服。
若材料在该应力水平下继续加载,其应力将不再增加,但应变继续增加。
请解释这一现象,并说明材料的屈服强度是多少?答案:这种现象表明材料进入了塑性变形阶段。
在单轴拉伸试验中,当应力达到材料的屈服强度时,材料的晶格结构开始发生滑移,导致材料的变形不再需要额外的应力增加。
因此,即使继续加载,应力保持不变,但应变会因为材料内部结构的重新排列而继续增加。
在本例中,材料的屈服强度是200 MPa。
第二章:材料的弹性行为2. 弹性模量是描述材料弹性行为的重要参数。
若一块材料的弹性模量为210 GPa,当施加的应力为30 MPa时,其应变是多少?答案:弹性模量(E)与应力(σ)和应变(ε)之间的关系由胡克定律描述,即σ = Eε。
要计算应变,我们可以使用公式ε =σ/E。
将给定的数值代入,得到ε = 30 MPa / 210 GPa =1.43×10^-4。
第三章:材料的塑性行为3. 塑性变形是指材料在达到屈服点后发生的永久变形。
如果一块材料在单轴拉伸试验中,其屈服应力为150 MPa,当应力超过这个值时,材料将发生塑性变形。
请解释塑性变形与弹性变形的区别。
答案:塑性变形与弹性变形的主要区别在于材料在去除外力后是否能够恢复原状。
弹性变形是指材料在应力作用下发生的形状改变,在应力移除后能够完全恢复到原始状态,不留下永久变形。
而塑性变形是指材料在应力超过屈服点后发生的不可逆的永久变形,即使应力被移除,材料的形状也不会恢复到原始状态。
第四章:断裂力学4. 断裂韧性是衡量材料抵抗裂纹扩展的能力。
如果一块材料的断裂韧性为50 MPa√m,试样的尺寸为100 mm×100 mm×50 mm,试样中存在一个长度为10 mm的初始裂纹。
请计算在单轴拉伸下,材料达到断裂的临界应力。
材料力学第四版课后习题答案

材料力学第四版课后习题答案1. 引言。
材料力学是材料科学与工程中的重要基础课程,通过学习材料力学,可以帮助我们更好地理解材料的性能和行为。
本文档将针对材料力学第四版的课后习题进行答案解析,帮助学习者更好地掌握课程内容。
2. 第一章。
2.1 课后习题1。
答,根据受力分析,可以得到杆件的受力情况。
然后利用杆件的受力平衡条件,可以得到杆件的应力状态。
最后,根据应力状态计算应变和变形。
2.2 课后习题2。
答,利用受力分析,可以得到杆件的受力情况。
然后利用杆件的受力平衡条件,可以得到杆件的应力状态。
最后,根据应力状态计算应变和变形。
3. 第二章。
3.1 课后习题1。
答,利用受力分析,可以得到梁的受力情况。
然后利用梁的受力平衡条件,可以得到梁的应力状态。
最后,根据应力状态计算应变和变形。
3.2 课后习题2。
答,利用受力分析,可以得到梁的受力情况。
然后利用梁的受力平衡条件,可以得到梁的应力状态。
最后,根据应力状态计算应变和变形。
4. 第三章。
4.1 课后习题1。
答,利用受力分析,可以得到薄壁压力容器的受力情况。
然后利用薄壁压力容器的受力平衡条件,可以得到薄壁压力容器的应力状态。
最后,根据应力状态计算应变和变形。
4.2 课后习题2。
答,利用受力分析,可以得到薄壁压力容器的受力情况。
然后利用薄壁压力容器的受力平衡条件,可以得到薄壁压力容器的应力状态。
最后,根据应力状态计算应变和变形。
5. 结论。
通过对材料力学第四版课后习题的答案解析,我们可以更好地掌握材料力学的基本原理和方法。
希望本文档能够对学习者有所帮助,促进大家对材料力学的深入理解和应用。
材料力学课后答案

材料力学课后答案材料力学是一门研究材料的结构和性质以及力学行为的学科。
以下是材料力学课后习题的答案。
1. 对于一个材料试验样品的拉伸测试,如何计算应力和应变?答:应力是试样受到的外部力除以其截面积,应变是试样的长度变化除以其原始长度。
2. 当一根钢条受到拉伸力时,它的截面积会变大还是变小?为什么?答:当钢条受到拉伸力时,它的截面积会减小。
这是因为外部力导致钢条内部发生塑性变形,使其截面积减小。
3. 什么是杨氏模量?如何计算?答:杨氏模量是表征材料在受到应力时的变形能力的物理量。
它可以通过应力与应变之间的比率来计算,即杨氏模量=应力/应变。
4. 什么是泊松比?如何计算?答:泊松比是一个无量纲的物理量,它描述了材料在拉伸或压缩时的横向收缩量与纵向伸长量之间的比例关系。
它可以通过横向应变与纵向应变之间的比率来计算,即泊松比=横向应变/纵向应变。
5. 什么是屈服强度?如何确定屈服强度?答:屈服强度是材料在受到应力时开始产生塑性变形的应力值。
它可以通过拉伸测试或压缩测试中的应力-应变曲线来确定,屈服强度对应于曲线上的屈服点。
6. 材料的断裂强度是什么?如何计算?答:材料的断裂强度是指材料在受到拉伸或压缩的最大应力值。
它可以通过拉伸测试或压缩测试中的应力-应变曲线来确定,断裂强度对应于曲线上的断裂点。
7. 什么是韧性?如何评价材料的韧性?答:韧性是材料在受力过程中吸收能量的能力。
可以通过材料的断裂能量来评价韧性,断裂能量是在材料断裂前吸收的总能量。
8. 什么是冷加工和热加工?它们对材料性能有何影响?答:冷加工是在室温下对材料进行塑性变形,而热加工是在高温下对材料进行塑性变形。
冷加工会使材料变硬和脆化,而热加工则会使材料变软和韧性增加。
以上是材料力学课后习题的答案,希望对你的学习有所帮助。
如果有任何疑问,请随时向我提问。
材料力学完整课后习题答案

习题2-2一打入基地内的木桩如图所示,杆轴单位长度的摩擦力fkx2,试做木桩的后力图。
解:由题意可得:l 1 0 fdx F 有kl 3 F k 3F / l 3 3 l FN x1 3Fx 2 / l 3dx F x1 / l 3 0习题2-3 石砌桥墩的墩身高l 10m ,其横截面面尺寸如图所示。
荷载 F 1000kN ,材料的密度2.35kg / m 3 ,试求墩身底部横截面上的压应力。
解:墩身底面的轴力为:N F G F Alg 2-3 图1000 3 2 3.14 12 10 2.35 9.8 3104.942kN 墩身底面积: A 3 2 3.14 12 9.14m 2 因为墩为轴向压缩构件,所以其底面上的正应力均匀分布。
N 3104.942kN 339.71kPa 0.34MPa A 9.14m 2习题2-7 图示圆锥形杆受轴向拉力作用,试求杆的伸长。
2-7 图解:取长度为dx 截离体(微元体)。
则微元体的伸长量为:Fdx l F F l dx d l ,l dx EA x 0 EA x E 0 A x r r1 x r r d d1 d ,r 2 1 x r1 2 x 1 ,r2 r1 l l 2l 2 d d1 d d1 d d1 2 d d A x 2 x 1 u2 ,d 2 x 1 du 2 dx 2l 2 2l 2 2l 2l 2l dx d d 2l du dx du ,2 2 1 du 2 d 2 d1 A x u d1 d 2 u l F F l dx 2 Fl l du 因此,l dx 0 u 2 0 EA x E 0 A x E d1 d 2 l 2 Fl 1 l 2 Fl 1 u E d d d d E d1 d 2 0 2 2 d 1 1 x 1 2l 2 0 2 Fl 1 1 E d1 d 2 d 2 d 1 dd1 l 1 2l 2 2 2 Fl 2 2 4 Fl E d1 d 2 d 2 d1 Ed 1 d 2习题2-10 受轴向拉力 F 作用的箱形薄壁杆如图所示。
材料力学课后习题答案

材料力学课后习题答案1. 弹性力学。
1.1 问题描述,一根钢丝的弹性模量为200GPa,其截面积为0.01m²。
现在对这根钢丝施加一个拉力,使其产生弹性变形。
如果拉力为2000N,求钢丝的弹性变形量。
解答:根据胡克定律,弹性变形量与拉力成正比,与材料的弹性模量和截面积成反比。
弹性变形量可以用以下公式计算:$$。
\delta = \frac{F}{AE}。
$$。
其中,$\delta$表示弹性变形量,F表示拉力,A表示截面积,E表示弹性模量。
代入已知数据,可得:$$。
\delta = \frac{2000N}{0.01m² \times 200GPa} = 0.001m。
$$。
所以,钢丝的弹性变形量为0.001m。
1.2 问题描述,一根长为1m,截面积为$10mm^2$的钢棒,两端受到拉力为1000N的作用。
求钢棒的伸长量。
解答:根据胡克定律,钢棒的伸长量可以用以下公式计算:$$。
\delta = \frac{F \cdot L}{AE}。
$$。
其中,$\delta$表示伸长量,F表示拉力,L表示长度,A表示截面积,E表示弹性模量。
代入已知数据,可得:$$。
\delta = \frac{1000N \times 1m}{10mm² \times 200GPa} = 0.005m。
$$。
所以,钢棒的伸长量为0.005m。
2. 塑性力学。
2.1 问题描述,一块金属材料的屈服强度为300MPa,现在对其施加一个拉力,使其产生塑性变形。
如果拉力为500MPa,求金属材料的塑性变形量。
解答:塑性变形量与拉力成正比,与材料的屈服强度无关。
塑性变形量可以用以下公式计算:$$。
\delta = \frac{F}{A}。
$$。
其中,$\delta$表示塑性变形量,F表示拉力,A表示截面积。
代入已知数据,可得:$$。
\delta = \frac{500MPa}{300MPa} = 1.67。
材料力学课后答案

材料力学课后答案1. 弹性力学基础题。
题目,一根长为L的均匀横截面圆柱形杆,端部固定,另一端受力F,求受力端的应变。
解答,根据弹性力学的基本公式,应变ε=σ/E,其中σ为应力,E为弹性模量。
由于杆的横截面积为A,受力F导致的应力σ=F/A。
因此,受力端的应变ε=F/(AE)。
2. 弹性力学应用题。
题目,一根钢丝的长度为L,直径为d,受力F时产生的应力为σ,求其应变。
解答,首先计算钢丝的横截面积A=πd^2/4,然后根据应变ε=σ/E,其中E为钢的弹性模量,求得应变ε=σ/(E)。
3. 材料的破坏。
题目,一块材料在受力时产生的应力达到了其屈服强度,求此时的应变。
解答,当材料的应力达到屈服强度时,材料开始发生塑性变形,此时的应变无法简单地通过弹性力学公式来计算。
需要通过材料的本构关系来确定应变。
4. 弯曲应力与应变。
题目,一根横截面为矩形的梁,在受力时产生的最大应力为σ,求其最大应变。
解答,根据梁的弯曲应力公式σ=My/I,其中M为弯矩,y为梁的截面离中性轴的距离,I为梁的惯性矩。
最大应变发生在最大应力处,由应变ε=σ/E,可以求得最大应变。
5. 拉伸与压缩。
题目,一根长为L的杆在受拉力F时产生的应变为ε,求其长度变化量。
解答,根据胡克定律,拉伸或压缩材料的长度变化量ΔL=εL。
6. 应变能。
题目,一根长为L的弹簧,在受力F时产生的应变为ε,求其弹性势能。
解答,弹簧的弹性势能U=1/2kε^2,其中k为弹簧的弹性系数。
根据ε=F/(kL),代入可得弹性势能U=1/2F^2/(kL)。
7. 疲劳破坏。
题目,一根金属材料在受到循环载荷时,经过了n次循环后发生疲劳破坏,求其疲劳寿命。
解答,根据疲劳寿命公式N=K(σ_max)^(-1/α),其中N为疲劳寿命,K为材料常数,σ_max为循环载荷的最大应力,α为材料的疲劳指数。
代入循环载荷的应力值,可以求得疲劳寿命。
8. 蠕变。
题目,一根材料在高温下受到持续载荷时发生了蠕变,求其蠕变应变。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
8-1 试求图示各杆的轴力,并指出轴力的最大值。
(2) 取1-1(3) 取2-2(4) 轴力最大值: (b)(1) 求固定端的约束反力; (2) 取1-1(3) 取2-2(4) (c)(1) 用截面法求内力,取1-1、2-2、3-3截面;(2) 取1-1(3) 取2-2 (4) 取3-3截面的右段;(5) 轴力最大值: (d)(1) 用截面法求内力,取1-1、(2) 取1-1(2) 取2-2(5) 轴力最大值: 8-2 试画出8-1解:(a) (b) (c) (d) 8-5与BC 段的直径分别为(c) (d)F RN 2F N 3 F N 1F F Fd 1=20 mm 和d 2=30 mm ,如欲使AB 与BC 段横截面上的正应力相同,试求载荷F 2之值。
解:(1) 用截面法求出(2) 求1-1、2-28-6 题8-5段的直径d 1=40 mm ,如欲使AB 与BC 段横截面上的正应力相同,试求BC 段的直径。
解:(1)用截面法求出1-1、2-2截面的轴力;(2) 求1-1、2-2截面的正应力,利用正应力相同;8-7 图示木杆,承受轴向载荷F =10 kN 作用,杆的横截面面积A =1000 mm 2,粘接面的方位角θ= 450,试计算该截面上的正应力与切应力,并画出应力的方向。
解:(1) (2) 8-14 2=20 mm ,两杆F =80 kN 作用,试校核桁架的强度。
解:(1) 对节点A(2) 列平衡方程 解得: (2) 8-15 图示桁架,杆1A 处承受铅直方向的载荷F 作用,F =50 kN ,钢的许用应力[σS ] =160 MPa ,木的许用应力[σW ] =10 MPa 。
解:(1) 对节点A (2) 84 mm 。
8-16 题8-14解:(1) 由8-14得到的关系;(2) 取[F ]=97.1 kN 。
8-18 图示阶梯形杆A 2=100 mm 2,E =200GPa ,试计算杆AC 的轴向变形 解:(1) (2) AC 8-22 图示桁架,杆1与杆2的横截面面积与材料均相同,在节点A 处承受载荷F 作用。
从FA CB FFF AB F AC试验中测得杆1与杆2的纵向正应变分别为ε1=4.0×10-4与ε2=2.0×10-4,试确定载荷F 及其方位角θ之值。
已知:A1=A2=200 mm2,E1=E2=200 GPa。
解:(1) 对节点Aθ的关系;(2) 由胡克定律:代入前式得:8-23 题8-15A1=400 mm2与A2=8000 mm2,杆AB的长度l=1.5 m、E W=10 GPa。
试计算节点A解:(1) 计算两杆的变形;1杆伸长,2杆缩短。
(2) 画出节点A的协调位置并计算其位移;8-26解:(1)(2)(3)代入胡克定律;求出约束反力:(4) 最大拉应力和最大压应力;8-27 图示结构,梁BD为刚体,杆1与杆2用同一种材料制成,横截面面积均为A=300 mm2,许用应力[σ]=160 MPa,载荷F=50 kN,试校核杆的强度。
解:(1) 对BD(2)解联立方程得:(3) 强度计算;8-30 图示桁架,杆1、[σ1] =80 MPa,[σ2] =60 MPa,[σ3] =120 MPa,弹性模量分别为E1=160 GPa,E2=100 GPa,E3=200 GPa。
若载荷F=160 kN,A1=A2 =2A3,试确定各杆的横截面面积。
解:(1) 对节点C(b)列平衡方程;(2)(3) 简化后得:1杆实际受压,2(4) 强度计算; 8-31 图示木榫接头,解:(1) (2) 8-32 图示摇臂,F 1=50 kN ,F 2=35.4kN 解:(1) (2) (3) 8-33 mm MPa解:(1) (2) (3) 校核1-1校核2-2 FN3F xFF N 1N 39-1 试求图示各轴的扭矩,并指出最大扭矩值。
解:(2) 取1-1(3) 取2-2 (4) 最大扭矩值:(b)(1)(2) 取1-1(3) 取2-2 (4) 最大扭矩值:注:本题如果取1-1、2-2(c)(1) 用截面法求内力,取1-1、2-2、3-3截面;(2) 取1-1(3) 取2-2(4) 取3-3(5) 最大扭矩值:(d) (1) (2) 取1-1(3) 取2-2(4) 取3-3(5) 最大扭矩值:9-2 试画题9-1解:(a)(b)(c)(d) M TM(d)9-4P 1=50 kW ,轮2、轮3与轮4(1) (2) 若将轮1 解:(1) (2) (3) 对调论1 9-8 ,试计算A 点处(ρA =15 mm)解:(1) (2) 9-16 ,试求轴内的最大切应力与截面G 。
解:(1)(2) 比较得 (3) 求C 9-18 题9-16,单位长度的许用扭转角[θ]=0.5 0/m ,切变模量G =80 GPa ,试确定轴径。
解:(1) 考虑轴的强度条件;(2) 考虑轴的刚度条件;(3) 综合轴的强度和刚度条件,确定轴的直径;9-19 图示两端固定的圆截面轴,直径为d ,材料的切变模量为G ,截面B 的转角为φB ,试求所加扭力偶矩M 之值。
解:(1) (2) 求AB 、(3) (4) 用转角公式求外力偶矩M ;T TBM T10-1 试计算图示各梁指定截面(标有细线者)的剪力与弯矩。
解:(a)(1)(2)取由平衡关系求内力(3) 求B -截面内力 截开B -由平衡关系求内力 (b) (1) 求A 、B 处约束反力 (2) 求A +截面内力; 取A +(3) 求C 截面内力;取C (4)求B 截面内力; 取B (c)(1) 求A 、B(2) 求A +截面内力;取A +(3) 求C -截面内力; 取C -(4) 求C +截面内力; 取C +(5) 求B -截面内力; 取B -截面右段研究,其受力如图; (d)(1) 求A +截面内力(d) M A+SC M CA MB B R ASC- M C- B R BM C+B R BM取A +截面右段研究,其受力如图;(3) 求C -截面内力; 取C -(4) 求C +截面内力; 取C +(5) 求B -截面内力;取B -10-2.解:(c)(1) (2) (3) (d) (1) (2) 10-310-5qB M B M B M(b)(1) 求约束力;(2)(c) (1) 求约束力; (2) (d)(1) 求约束力;(2) (e) (1) 求约束力; (2) (f) (1) 求约束力; (2) M x11-6 图示悬臂梁,横截面为矩形,承受载荷F 1与F 2作用,且F 1=2F 2=5 kN ,试计算梁内的最大弯曲正应力,及该应力所在截面上K 点处的弯曲正应力。
解:(1)(2) (3)最大应力: K 点的应力:11-7 图示梁,由No22槽钢制成,弯矩M =80 N.m ,并位于纵向对称面(即x-y 平面)内。
试求梁内的最大弯曲拉应力与最大弯曲压应力。
解:(1) (2) (3)11-8 图示简支梁,由No28工字钢制成,在集度为q的均布载荷作用下,测得横截面C 底边的纵向正应变ε=3.0×10-4,试计算梁内的最大弯曲正应力,已知钢的弹性模量E =200 Gpa ,a =1 m 。
解:(1)(2) (3) (4) 11-14 ,许用压应力[σ- 解:(1) (2) (3) A +A -11-15 b 。
已知载荷F =10 kN ,q =5 N/mm ,许用应力[σ] =160 Mpa 。
max max max22176 408066ZMPabh W σ====⨯6max max 337.51030132 ********K ZM y M y MPa bh I σ⋅⋅⨯⨯====⨯z M M z qC解:(1) 求约束力: (2) 画出弯矩图:(3) 解得:11-17Mpa ,试选择工字钢型号。
解:(1) 求约束力:(2) 画弯矩图: (3) 解得:查表,选取No1611-20 当载荷F 30%。
为了消除此种过载,配置一辅助梁CD ,试求辅助梁的最小长度a 。
解:(1) 当F 解得:(2) 配置辅助梁后,弯矩图为:11-22 图示悬臂梁,承受载荷,l =1 m ,许用应力[σ] =160 MPa,(1) 截面为矩形,h =2b ;(2) 截面为圆形。
解:(1) (2) 解得:(3) 解得: 11-25 εa =1.0×10-3与εb =0.4×10F 及偏心距e 的数值。
x x y(M z解:(1)(2) 将b 、h 11-27 x 。
(δ=5 mm )解:(1)(2) 解得: e15-3 图示两端球形铰支细长压杆,弹性模量E=200Gpa,试用欧拉公式计算其临界载荷。
(1) 圆形截面,d=25 mm,l=1.0 m;(2) 矩形截面,h=2b=40 mm,l=1.0 m;(3) No16工字钢,l=2.0 m。
解:(1) 圆形截面杆:两端球铰:μ=1,41.937.864dI kNπ===(2) 矩形截面杆:两端球铰:μ=1,I()()2329822220010 2.6102.652.61211yy crEIhbI P kNlππμ-⨯⨯⨯⨯∴==⨯∴===⨯(3) No16工字钢杆:两端球铰:μ=1,I y<I z查表I y=93.1×10-8 m415-8 图示桁架,由两根弯曲刚度EI相同的等截面细长压杆组成。
,设载荷F与杆AB的轴线的夹角为θ,且0<θ<π/2,试求载荷F的极限值。
解:(1) 分析铰B(2)AB和BC(3)由铰B的平衡得:15-9 图示矩形截面压杆,有三种支持方式。
杆长l=300 mm,截面宽度b=20 mm,高度h =12 mm,弹性模量E=70 GPa,λp=50,λ0=30,中柔度杆的临界应力公式为σcr=382 MPa – (2.18 MPa)λ试计算它们的临界载荷,并进行比较。
解:(a)(1)=2(2)(b)(1)(2)(c)(1)(2) 压杆是中柔度杆,选用经验公式计算临界力三种情况的临界压力的大小排序:F(b) (c)(a)A-Az15-10 图示压杆,截面有四种形式。
但其面积均为A =3.2×10 mm 2, 试计算它们的临界载荷,并进行比较。
材料的力学性质见上题。
解:(a)(1)矩形截面的高与宽: 长度系数:μ=0.5 (2) (b)(1) 正方形的边长:mm a ,1022长度系数:μ=0.5(2) 压杆是大柔度杆,用欧拉公式计算临界力:(c)(1) 计算压杆的柔度:圆截面的直径:长度系数:μ=0.5(2) 压杆是大柔度杆,用欧拉公式计算临界力:(d)(1)计算压杆的柔度:空心圆截面的内径和外径:长度系数:μ=0.5(2) 压杆是大柔度杆,用欧拉公式计算临界力;四种情况的临界压力的大小排序:15-12 图示压杆,横截面为b ⨯h 的矩形, 试从稳定性方面考虑,确定h/b 的最佳值。