刘鸿文版材料力学第一章

合集下载

刘鸿文材料力学讲义绪论【圣才出品】

刘鸿文材料力学讲义绪论【圣才出品】

第1章绪论1.1本章要点详解本章要点■变形固体的基本假设■外力及其分类■内力、截面法和应力■变形与应变重难点导学一、材料力学的任务1.材料力学与工程应用材料力学在各种建筑中得到了广泛的应用,例如传统具有柱、梁、檩、椽的木制房屋结构以及建于隋代的河北赵州桥等。

也有些建筑中由于没有正确应用材料力学,使得建筑物在使用中出现了许多问题,例如美国纽约马尔克大桥坍塌和比萨斜塔的倾斜等。

2.基本概念(1)构件构件是指工程结构或机械的每一组成部分。

(2)变形①定义变形是指在外力作用下,固体内各点相对位置的改变。

(宏观上看就是物体尺寸和形状的改变)②分类a.弹性变形:随外力解除而消失的变形。

b.塑性变形(残余变形):外力解除后不能消失的变形。

(3)刚度在载荷作用下,构件抵抗变形的能力称为刚度。

(4)强度强度是指在载荷作用下,构件抵抗破坏的能力。

(5)内力内力是指构件内由于发生变形而产生的相互作用力。

注:内力随外力的增大而增大。

(6)稳定性稳定性是指在载荷作用下,构件保持原有平衡状态的能力。

3.材料力学的任务材料力学的任务就是在满足强度、刚度和稳定性的要求下,为设计既经济又安全的构件提供必要的理论基础和计算方法。

研究构件的强度、刚度和稳定性,还需要了解材料的力学性能。

因此在进行理论分析的基础上,实验研究是完成材料力学的任务所必需的途径和手段。

4.材料力学的研究对象(1)构件的分类构件可分为杆件、板壳和块体。

(2)材料力学主要研究对象①材料力学主要研究杆件。

②杆件分类:a.直杆:轴线为直线的杆b.曲杆:轴线为曲线的杆c.等截面杆:横截面的大小和形状不变的杆d.变截面杆:横截面的大小或形状不变的杆e.等截面直杆(即等直杆)二、变形固体的基本假设1.连续性假设组成固体的物质不留空隙地充满了固体的体积,即固体在整个体积内是连续的。

2.均匀性假设固体内到处具有相同的力学性能。

3.各向同性假设无论沿任何方向,固体的力学性能是相同的。

材料力学(刘鸿文_第5版)

材料力学(刘鸿文_第5版)

第十四章 习题
2012年11月5日星期一
常州大学机械学院力学教研室
第五章 习题
第六章 弯曲变形
§6-1、工程中的弯曲变形问题 §6-2、挠曲线的微分方程 §6-3、用积分法求弯曲变形 6.1和连续性条件 6.3(a) Page 196 §6-4、用叠加法求弯曲变形 6.9(a) 6.10(b) Page 200 §6-5、简单超静定梁 Page 208 6.36 §6-6、提高弯曲刚度的一些措施
第十三章 习题
§13-1、概述 §13-2、杆件应变能的计算104 Page §13-3、应变能的普遍表达式 §13-4、互等定理 Page 106 §13-5、卡氏定理 Page 107 §13-6、虚功原理 §13-7、单位载荷法 Page 109 莫尔积分 §13-8、计算莫尔积分的图乘法 Page 109
第一章 绪论
§1-1、材料力学的任务 §1-2、变形固体的基本假设 §1-3、外力及其分类 §1-4、内力、截面法和应力的概念 §1-5、变形与应变 §1-6、杆件变形的基本形式
第一章 绪论习题
Page 11 1.2 Page 11 1.4 1.6
第二章 拉伸、压缩与剪切 第二章 习题
§2-1、轴向拉伸与压缩的概念和实例 §2-2、轴向拉伸与压缩时横截面上的内力和应力 2.2 Page 53 2.1(a)(c) §2-3、直杆轴向拉伸或压缩时斜截面上的应力 Page 54 2.6 §2-4、材料拉伸时的力学性能 §2-5、材料压缩时的力学性能 §2-7、失效、安全因数与强度计算54 2.7 Page 54 2.12 Page §2-8、轴向拉伸或压缩时的变形 58 2.19 Page 61 2.30 Page
附录 I 平面图形的几何性质

刘鸿文主编(第4版) 高等教育出版社《材料力学》课件全套

刘鸿文主编(第4版) 高等教育出版社《材料力学》课件全套
解: 用截面m-m将钻床截为两部分,取上半 部分为研究对象,
受力如图:
列平衡方程:
M
Y 0 FN P
Mo(F) 0
FN
Pa M 0
M Pa
目录
§1.4 内力、截面法和应力的概念
为了表示内力在一点处的强度,引入内力集度,
即应力的概念。
F A
pm
F A
—— 平均应力
C
p lim F A0 A
径20mm的圆截面杆,水平杆CB为 15×15的方截面杆。
B 解:1、计算各杆件的轴力。 (设斜杆为1杆,水平杆为2杆)
F 用截面法取节点B为研究对象
Fx 0 FN1 cos 45 FN2 0
x
Fy 0 FN1 sin 45 F 0
FN1 28.3kN
FN 2 20kN
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
m
F m
F
FN
FN
Fx 0
FN F 0 FN F
2、轴力:截面上的内力
F
由于外力的作用线
与杆件的轴线重合,内
力的作用线也与杆件的
轴线重合。所以称为轴
力。 F 3、轴力正负号:
拉为正、压为负
4、轴力图:轴力沿杆 件轴线的变化
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
例题2.1
A
F1
若:构件横截面尺寸不足或形状
不合理,或材料选用不当
___ 不满足上述要求,
不能保证安全工作.
若:不恰当地加大横截面尺寸或
选用优质材料
___ 增加成本,造成浪费
}均 不 可 取
研究构件的强度、刚度和稳定性,还需要了解材料的力学性能。因此在 进行理论分析的基础上,实验研究是完成材料力学的任务所必需的途径和 手段。

刘鸿文版材料力学课件(全套)

刘鸿文版材料力学课件(全套)

目录
§2.1
轴向拉伸与压缩的概念和实例
受力特点与变形特点:
作用在杆件上的外力合力的作用线与 杆件轴线重合,杆件变形是沿轴线方向的伸 长或缩短。
拉(压)杆的受力简图
拉伸
F F F
压缩
F
目录
§2.1
轴向拉伸与压缩的概念和实例
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
m F m F FN FN F
类似地,可以定义 y , z
M点在xy平面内的切应变为: lim ( LM N ) MN 0 2 ML 0
, 均为无量纲的量。
目录
§1.5 变形与应变
例 1.2
已知:薄板的两条边 固定,变形后a'b, a'd 仍为直线。
250
c
200
b
0.025
求:ab 边的m 和 ab、ad 两边夹 角的变化。 解:
F
a b
a
c
c d
F
b
d
FN dA
A
dA A
A
FN A
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
FN A
该式为横截面上的正应力σ计 算公式。正应力σ和轴力FN同号。 即拉应力为正,压应力为负。
圣 维 南 原 理
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
剪切变形
目录
§1.6 杆件变形的基本形式
扭转变形
弯曲变形
目录
第二章
拉伸、压缩与剪切(1)
目录
第二章
§2.1 §2.2
拉伸、压缩与剪切
轴向拉伸与压缩的概念和实例 轴向拉伸或压缩时横截面上的内力和应力

材料力学(刘鸿文主编)

材料力学(刘鸿文主编)

第1章 绪 论§1.1 材料力学的任务与研究对象·材料对人类文明产生过重大影响,历史划分为旧石器,新石器,青铜,铁器,和现在有人称为的合成材料时代,21世纪将发展成智能材料时代。

·材料的力学行为是工程材料研究的重要方面。

直至50~60年代,力学是科学技术发展的主导学科,汽车、火车、飞机、火箭、卫星,力学家功居首位,伽利略、牛顿、卡门、铁摩辛柯、钱学森、钱伟长、钱令希、周培源这些众人熟知的科学家都为力学家。

·信息时代,材料是科学技术发展的物质基础,材料力学是一门不可缺少的技术基础课。

构件:组成机械与结构的零构件。

理力:刚体假设,研究构件外力与约束反力。

材力:变形体力学,研究内力与变形1. 材料力学任务(1)构件设计基本要求能力)(保持原有平衡形式的(抵抗变形能力)(抵抗破坏能力)稳定性刚度强度经济矛盾安全合理设计⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧)( (2)任务:研究构件在外力作用下受力、变形和破坏的规律,为合理设计提供有关强度、刚度和稳定性分析的基本理论和方法。

2. 研究对象(1) 构件按几何特征分类体(三维同量级) 板(壳)(一维(厚度)很小) 杆(一维(长度)很大)(2) 构件按受力分类材料力学主要研究杆。

杆常常是决定结构强度关键部件。

(房屋承载:梁、柱;飞机:主梁,框架+蒙皮;人体:骨骼;栋梁,中流砥柱---),“一根细杆打天下,学好压弯扭就不怕”(顺口溜,工作体会)。

材料力学----------工程师知识结构的梁和柱。

§1.2 变形固体的基本假设从几何尺度,科学研究可分为宇观、宏观、微观;宇观和微观自然属前沿研究领域,从事的人不多,宇观力学研究天体和宇宙运动,发生和发展行为,它告诉我们宇宙、太阳系、地球的现在的状态、从哪来到哪去;微观力学如量子力学则研究构成物质的粒子力学行为。

但我们肉眼所观测到的宏观尺度是科技主战场。

1.连续性假设:无空隙,力学量是坐标连续函数。

刘鸿文版材料力学课件全套1

刘鸿文版材料力学课件全套1
目录
§2.1 轴向拉伸与压缩的概念和实例
目录
§2.1 轴向拉伸与压缩的概念和实例
目录
§2.1 轴向拉伸与压缩的概念和实例
受力特点与变形特点:
作用在杆件上的外力合力的作用线与 杆件轴线重合,杆件变形是沿轴线方向的伸 长或缩短。
拉(压)杆的受力简图
拉伸
F
FF
压缩
F
目录
§2.1 轴向拉伸与压缩的概念和实例
材料力学主要研究杆件
{ 直杆—— 轴线为直线的杆 曲杆—— 轴线为曲线的杆
{等截面杆——横截面的大小 形状不变的杆 变截面杆——横截面的大小 或形状变化的杆 等截面直杆 ——等直杆
目录
§1.2 变形固体的基本假设
在外力作用下,一切固体都将发生变形, 故称为变形固体。在材料力学中,对变形固体 作如下假设: 1、连续性假设: 认为整个物体体积内毫无空隙地充满物质 灰口铸铁的显微组织 球墨铸铁的显微组织
45° B
C
2
FN1
F
y
FN 2 45° B x
解:1、计算各杆件的轴力。 (设斜杆为1杆,水平杆为2杆) 用截面法取节点B为研究对象
Fx 0 FN1 cos 45 FN 2 0 Fy 0 FN1 sin 45 F 0
F
FN1 28.3kN
FN 2 20kN
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
m F4
m
F3
F4
F3
目录
§1.4 内力、截面法和应力的概念 例如
F
a
a
F
M FS
FS=F M Fa
目录
§1.4 内力、截面法和应力的概念
例 1.1 钻床 求:截面m-m上的内力。

绪论材料力学第四版刘鸿文课件分析

绪论材料力学第四版刘鸿文课件分析
材料力学
主讲:赵玉萍
《材料力学》课程基本情况 :
1.学时:80学时(包含:8学时实验) 2.成绩比例:平时成绩20%
期终考试80%
3.上课要求:不迟到、带笔、带练习本。 4.参考书目:图书馆四楼“工业技术阅览室”
索书号“TB301”
第1章 绪论
1.1 材料力学的任务 一、材料力学的研究对象:构件中的杆件、零件 1.构件的分类:
附2:学好本课程的关键
1.良好的静力学基础。 2. 正确对构件进行受力分析;
选用正确的理论进行计算。 3.紧跟老师讲课的进程,循序渐进。 4.多做练习题。
1、字体安装与设置
2、替换模板
如果您对PPT模板中的字体风格不满意,可进行批量替换,一次性更改各页面字体。 1. 在“开始”选项卡中,点击“替换”按钮右侧箭头,选择“替换字体”。(如下图)
一、构件的内力 由于外部原因引起构件内部各部 分之间的相互作用力。
F1
F3
外力 物体外部 变形
引起
内力 物体内部
F2
Fn
1.内力必须满足平衡条件
作用在变形体上 的外力相互平衡
内力与外力平衡 内力与内力相等
F1
F2
F
假想截面 F3
F1
F2
F
分布内力 F3
二、求内力的方法→截面法
F5
m F4
F1
F2
1.均匀、连续性假设
2.各向同性假设
3.小变形假设
1、材料的均匀、连续性假设 是指材料内部没有空隙;是指材料的性 质各处都一样。
球墨铸铁的显微组织:微观不连续, 不均匀 ,宏观连续均匀。
2、材料的各向同性假设 材料沿不同方向具有相同的力学性质。

刘鸿文版材料力学全套-资料

刘鸿文版材料力学全套-资料

A 1
图示结构,试求杆件AB、CB的
应力。已知 F=20kN;斜杆AB为直
径20mm的圆截面杆,水平杆CB为 15×15的方截面杆。
45° B
C
2
FN1
yF
F N 2 45° B x
解:1、计算各杆件的轴力。 (设斜杆为1杆,水平杆为2杆) 用截面法取节点B为研究对象
Fx 0 FN1co4s5FN20 Fy 0 FN1si4 n5F0
在拉(压)杆的横截面上,与轴
力FN对应的应力是正应力 。根据连
续性假设,横截面上到处都存在着内 力。于是得静力关系:
FN dA
A
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
观察变形:
ac
F
a
c
b
d
bd
横向线ab、cd 仍为直线,且
仍垂直于杆轴
线,只是分别
F 平行移至
a’b’、 c’d’。
在外力作用下,一切固体都将发生变形, 故称为变形固体。在材料力学中,对变形固体 作如下假设: 1、连续性假设: 认为整个物体体积内毫无空隙地充满物质 灰口铸铁的显微组织 球墨铸铁的显微组织
目录
§1.2 变形固体的基本假设
2、均匀性假设: 认为物体内的任何部分,其力学性能相同 普通钢材的显微组织 优质钢材的显微组织
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
Hale Waihona Puke mF mF
FN
FN
Fx 0
FN F0 FN F
1、截面法求内力
F (1)假想沿m-m横截面将
杆切开
(2)留下左半段或右半段
F (3)将弃去部分对留下部分
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
材料力学
刘鸿文主编(第4版) 高等教育出版社
目录
第一章 绪论
目录
第一章 绪论
§1.1 材料力学的任务 §1.2 变形固体的基本假设 §1.3 外力及其分类 §1.4 内力、截面法及应力的概念 §1.5 变形与应变 §1.6 杆件变形的基本形式
目录
§1.1 材料力学的任务
一、材料力学与工程应用
古代建筑结构
FN 2 20kN
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
A
FN 1 28.3kN FN 2 20kN
1
2、计算各杆件的应力。
45° B
C
2
FN 1
yF
FN 2 45° B x
F
1
FN 1 A1
28.3 103
202 106
4
90 106 Pa 90MPa
2
FN 2 A2
20 103 15210 6
M'
刚性位移; 变形位移。
2.变形
M
物体内任意两点的相对位置发生变化。
取一微正六面体
y
两种基本变形:
线变形
L
—— 线段长度的变化
角变形
M x
——线段间夹角的变化 o
L'
x+s
M'
N'
N
x
目录
§1.5 变形与应变 y
3.应变 L'
正应变(线应变)
L
x方向的平均应变:
x+s
s xm x
x M'
o
N
FN
A
该式为横截面上的正应力σ计 算公式。正应力σ和轴力FN同号。 即拉应力为正,压应力为负。
圣 维
南 原 理
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
A 1
例题2.2
图示结构,试求杆件AB、CB的
应力。已知 F=20kN;斜杆AB为直
F
pm A —— 平均应力
C
F
p lim A0 A
—— C点的应力
p
F4
F3
F4
应力是矢量,通常分解为
— 正应力 — 切应力
C F3
应力的国际单位为 Pa(帕斯卡) 1Pa= 1N/m2
1kPa=103N/m2 1MPa=106N/m2 1GPa=109N/m2
目录
§1.5 变形与应变
1.位移 MM'
讨论横梁平衡 M c 0
W
Fmax sin AC W AC 0
Fmax
FmaxA
W
Fmax sin
W
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
B 0.8m C
Fmax
FRCx C FRCy
d
由三角形ABC求出
1.9m
sin BC 0.8
0.388
A
AB 0.82 1.92
目录
§1.1 材料力学的任务
{弹性变形 — 随外力解除而消失 塑性变形(残余变形)— 外力解除后不能消失 刚度:在载荷作用下,构件抵抗 变形的能力。 3、内力:构件内由于 发生变形而产生的相 互作用力。(内力随 外力的增大而增大) 强度:在载荷作用下, 构件抵抗破坏的能力。
目录
§1.1 材料力学的任务
若:构件横截面尺寸不足或形状
不合理,或材料选用不当
___ 不满足上述要求,
不能保证安全工作.
若:不恰当地加大横截面尺寸或
选用优质材料
___ 增加成本,造成浪费
}均 不 可 取
研究构件的强度、刚度和稳定性,还需要了解材料的力学性能。因此在
进行理论分析的基础上,实验研究是完成材料力学的任务所必需的途径和 手段。
W 15
Fmax sin 0.388 38.7kN
斜杆AB的轴力为
FN Fmax 38.7kN
W
斜杆AB横截面上的应力为
Fmax
FmaxA
FN
38.7 103
A (2010
)23
4
W
123 106 Pa 123MPa
目录
§2.3 直杆轴向拉伸或压缩时斜截面上的应力
拉压变形
剪切变形
目录
§1.6 杆件变形的基本形式
扭转变形
弯曲变形
目录
第二章 拉伸、压缩与剪切(1)
目录
第二章 拉伸、压缩与剪切
§2.1 轴向拉伸与压缩的概念和实例 §2.2 轴向拉伸或压缩时横截面上的内力和应力 §2.3 直杆轴向拉伸或压缩时斜截面上的应力 §2.4 材料拉伸时的力学性能 §2.5 材料压缩时的力学性能 §2.7 失效、安全因数和强度计算 §2.8 轴向拉伸或压缩时的变形 §2.9 轴向拉伸或压缩的应变能 §2.10 拉伸、压缩超静定问题 §2.11 温度应力和装配应力 §2.12 应力集中的概念 §2.13 剪切和挤压的实用计算
89 106 Pa 89MPa
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
B 0.8m C
Fmax
FRCx C FRCy
d
1.9m
例题2.2 悬臂吊车的斜杆AB为直径 d=20mm的钢杆,载荷W=15kN。当W
A 移到A点时,求斜杆AB横截面上的 应力。
解:当载荷W移到A点时,斜杆AB
受到拉力最大,设其值为Fmax。
求:ab 边的m 和 ab、ad 两边夹
角的变化。
解:
d
m
a'
b ab
ab
0.025 125 106 200
ab, ad 两边夹角的变化:
即为切应变 。
tan 0.025 100 106 (rad ) 250
目录
b
0.025
a a'
§1.6 杆件变形的基本形式
杆件的基本变形:拉伸(压缩)、剪切、扭转、弯曲
目录
§2.1 轴向拉伸与压缩的概念和实例
目录
§2.1 轴向拉伸与压缩的概念和实例
目录
§2.1 轴向拉伸与压缩的概念和实例
受力特点与变形特点:
作用在杆件上的外力合力的作用线与 杆件轴线重合,杆件变形是沿轴线方向的伸 长或缩短。
拉(压)杆的受力简图
拉伸
F
FF
压缩
F
目录
§2.1 轴向拉伸与压缩的概念和实例
在拉(压)杆的横截面上,与轴
力FN对应的应力是正应力 。根据连
续性假设,横截面上到处都存在着内 力。于是得静力关系:
FN dA
A
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
观察变形:
ac
F
a
c
b
d
bd
横向线ab、cd 仍为直线,且
仍垂直于杆轴 线,只是分别
F 平行移至a’b’、
c’d’。
传统具有柱、梁、檩、椽的木 制房屋结构
建于隋代(605年)的河北赵州桥桥 长64.4米,跨径37.02米,用石2800

目录
§1.1 材料力学的任务
古代建筑结构
建于辽代(1056年)的山西应县佛宫寺释迦塔 塔高9层共67.31米,用木材7400吨 900多年来历经数次地震不倒,现存唯一木塔
目录
§1.1 材料力学的任务
N' M
切应变(角应变)
M点处沿x方向的应变: M点在xy平面内的切应变为:
s
x
lim
x0
x
lim (
LM N )
2 MMNL00
类似地,可以定义 y , z , 均为无量纲的量。
目录
§1.5 变形与应变
250
例 1.2
c
已知:薄板的两条边
固定,变形后a'b, a'd
仍为直线。
200
m
F m
F
FN
FN
Fx 0
2、轴力:截面上的内力
F
由于外力的作用线
与杆件的轴线重合,内
力的作用线也与杆件的
轴线重合。所以称为轴
力。
F
3、轴力正负号:
拉为正、压为负
FN F 0 FN F
4、轴力图:轴力沿杆 件轴线的变化
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
例题2.1
A
F1
F1 F1
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
m
F m
F
FN
FN
Fx 0
FN F 0 FN F
1、截面法求内力
F (1)假想沿m-m横截面将 杆切开
(2)留下左半段或右半段 F (3)将弃去部分对留下部分
的作用用内力代替
(4)对留下部分写平衡方程 求出内力即轴力的值
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
平面假设—变形前原为平面的横截面, 变形后仍保持为平面且仍垂直于轴线。
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
从平面假设可以判断:
(1)所有纵向纤维伸长相等
(2)因材料均匀,故各纤维受力相等
(3)内力均匀分布,各点正应力相等,为常量
ac
F
a
c
F
b
d
A
dA A
A
FN
A
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力 Nhomakorabea目录
§1.1 材料力学的任务
四、材料力学的研究对象 构件的分类:杆件、板壳*、块体* 材料力学主要研究杆件
相关文档
最新文档