高中数学数列PPT课件

合集下载

北师大版高中数学选择性必修2第一章1.1数列的概念课件PPT

北师大版高中数学选择性必修2第一章1.1数列的概念课件PPT
北师大版高中数学教材 选择性必修第二册
第一章 数列
§1:数列的概念
知识与技能:
(1)通过实例,理解数列的概念; (2)理解数列的项和项数,通项的含义,了解数列的分类, 理解数列与函数的关系。
过程与方法:
(1)让学生从日常生活中的实际问题出发,引导学生通 过视察,推导,归纳抽象出数列的概念; (2)通过实例说明项,项数,通项的含义。
(2)数列中的数是可以重复出现,而数集中的元素 具有互异性,不能有相同的元素出现。
情情境境导导入入 新课讲授 讲练巩固 课堂小结 课后作业
2、数列的项:数列中的每一个数都叫做这个数
列的项.各项依次叫做这个数列的第 1 项(或首
项),第 2项,…,第 n 项,….
项 a1 a2
a3 a4 a5 a6
(-1)n或(-1)n+1常常用来表示正负相间的变化规律. (4)对于周期出现的数列,考虑利用周期函数的知识解答.
情境导入 新课讲授 讲练巩固 课堂小结 课后作业
情境导入 新课讲授 讲练巩固 课堂小结 课后作业
➽目标检测
1、下列数列既是递增数列,又是无穷数列的是( D )
A.1,2,3,…,20 B.-1,-2,-3,…,-n,… C.1,2,3,2,5,6,…
《庄子·天下篇》
情境导入 新课讲授 讲练巩固 课堂小结 课后作业
情境二:大自然是懂数学的.
树木的分杈、花瓣的数量、植物种子的排列...... 都遵循了某种数学规律.
斐波那契数
情境导入 新课讲授 讲练巩固 课堂小结 课后作业
情境导入 新课讲授 讲练巩固 课堂小结 课后作业
大自然是懂数学的.
树木的分杈、花瓣的数量、植物种子的排列...... 都遵循了某种数学规律. 斐波那契数 1,1,2,3,5,8,13,21,34,55,89,......

高中数学第二章第1节《数列的概念》课件新人教A版必修5

高中数学第二章第1节《数列的概念》课件新人教A版必修5
3.写出下列数列的一个通项公式. (1)2,4 ,6 ,8 ,...
3 15 35 63 (2) 1, 3, 5,7 , 9 ,...
2 4 8 16 (3)9,99,999,9999,...
(4) 3, 3, 1, 52, 1 33, ...
(5)0,1,0,1,0,1,…
本节课学习的主要内容有: 1、数列的有关概念 2、数列的通项公式;
2.项数无限的数列叫做无穷数列。
1 , 例如,数列
1 , 1,1 ,1 , 2 345
思考:
思考1:数列 4,5,6,7,8,9,10; 数列 10,9,8,7,6,5,4;是否相同?
思考2:数列中的数是否可以重复? 如:数列-1,1,-1,1,···。
例1、 写出下面数列的一个通项公式,使它的 前4项分别是下列各数:
本节课的能力要求是: 会用观察法由数列的前几项求数 列的通项公式
P38 1,3,5
天每
开个
放孩
;子
有的
的花
孩期
子不
是一
菊样
花,,有ຫໍສະໝຸດ 选的择孩在子
秋是
天牡
开丹
放花
;,
而选
有择
的在
孩春
➢ He who falls today may rise tomorrow.
子天
是开
梅放
花;
,有
选的
择孩
在子
冬是
天荷
3.形如a,aa,aaa,aaaa, …,(a∈N*)等数列的通项
可统一写成
an
a(10n 9
1)
;
4.形如a,b,a,b,a,b,…的摆动数列可归
纳为一公式: ab( 1 )n `1(ab )

北师大版高二数学上册必修5第一章数列第一课数列的概念课件(共21张PPT)

北师大版高二数学上册必修5第一章数列第一课数列的概念课件(共21张PPT)
明朝未及,我只有过好每一个今天,唯一的今天。
昨日的明天是今天。明天的昨日是今天。为什么要计较于过去呢(先别急着纠正我的错误,你确实可以在评判过去中学到许多)。但是我发现有的人过分地瞻前顾后了。为 何不想想“现在”呢?为何不及时行乐呢?如果你的回答是“不”,那么是时候该重新考虑一下了。成功的最大障碍是惧怕失败。这些句子都教育我们:不要惧怕失败。如 果你失败了他不会坐下来说:“靠,我真失败,我放弃。”并且不是一个婴儿会如此做,他们都会反反复复,一次一次地尝试。如果一条路走不通,那就走走其他途径,不 断尝试。惧怕失败仅仅是社会导致的一种品质,没有人生来害怕失败,记住这一点。宁愿做事而犯错,也不要为了不犯错而什么都不做。不一定要等到时机完全成熟才动手。 开头也许艰难,但是随着时间的流逝,你会渐渐熟悉你的事业。世上往往没有完美的时机,所以当你觉得做某事还不是时候,先做起来再说吧。喜欢追梦的人,切记不要被 梦想主宰;善于谋划的人,切记空想达不到目标;拥有实干精神的人,切记选对方向比努力做事重要。太阳不会因为你的失意,明天不再升起;月亮不会因为你的抱怨,今 晚不再降落。蒙住自己的眼睛,不等于世界就漆黑一团;蒙住别人的眼睛,不等于光明就属于自己!鱼搅不浑大海,雾压不倒高山,雷声叫不倒山岗,扇子驱不散大雾。鹿 的脖子再长,总高不过它的脑袋。人的脚指头再长,也长不过他的脚板。人的行动再快也快不过思想!以前认为水不可能倒流,那是还没有找到发明抽水机的方法;现在认 为太阳不可能从西边出来,这是还没住到太阳从西边出来的星球上。这个世界只有想不到的,没有做不到的!不是井里没有水,而是挖的不够深;不是成功来的慢,而是放 弃速度快。得到一件东西需要智慧,放弃一样东西则需要勇气!终而复始,日月是也。死而复生,四时是也。奇正相生,循环无端,涨跌相生,循环无端,涨跌相生,循环 无穷。机遇孕育着挑战,挑战中孕育着机遇,这是千古验证了的定律!种子放在水泥地板上会被晒死,种子放在水里会被淹死,种子放到肥沃的土壤里就生根发芽结果。选

高中数学选择性必修二(人教版)《4.1 数列的概念 第一课时 数列的概念与简单表示法》课件

高中数学选择性必修二(人教版)《4.1  数列的概念  第一课时  数列的概念与简单表示法》课件

()
(2)数列1,0,-1,-2与数列-2,-1,0,1是相同的数列.
()
(3)数列的项可以相等.
()
(4)数列a,b,c和数列c,b,a一定不是同一数列.
()
答案:(1)× (2)× (3)√ (4)×
2.所有正奇数的立方按从小到大的顺序组成数列,其前3项为______.
答案:1,27,125
知识点二 数列的分类与通项公式
[对点练清]
[多选]下面四个结论中正确的是
()
A.数列可以看作是一个定义在正整数集(或它的有限子集
{1,2,3,…,n})上的函数
B.数列若用图象表示,从图象上看都是一群孤立的点
C.数列的项数是无限的
D.数列的通项公式是唯一的 解析:数列的项数可以是有限的,也可以是无限的,C错;数列的通
项公式可能不唯一,比如数列1,0,-1,0,1,0,-1,0,…的通项公
(1)从图(2)开始观察每个图案从上往下的小正方形个数有什么规律? 提示:按照1,3,5,7,…,1的顺序分布. (2)按照此图规律,f(6)为多少? 提示:f(1)=1=2×1×0+1, f(2)=1+3+1=2×2×1+1, f(3)=1+3+5+3+1=2×3×2+1, f(4)=1+3+5+7+5+3+1=2×4×3+1, 故f(n)=2n(n-1)+1. 当n=6时,f(6)=2×6×5+1=61.
题型一 数列的概念及分类 [学透用活]
(1) 数 列 的定 义 中 要 把 握 两 个 关 键 词 : “ 一 定 顺 序 ” 与 “ 一 列 数”.也就是说,构成数列的元素是数,并且这些数是按照“一定顺序” 排列着的,即确定的数在确定的位置上.
(2)数列的项与它的项数是两个不同的概念:项是指出现在这个数列 中的某一个确定的数,它是一个函数值,即 an=f(n);而项数是指这个 数列共有多少项.

2025届高中数学一轮复习课件《等差数列》ppt

2025届高中数学一轮复习课件《等差数列》ppt

第12页
高考一轮总复习•数学
第13页
重难题型 全线突破
高考一轮总复习•数学
第14页
题型
等差数列基本量的计算
典例 1(1)(2023·全国甲卷,文)记 Sn 为等差数列{an}的前 n 项和.若 a2+a6=10,a4a8=
45,则 S5=( )
本例可以用 a1,d 来表示这两个条件方程,由方程组求解.
B.8
C.7
D.6
高考一轮总复习•数学
第24页
(2)已知方程(x2-2x+m)(x2-2x+n)=0 的四个根组成一个首项为14的等差数列,则|m-
n|=( )
A.1
3 B.4
13 C.2 D.8
高考一轮总复习•数学
第25页
解析:(1)因为 S9=9a5,所以 9a5=3(a3+a5+am),所以 a3+a5+am=3a5,即 a3+am= 2a5,所以 m=7.故选 C.
解析:由等差数列的求和公式可得ab77=TS1133=73××1133++38=9447=2.
高考一轮总复习•数学
4.已知等差数列{an}的通项公式为 an=2n-11,则数列{|an|}的前 n 项和 10n-n2,n≤5,
Tn=_____n2_-__1_0_n_+__5_0_,__n_≥__6______. 解析:设等差数列{an}的前 n 项和为 Sn,则 Tn=-Sn-Sn,2Sn5,≤n5≥,6, 即 Tn=n120-n-10nn2+,5n0≤,5n,≥6.
②若{bn}是等差数列,则 b1+b3=2b2, 即a21+1a23=2×a62,所以 a2a3+6a1a2=6a1a3, 所以(a1+d)(a1+2d)+6a1(a1+d)=6a1(a1+2d),

人教版高中数学选择性必修2第四章《数列》PPT课件

人教版高中数学选择性必修2第四章《数列》PPT课件

三、等差、等比数列的性质及应用
1.等差、等比数列的性质主要涉及数列的单调性、最值及其前n项和的 性质,利用性质求数列中某一项等.试题充分体现“小”“巧”“活” 的特点,题型多以选择题和填空题的形式出现,难度为中低档. 2.借助等差、等比数列的性质及应用,提升逻辑推理、数学运算等核心 素养.
例3 (1)已知{an}为等差数列,a1+a3+a5=105,a2+a4+a6=99,以Sn
2 由SS奇偶+∶SS偶奇==6114∶0,9, 解得 S 奇=288,S 偶=352.
因此 d=S偶-8 S奇=684=8,aa98=SS偶奇=191.
(2)在等差数列{an}中,3(a3+a5)+2(a7+a10+a13)=24,则该数列的前 13项和为
A.13
√B.26
C.52
D.156
解析 3(a3+a5)+2(a7+a10+a13)=24, ∴6a4+6a10=24,∴a4+a10=4,
(2)求 f 12,并说明 f 12<2.
解 由(1)知f(x)=x+2x2+…+nxn,
所以 f 12=12+2×212+3×213+…+n×21n,

1 2
f
12=212+2×213+3×214+…+(n-1)21n+n×2n1+1,

由①-②得12 f 12=12+212+…+21n-n×2n1+1=1-21n-2nn+1,
与奇数项和之比为 11∶9,则公差 d,aa98的值分别是
A.8,190
B.9,190
C.9,191
√D.8,191
解析 设S奇=a1+a3+…+a15,S偶=a2+a4+…+a16, 则有S偶-S奇=(a2-a1)+(a4-a3)+…+(a16-a15)=8d,

人教A版高中数学选择性必修24.1.2数列的概念课件

人教A版高中数学选择性必修24.1.2数列的概念课件

2
a

3
a

(2) 1 , n an1 1(n 2) .
3
n 1
1
【详解】
(1)因为 a1 1 , an an 1 2 (n 2) ,所以 a2 a1 2 1 2 3 ,
a3 a2 22 3 4 7 , a4 a3 23 7 8 15 , a5 a4 24 15 16 31 ,
解这个关于的方程,得 = −12(舍去),或 = 10.
所以,120是数列{ }的项,是第10项.
例4.图中的一系列三角形图案称为谢尔宾斯基三角形.在图中4个大三角形
中,着色的三角形的个数依次构成一个数列的前4项,写出这个数列的一
个通项公式.
解:在以上4个图中,着色三角形的个数依次为1,3,9,27,
章节:第四章 数列
标题:4.1数列的概念
(第二课时)
课时:2课时


1.教学目标
2.新课讲授
3.新课小结
4.作业巩固
环节1:教学目标分解
教学目标
素养目标
1.经历数列概念的抽象过程,了解数列的定义,了解数列
的表示方法
2.经历从函数的角度研究数列一般形式的过程,了解数列
是一种特殊的函数,能通过对数列的表示(列表法和图象
3
an
n
10.105 , an 10 1 0.35% .
2
10.070 ,
表示第 n 年到期时的存
写出这个数列的前5项.
解:由题意可知,1 = 1,2 = 1 +
1
1
1
1
= 1 + = 2,
1

2025届高中数学一轮复习课件《等比数列》ppt

2025届高中数学一轮复习课件《等比数列》ppt

高考一轮总复习•数学
第13页
题型
等比数列基本量的计算
典例 1(1)(2023·全国甲卷,理)已知正项等比数列{an}中,a1=1,Sn 为{an}的前 n 项和,
S5=5S3-4,则 S4=( )
A.7
B.9
C.15
D.30
(2)(2023·全国甲卷,文)记 Sn 为等比数列{an}的前 n 项和.若 8S6=7S3,则{an}的公 转化为基本量 a1,q 的方程.高考试题的设计也常以基本量的计算为主.
第26页
对点练 2(1)在等比数列{an}中,a1,a17 是方程 x2-14x+9=0 的两根,则a2aa916的值为 ()
A. 14
B.3
C.± 14
D.±3
(2)在各项都为正数的等比数列{an}中,已知 0<a1<1,其前 n 项之积为 Tn,且 T12=T6, 则 Tn 取得最小值时,n 的值是____9____.
率之比相等,且最后一个音的频率是最初那个音的 2 倍.设第二个音的频率为 f1,第八个
音的频率为 f2,则ff21等于(
)
A.11 26
B.8 2
12 C. 2
D.412 2
答案
高考一轮总复习•数学
第18页
(2)在 1 和 2 之间插入 11 个数使包含 1 和 2 的这 13 个数依次成递增的等比数列,记插 入的 11 个数之和为 M,插入 11 个数后这 13 个数之和为 N,则依此规则,下列说法错误的 是( )
高考一轮总复习•数学
第24页
解析:(1)a11+a12+…+a18=a1a+1aa8 8+aa2+2a7a7+a3a+3aa6 6+a4a+4aa5 5. 巧妙应用积的对称性,把两个条件代入求值,此法只适用于偶数项的情形.若奇数项呢?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.已知数列{an},a1=23,a2=89.当 n≥2 时, 3an+1=4an-an-1(n∈N*). (1)证明:{an+1-an}为等比数列; (2)求数列{an}的通项.
3.已知数列an的前n项和为 Sn ,对于n N 有an Sn n
又有数列bn 它们满足关系 bn an 1,
求证:bn 是等比数列,并an其通项公式.
2:已知下面各数列{an} 的前 n 项和 Sn 的公式, 求{an} 的
通项公式。
(1)sn 2n2 3n ; (2)sn 2 3n 1
答案: (1).an 4n 1
(2).an
5n 1
4
3n1
n
2
3.数列{an}的前 n 项和记为 Sn,a1=1,an+1=2Sn+1(n≥1). (1)求{an}的通项公式; (2)等差数列{bn}的各项为正,其前 n 项和为 Tn,且 T3=15, 又 a1+b1,a2+b2,a3+b3 成等比数列,求 Tn.
所以
Sn1 n1
2
Sn n
.
∵ S1
0 ,∴
Sn n
ቤተ መጻሕፍቲ ባይዱ∴
Sn1
n1 Sn
2.
n
故{Sn }是以首项为 1,以 2 为公比的等比数列. n
方法三 注意细节问题
例 3:求数列1, a, a2 , a3,L , an 的各项之和。
1
Sn
n 1
1 an1 1 a
(a 0) (a 1)
(a 0, a 1)
数列
方法一 灵活应用性质 例 1.等差数列{an } ,a3 a4 a5 a6 a7 450 ,求 a2 a8 。
180
2.等差数列 {an } , S4 1, S8 4 ,求 a17 a18 a19 a20 。
9
3.在等差数列中,S11=22,则 a6 =__2___; 4.已知{an} 是等比数列,且 an 0, a2a4 2a3a5 a4a6 25 ,
那么 a3 a5 =__5___; 5.在等比数列{an } 中,S n 为其前 n 项和,若 S30 13S10 , S10 S30 140 ,则 S20 的值为______;
方法二 构造辅助数列
例 2.在数列an 中, a1 1,当 n 2 时,有 an 3an1 2 ,
求数列an 的通项公式。
解:(1)由 an+1=2Sn+1,可得 an=2Sn-1+1(n≥2), 两式相减得 an+1-an=2an,则 an+1=3an(n≥2). 又 a2=2S1+1=3,∴a2=3a1. 故{an}是首项为 1,公比为 3 的等比数列,∴an=3n-1.
(2)设{bn}的公差为 d, 由 T3=15,b1+b2+b3=15,可得 b2=5, 故可设 b1=5-d,b3=5+d,又 a1=1,a2=3,a3=9, 由题意可得(5-d+1)(5+d+9)=(5+3)2,
解得 d1=2,d2=-10.∵等差数列{bn}的各项为正,∴d>0, ∴d=2,b1=3,∴Tn=3n+nn2- ×2=n2+2n.
方法四 提高运算能力
例 4.求和: Sn
1 2 3 L 248
n 2n
.
Sn
2
1 2n1
n 2n
4.数列
{an
}
的前
n
项和记为
Sn,已知
a1
1,
an1
n
n
2
Sn(n
N
*
)
⑴证明:数列{ Sn } 是等比数列; n
⑵求数列 an 的通项公式.
解:⑴证明:∵
S1
a1
1 ,∵ an1
Sn1
Sn ,an1
n n
2
Sn ,
∴ (n 2)Sn n(Sn1 Sn ),
整理得 nSn1
2(n 1)Sn ,
相关文档
最新文档