12脉波二极管整流器

12脉波二极管整流器
12脉波二极管整流器

串联型12脉波二极管整流器

摘要:串联型12脉波二极管整流器是由两个相同的6脉波二极管整流器在直流输出侧串联得到的。该类型整流器一般用作中压传动系统的变频器的前端。但一般情况下,12脉波的二极管整流器的总谐波畸变率不能满足IEEE 标准。 关键词:串联型、二极管、整流器

变频调速是当今理想的调速方法之一,也是重要的节能措施。交—直—交变频方式因其优势受到越来越广泛的应用。大多数的交—直—交变流装置的前置输入部分都采用二极管整流。随着多脉波整流技术的兴起,各种大功率设备都越来越多的采用多脉波二极管整流器。

多脉波二极管整流器有两种类型:串联型多脉波二极管整流器和并联型多脉波二极管整流器。前者的所有6脉波二极管整流器的直流侧串联输出,主要用在仅需要一个直流供电的中压传动系统的变频器的前端;后者的每一个6脉波二极管整流器给一个单独的直流负载供电,可以用在需要多个独立直流供电电源的串联H 桥多电平逆变器中。本文主要介绍串联型12脉波二极管整流器。

1.串联型12脉波二极管整流器

1.1整流器的结构

图1 12脉波串联型二极管整流器简化结构框图

12脉波串联型二极管整流器的典型结构简化框图如图1所示,它由两个完全相同的6脉波二极管整流器构成,移相变压器二次侧两个三相对称绕组分别给其供电。两个整流器的直流输出串联连接。为了消除网侧电流A i 中的低次谐波,可令变压器二次侧星形连接的绕组的线电压ab V 与变压器一次侧绕组线电压AB V 同相,而变压器 三角形连接的绕组的线电压~~ab

v 超前AB v 一个相角,即 30~~

=∠-∠=AB ab v v δ

二次侧绕组线电压的有效值为

2/~~AB ab

ab V V V == 则变压器的绕组匝数比为

221=N N 3

231=N N 图1中的s L 表示供电电源和变压器之间总的线路电感,变压器总的漏电感可在变压器内部设置。

1.2 理论分析

假定直流滤波电容d C 足够大,从而可以忽略直流电源d V 中的纹波含量。 在任何时刻(换相过程除外),上、下两个6脉波二极管整流器中各有两个二极管导通,d i 同时经过4个二极管形成回路。由于两个6脉波二极管整流器的输出为串联连接,二次侧绕组的漏电感也可以认为是串联连接,直流电流的纹波相对较小。

输出直流电流d i 连续,且在每个供电频率周期内包含有12个脉波。变压器二次侧星形连接的绕组中的电流a i 近似为梯形波,只是在顶端有4个纹波。变压器二次侧三角形连接的绕组中的电流~a

i 和a i 的波形形状相同,只是在相位上相差 30。

由于变压器一次侧和二次侧上面的绕组都为星形连接,折合后的电流'a i 和折合前的电流a i 波形形状应该相同,只是幅值将减少一半(可根据两个绕组匝数比计算得到)。而二次侧三角形绕组中折合前的电流~a i 和折合后的电流'~a i 波形会不同。且一次侧电流与二次侧电流之间存在如下关系:

'

'~a a A i i i += 1.3 参数计算

已知额定输入线电压R V 有效值为4000V ,额定输出功率R S 为1MW ,变压器初次级绕组总漏电感为0.8pu ,电源和变压器之间线路总电感为0.8pu 。 基准相电压3/40003

==R B V V V

基准电流3/250)3/4000/(3/1036===B

R B V S I V 基准阻抗16)3/250/(3/4000===B

R B I V Z V/A 基准电感π

π1001621===f Z w Z L R B R B H 因此总漏电感31.410016*

08.008.0-≈==e L L B s πH 2. 仿真结果

2.1 验证

图2.1为12脉波串联型二极管整流器工作在额定条件下仿真所得的电流波形,从上到下依次为一次侧电流A i 、二次侧星形绕组中电流a i 、二次侧三角形绕组中电流~a

i 和输出电流d i 。12脉波串联型二极管整流器网侧电流的THD 如图2.2所示。

图2.1 12脉波串联型二极管整流器在额定条件下电流波形

图2.2 12脉波串联型二极管整流器网侧电流的THD

图2.3亦为12脉波串联型二极管整流器工作在额定条件下仿真得到的电流波形,是由12脉波二极管整流器等效图所得波形,示波器中从上到下依次表示输出电流d i 、二次侧星形绕组中电流a i 、二次侧星形绕组折算到一次侧的电流'a i 、二次侧三角形绕组中电流~a i 、二次侧三角形绕组折算到一次侧的电流'~a i 和一次侧电流A i 。

图2.3 12脉波串联型二极管整流器等效图所得电流波形

由图2.3验证得,变压器二次侧星形绕组折合前后的电流波形相同,只是折合后的幅值为折合前幅值的一半;而变压器二次侧三角形绕组折合前后的电流波

形不同,这是由于二次侧三角形连接的绕组折合到一次侧星形绕组时引起了谐波电流的移相;一次侧绕组中的电流为二次侧各绕组折算后电流之和,且其近似为正弦波。

2.2 网侧电流与THD的关系

图2.4-2.13给出了网侧电流依次为0.1pu、0.2pu、0.3pu、…、1pu时各电流波形和傅立叶分析结果。

I=0.1pu时仿真结果

图2.4

1A

I=0.2pu时仿真结果

图2.5 1A

I=0.3pu时仿真结果图2.6 1A

I=0.4pu时仿真结果图2.7 1A

I=0.5pu时仿真结果图2.8 1A

I=0.6pu时仿真结果图2.9 1A

I=0.7pu时仿真结果图2.10 1A

I=0.8pu时仿真结果图2.11 1A

图2.12 1A I =0.9pu 时仿真结果

图2.13 1A I =1pu 时仿真结果

图2.14为网侧电流1A I 与THD 关系曲线,其中横轴为1A I (单位为pu ),纵轴为THD (单位为%)。MATLAB 中绘制曲线的程序为:

>> x=[0.1:0.1:1];

>> y=[12.24;11.39;7.69;6.22;5.16;4.65;4.5;3.99;3.19;0.98]; >> plot(x,y);

图2.14 网侧电流与THD 关系曲线

当1A I =0.5pu 时,,,,d a a a A i i i i i '' 和各电流的谐波分析如图2.15-18所示。

图2.15 d i 谐波分析

i谐波分析图2.16

a

i 谐波分析图2.16

a

图2.17 a i 谐波分析

图2.18 A i 谐波分析

3.结论

由图2.4-14可知,网侧电流从零到额定标幺值范围内,总谐波畸变率随网侧电流的增加而减小。

由图2.15-18可知,当1A I =0.5pu 时,各电流的THD 都非常大,明显不满足要求;且三角型绕组和星型绕组分别折算到原边的电流中,5次和7次谐波都比较大,但两者之和即输入电流中没有5次和7次谐波电流。由此可知,移相变压器能很好的抑制5次和7次谐波。

一般情况下,12脉波二极管整流器的输入电流不能满足IEEE 519-1992的谐波标准。故在实际应用中,为了降低网侧电流THD ,因考虑采用网侧滤波器。

附图一:串联型12脉波二极管整流图

附图二:串联型12脉波二极管等效整流图

全波整流滤波电路

二极管全波整流滤波电路 ①下面分两部分介绍其工作原理,即桥式整流电路与滤波电路两部分。 首先,介绍桥式整流电路,其工作原理为如下: 电路图 图10.02(a) 在分析整流电路工作原理时,整流电路中的二极管是作为开关运用,具有单向导电性。根据图10.02(a)的电路图可知:当正半周时二极管D1、D3导通,在负载电阻上得到正弦波的正半周。 当负半周时二极管D2、D4导通,在负载电阻上得到正弦波的负半周。 在负载电阻上正负半周经过合成,得到的是同一个方向的单向脉动电压。单相桥式整流电路的波形图见图10.02(b)。

下面介绍滤波电路的工作原理: (1)滤波的基本概念 滤波电路利用电抗性元件对交、直流阻抗的不同,实现滤波。电容器C对直流开路,对交流阻抗小,所以C应该并联在负载两端。电感器L对直流阻抗小,对交流阻抗大,因此L 应与负载串联。经过滤波电路后,既可保留直流分量、又可滤掉一部分交流分量,改变了交直流成分的比例,减小了电路的脉动系数,改善了直流电压的质量。 (2)电容滤波电路 现以单相桥式电容滤波整流电路为例来说明。电容滤波电路如图10.06所示,在负载电阻上并联了一个滤波电容C。 若电路处于正半周,二极管D1、D3导通,变压器次端电压v2给电容器C充电。此时C相当于并联在v2上,所以输出波形同v2,是正弦形。当v2到达90°时,v2开始下降。先假设二极管关断,电容C就要以指数规律向负载RL放电。指数放电起始点的放电速率很大。 在刚过90°时,正弦曲线下降的速率很慢。所以刚过90°时二极管仍然导通。在超过90°后的某个点,正弦曲线下降的速率越来越快,当刚超过指数曲线起始放电速率时,二极管关断。 所以,在t1到t2时刻,二极管导电,C充电,v C=v L按正弦规律变化;t2到t3时刻二极管关断,v C=v L按指数曲线下降,放电时间常数为R L C。通过以上分析画出波形图如下: ②讨论C和RL的大小对输出电压的影响。

并联多重12脉可控整流电路

. . 辽宁工业大学电力电子技术课程设计(论文) 题目:并联多重12脉可控整流电路(220V/200A) 院(系):电气工程学院 专业班级: 学号: 学生: 指导教师:(签字) 起止时间:

课程设计(论文)任务及评语 院(系):电气工程学院教研室:电气 注:成绩:平时20% 论文质量60% 答辩20% 以百分制计算

摘要 近些年来随着电力电子技术的快速发展,电力电子技术已广泛应用于各个领域。直流整流器是以电力电子技术为基础发展起来的。它是利用电力电子技术的基本特点以小信号输入控制很大的功率输出,放大倍数极高,这就是电力电子设备成为强、弱电之间接口的基础。利用这一特点能获得节能、环保、高效、高可靠性、安全良好的经济效益。 整流电路是将交流电能变为直流电能的一种装置,整流电路是电力电子电路中出现最早的一种。它的发展还与其他许多基础学科有着紧密的联系,如微电子技术、计算机技术、拓扑学、仿真技术、信息处理与通信技术等等。每一门学科或专业技术的重大发展和突破都为电力电子技术的发展带来了巨大的推动力。 关键词:整流电路;触发电路;保护电路;MATLAB仿真

目录 第1章绪论 (1) 1.1电力电子技术概况 (1) 1.2本文设计容 (1) 第2章并联多重12脉整流电路设计 (3) 2.1并联多重12脉整流电路总体设计方案 (3) 2.2具体电路设计 (4) 2.2.1主电路设计 (4) 2.2.1触发电路设计 (5) 2.2.2保护电路设计 (6) 2.3元器件型号选择 (7) 2.3.1主电路参数选择 (7) 2.3.2晶闸管参数选择 (8) 2.4系统调试或仿真、数据分析 (9) 2.4.1 MATLAB仿真软件简介 (9) 2.4.2并联12脉波整流电路建模 (9) 2.4.3并联12脉波整流电路仿真波形及数据分析 (10) 第3章课程设计总结 (12) 参考文献 (13)

三相半波桥式(全波)整流及六脉冲整流电路

三相半波桥式(全波)整流及六脉冲整流电路 1. 三相半波整流滤波 当功率进一步增加或由于其他原因要求多相整流时,三相整流电路就被提了出来。图1所示就是三相半波整流电路原理图。在这个电路中,三相中的每一相都和单独形成了半波整流电路,其整流出的三个电压半波在时间上依次相差120o 叠加,并且整流输出波形不过0点,其最低点电压 式中Up——是交流输入电压幅值。 并且在一个周期中有三个宽度为120o的整流半波。因此它的滤波电容器的容量可以比单相半波整流和单相全波整流 时的电容量都小。 图1 三相半波整流电路原理图 2. 三相桥式(全波)整流滤波 图2所示是三相桥式全波整流电路原理图。图3是它们的整流波形图。图3(a)是三相交流电压波形;图3(b)是三相半波整流电压波形图;图3(c)是三相全波整流电压波形图。在输出波形图中,N粗平直虚线是整流滤波后的平均输出电压值,虚线以下和各正弦波的交点以上(细虚线以上)的小脉动波是整流后未经滤波的输出电压波形。

图2 三相桥式全波整流电路原理图 由图1和图2可以看出,三相半波整流电路和三相桥式全波整流电路的结构是有区别的。 (1)三相半波整流电路只有三个整流二极管,而三相全波整流电路中却有六只整流二极管; (2) 三相半波整流电路需要输入电源的中线,而三相全波整流电路则不需要输入电源的中线。 由图3可以看出三相半波整流波形和三相全波整流电路则不需要输入电源的中线。 图3 三相整流的波形图 ①三相半波整流波形的脉动周期是120o而三相全波整流波形的脉动周期是60o; ②三相半波整流波形的脉动幅度和输出电压平均值:三相半波整流波形的脉动幅度是: (1) 式中U——脉动幅度电压;Up是正弦半波幅值电压,比如有效值为380V的线电压, 其半波幅值电压为: (2)

常用整流二极管型号9页

M7 整流二极管 2010-03-18 15:04 整流二极管是一种能够将交流电能转化成为直流电能的半导体器件,整流二极管具有明显的单向导电性,是一种大面积的功率器件,结电容大,工作频率较低,一般在几十千赫兹,反向电压从25V到3000V. 硅整流二极管的击穿电压高,反向漏电流小,高温性能良好,通常高压大功率整流二极管都用高纯单晶硅制造,这种器件结面积大,能通过较大电流(通常可以达到数千安),但工作频率不高,一般在几十千赫兹以下,整流二极管主要用于各种低频整流电路。 整流二极管的选用 整流二极管一般为平面型硅二极管,用于各种电源整流电路中。 选用整流二极管时,主要应考虑其最大整流电流、最大反向工作电流、截止频率及反向恢复时间等参数。 普通串联稳压电源电路中使用的整流二极管,对截止频率的反向恢复时间要求不高,只要根据电路的要求选择最大整流电流和最大反向工作电流符合要求的整流二极管即可。例如,1N系列、2CZ系列、RLR系列等。 开关稳压电源的整流电路及脉冲整流电路中使用的整流二极管,应选用工作频率较高、反向恢复时间较短的整流二极管(例如RU系列、EU系列、V 系列、1SR系列等)或选择快恢复二极管。 整流二极管的常用参数

(1)最大平均整流电流IF:指二极管长期工作时允许通过的最大正向平均电流。该电流由PN结的结面积和散热条件决定。使用时应注意通过二极管的平均电流不能大于此值,并要满足散热条件。例如1N4000系列二极管的IF为1A。 (2)最高反向工作电压VR:指二极管两端允许施加的最大反向电压。若大于此值,则反向电流(IR)剧增,二极管的单向导电性被破坏,从而引起反向击穿。通常取反向击穿电压(VB)的一半作为(VR)。例如1N4001的VR为50V,1N4007的VR为1OOOV (3)最大反向电流IR:它是二极管在最高反向工作电压下允许流过的反向电流,此参数反映了二极管单向导电性能的好坏。因此这个电流值越小,表明二极管质量越好。 (4)击穿电压VR:指二极管反向伏安特性曲线急剧弯曲点的电压值。反向为软特性时,则指给定反向漏电流条件下的电压值。 (5)最高工作频率fm:它是二极管在正常情况下的最高工作频率。主要由PN结的结电容及扩散电容决定,若工作频率超过fm,则二极管的单向导电性能将不能很好地体现。例如1N4000系列二极管的fm为3kHz。 (6)反向恢复时间tre:指在规定的负载、正向电流及最大反向瞬态电压下的反向恢复时间。 (7)零偏压电容CO:指二极管两端电压为零时,扩散电容及结电容的容量之和。值得注意的是,由于制造工艺的限制,即使同一型号的二极管其参数的离散性也很大。手册中给出的参数往往是一个范围,若测试条件改变,则相应的参数也会发生变化,例如在25°C时测得1N5200系列硅塑封整流二

12脉波整流

https://www.360docs.net/doc/6210817824.html,/view/f05a78d850e2524de5187e4 2.html 串联型12脉波二极管整流器 摘要:串联型12脉波二极管整流器是由两个相同的6脉波二极管整流器在直流输出侧串联得到的。该类型整流器一般用作中压传动系统的变频器的前端。但一般情况下,12脉波的二极管整流器的总谐波畸变率不能满足IEEE 标准。 关键词:串联型、二极管、整流器 变频调速是当今理想的调速方法之一,也是重要的节能措施。交—直—交变频方式因其优势受到越来越广泛的应用。大多数的交—直—交变流装置的前置输入部分都采用二极管整流。随着多脉波整流技术的兴起,各种大功率设备都越来越多的采用多脉波二极管整流器。 1.理论分析 假定直流滤波电容d C 足够大,从而可以忽略直流电源d V 中的纹波含量。 在任何时刻(换相过程除外),上、下两个6脉波二极管整流器中各有两个二极管导通,d i 同时经过4个二极管形成回路。由于两个6脉波二极管整流器的输出为串联连接,二次侧绕组的漏电感也可以认为是串联连接,直流电流的纹波相对较小。 输出直流电流d i 连续,且在每个供电频率周期内包含有12个脉波。变压器二次侧星形连接的绕组中的电流a i 近似为梯形波,只是在顶端有4个纹波。变压器二次侧三角形连接的绕组中的电流~ a i 和a i 的波形形状相同,只是在相位上相差 30 。 由于变压器一次侧和二次侧上面的绕组都为星形连接,折合后的电流' a i 和折 合前的电流a i 波形形状应该相同,只是幅值将减少一半(可根据两个绕组匝数比计算得到)。而二次侧三角形绕组中折合前的电流~ a i 和折合后的电流' ~ a i 波形会不 同。且一次侧电流与二次侧电流之间存在如下关系: ' ' ~ a a A i i i += 2. 仿真结果

常用二极管参数

常用整流二极管 型号VRM/Io IFSM/ VF /Ir 封装用途说明1A5 600V/1.0A 25A/1.1V/5uA[T25] D2.6X3.2d0.65 1A6 800V/1.0A 25A/1.1V/5uA[T25] D2.6X3.2d0.65 6A8 800V/6.0A 400A/1.1V/10uA[T60] D9.1X9.1d1.3 1N4002 100V/1.0A 30A/1.1V/5uA[T75] D2.7X5.2d0.9 1N4004 400V/1.0A 30A/1.1V/5uA[T75] D2.7X5.2d0.9 1N4006 800V/1.0A 30A/1.1V/5uA[T75] D2.7X5.2d0.9 1N4007 1000V/1.0A 30A/1.1V/5uA[T75] D2.7X5.2d0.9 1N5398 800V/1.5A 50A/1.4V/5uA[T70] D3.6X7.6d0.9 1N5399 1000V/1.5A 50A/1.4V/5uA[T70] D3.6X7.6d0.9 1N5402 200V/3.0A 200A/1.1V/5uA[T105] D5.6X9.5d1.3 1N5406 600V/3.0A 200A/1.1V/5uA[T105] D5.6X9.5d1.3 1N5407 800V/3.0A 200A/1.1V/5uA[T105] D5.6X9.5d1.3 1N5408 1000V/3.0A 200A/1.1V/5uA[T105] D5.6X9.5d1.3 RL153 200V/1.5A 60A/1.1V/5uA[T75] D3.6X7.6d0.9 RL155 600V/1.5A 60A/1.1V/5uA[T75] D3.6X7.6d0.9 RL156 800V/1.5A 60A/1.1V/5uA[T75] D3.6X7.6d0.9 RL203 200V/2.0A 70A/1.1V/5uA[T75] D3.6X7.6d0.9 RL205 600V/2.0A 70A/1.1V/5uA[T75] D3.6X7.6d0.9 RL206 800V/2.0A 70A/1.1V/5uA[T75] D3.6X7.6d0.9 RL207 1000V/2.0A 70A/1.1V/5uA[T75] D3.6X7.6d0.9 RM11C 1000V/1.2A 100A/0.92V/10uA D4.0X7.2d0.78 MR750 50V/6.0A 400A/1.25V/25uA D8.7x6.3d1.35 MR751 100V/6.0A 400A/1.25V/25uA D8.7x6.3d1.35 MR752 200V/6.0A 400A/1.25V/25uA D8.7x6.3d1.35 MR754 400V/6.0A 400A/1.25V/25uA D8.7x6.3d1.35 MR756 600V/6.0A 400A/1.25V/25uA D8.7x6.3d1.35 MR760 1000V/6.0A 400A/1.25V/25uA D8.7x6.3d1.35 常用整流二极管(全桥) 型号VRM/Io IFSM/ VF /Ir 封装用途说明RBV-406 600V/*4A 80A/1.10V/10uA 25X15X3.6 RBV-606 600V/*6A 150A/1.05V/10uA 30X20X3.6 RBV-1306 600V/*13A 80A/1.20V/10uA 30X20X3.6 RBV-1506 600V/*15A 200A/1.05V/50uA 30X20X3.6 RBV-2506 600V/*25A 350A/1.05V/50uA 30X20X3.6 常用肖特基整流二极管SBD 型号VRM/Io IFSM/ VF Trr1/Trr2 封装用途说明EK06 60V/0.7A 10A/0.62V 100nS D2.7X5.0d0.6 SK/高速 EK14 40V/1.5A 40A/0.55V 200nS D4.0X7.2d0.78 SK/低速 D3S6M 60V/3.0A 80A/0.58V 130p SB340 40V/3.0A 80A/0.74V 180p SB360 60V/3.0A 80A/0.74V 180p SR260 60V/2.0A 50A/0.70V 170p MBR1645 45V/16A 150A/0.65V <10nS TO220 超高速

1N系列常用整流二极管的主要参数

1N 系列常用整流二极管的主要参数
反向工作 峰值电压 URM/V 额定正向 整流电流 整流电流 IF/A 正向不重 复浪涌峰 值电流 IFSM/A 正向 压降 UF/V 反向 电流 IR/uA 工作 频率 f/KHZ 外形 封装
型 号
1N4000 1N4001 1N4002 1N4003 1N4004 1N4005 1N4006 1N4007 1N5100 1N5101 1N5102 1N5103 1N5104 1N5105 1N5106 1N5107 1N5108 1N5200 1N5201 1N5202 1N5203 1N5204 1N5205 1N5206 1N5207 1N5208 1N5400 1N5401 1N5402 1N5403 1N5404 1N5405 1N5406 1N5407 1N5408
25 50 100 200 400 600 800 1000 50 100 200 300 400 500 600 800 1000 50 100 200 300 400 500 600 800 1000 50 100 200 300 400 500 600 800 1000
1
30
≤1
<5
3
DO-41
1.5
75
≤1
<5
3
DO-15
2
100
≤1
<10
3
3
150
≤0.8
<10
3
DO-27
常用二极管参数: 05Z6.2Y 硅稳压二极管 Vz=6~6.35V,Pzm=500mW,

12脉波整流电路谐波治理方案研究

12脉波整流电路谐波治理方案研究 Study on12-pulse rectifier circuit harmonic control plan 吴畏文冲刘超 WU Wei,WEN Chong,LIU Chao (广西电力职业技术学院,广西南宁市530007) (广西崇左市供电局,广西崇左市532200) (Guangxi Electric Power Institue Of V ocational Training,Nanning530007,China)(Guangxi Chongzuo Power Supply Bureau,Chongzuo532200,China) 摘要:广西崇左网区,存在着许多电解锰一类的企业,其非线性负荷在运行过程中会产生谐波,对整个网区都造成污染。通过对这类污染源的运行环境的了解,谐波的测试和分析以及仿真研究,针对电解锰行业用电特点,在各种谐波治理方式中,找出了一种性价比较高,而且企业也易于接受的治理方式,以点带面,逐步推广。 关键词谐波污染;Matlab仿真;谐波治理 [课题项目]本文是广西壮族自治区教育厅科研项目课题“电网谐波治理”的研究报告之一。 Abstract:Guangxi Chongzuo power grid area,there are many electrolytic manganese kind of enterprise,the nonlinear load in the operation process will generate harmonic wave,the power grid area are cause pollution.Through this kind of pollution sources to the operating conditions of understanding,harmonic of testing and analysis and simulation,in view of the electrolysis manganese industry consumption characteristics,in all kinds of harmonic governance mode,find out a low cost and high performance,and enterprise also easy to accept the governance mode, from point to area,and gradually promotion.

常用二极管型号及参数大全

常用二极管型号及参数大全

1.塑封整流二极管 序号型号IF VRRM VF Trr 外形 A V V μs 1 1A1-1A7 1A 50-1000V 1.1 R-1 2 1N4001-1N4007 1A 50-1000V 1.1 DO-41 3 1N5391-1N5399 1.5A 50-1000V 1.1 DO-15 4 2A01-2A07 2A 50-1000V 1.0 DO-15 5 1N5400-1N5408 3A 50-1000V 0.95 DO-201AD 6 6A05-6A10 6A 50-1000V 0.95 R-6 7 TS750-TS758 6A 50-800V 1.25 R-6 8 RL10-RL60 1A-6A 50-1000V 1.0 9 2CZ81-2CZ87 0.05A-3A 50-1000V 1.0 DO-41 10 2CP21-2CP29 0.3A 100-1000V 1.0 DO-41 11 2DZ14-2DZ15 0.5A-1A 200-1000V 1.0 DO-41 12 2DP3-2DP5 0.3A-1A 200-1000V 1.0

DO-41 13 BYW27 1A 200-1300V 1.0 DO-41 14 DR202-DR210 2A 200-1000V 1.0 DO-15 15 BY251-BY254 3A 200-800V 1.1 DO-201AD 16 BY550-200~1000 5A 200-1000V 1.1 R-5 17 PX10A02-PX10A13 10A 200-1300V 1.1 PX 18 PX12A02-PX12A13 12A 200-1300V 1.1 PX 19 PX15A02-PX15A13 15A 200-1300V 1.1 PX 20 ERA15-02~13 1A 200-1300V 1.0 R-1 21 ERB12-02~13 1A 200-1300V 1.0 DO-15 22 ERC05-02~13 1.2A 200-1300V 1.0 DO-15 23 ERC04-02~13 1.5A 200-1300V 1.0 DO-15

12脉波整流变压器结构型式的选择

12脉波整流变压器结构型式的选择 在大型的电化学或电冶金用直流电源系统中,同相逆并联12脉波整流机组是组成24相、36相、48相整流系统的基本组成单元。12脉波整流机组主电路的连接型式有两种方案:一种是由一台整流变压器与两台整流装置整流装置组成的单机组12脉波整流电路整流电路(简称“单机组12脉波整流电路”);另一种是由置于同一油箱内的两台完全独立的整流变压器与两台整流装置组成的双机组等值12脉波整流电路(简称“等值12脉波整流电路”)。二者的连接方式。 上述两种连接方式的整流电路,对12脉波整流输出电压(电流)波形的对称性以及对网侧谐波电流谐波电流的影响是不同的,应引起设计人员和用户的注意。 1两种连接方式对谐波电流的影响 理想情况下,12脉波整流电路运行过程中,不会在网侧产生5次和7次谐波电流。但单机组12脉波整流电路,由于变压器两个阀侧绕组的输出电压和阻抗不容易做到很一致,使得运行时存在着严重的负荷分配不均的问题。需要通过晶闸管相控或饱和电抗器的励磁调节来纠正这种偏差,从而导致二个三相桥晶闸管导通的相位差不能严格地保持为30°,使得网侧仍然存在5次和7次谐波电流。 对于等值12脉波整流电路,由于变压器两个阀侧绕组的输出电压和阻抗容易做到一致,而不会破坏12脉波的对称性。 图1单机组12脉波整流电路 图2等值12脉波整流电路 2阀侧绕组之间负荷电流分配不均的问题 2.1单机组12脉波整流电路单机组12脉波整流电路,其整流变压器网侧只有一组绕组,导致两组阀侧绕组间负荷分配不均的原因是Y接和△接这两组绕组间匝比NY/N△偏离1/,彼此理想空载直流电压Udio不相等,因此,负荷分配不可能平均。整流变压器阀侧两组绕组间的匝比NY/N△值接近1/的可取整数比为4/7(偏差1.04%)、7/12(偏差1.02%)、11/19(偏差0.27%)。由此可见,将NY/N△做成11/19,可使△Udio偏差减到最小,改善电流分配不均问题。但由于变压器结构上的合理性和制造方面(变压器变比越大尤其如此)的原因,这样的匝比实际上是不容易做到的。 对于三相桥式整流电路,整流变压器阀侧绕组间匝比NY/N△=4/7时,理想空载直流电压之差△Udio=1.04%。但两组整流器的负载电流负载电流分配却相差很大。因为变压器网侧绕组的电抗X1*为各整流桥整流桥公有,对整流桥间的负载电流分配没有调节作用。负载电流分配完全取决于各组阀侧绕组电抗值X2*=XY*+X△*和阀侧连接母线的电抗XM*。(其中XY*为Y形连接绕组的电抗值,X△*为△形连接绕组的电抗值)。根据有关资料计算结果表明:当变压器二次电抗X△*=XY*=5%时, IdY=0.2928IdnId△=0.7072Idn 当变压器二次电抗X△*=XY*=10%时, IdY=0.3964IdnId△=0.6036Idn 由此可见,变压器二次电抗数值愈小,负载分配相差就愈大。有实际例子可以证明这一点。兰州有一用户采用这种单机组12脉波二极管整流电路,投运后发现,其中一整流桥直流电流达到12000A(额定值)时,另一整流桥的直流电流只有4500A。导致设备无法正常运行,后来被迫重新改造。 理论计算表明:增大整流变压器二次电抗X2*=X△*+XY*,可以部分减小负载电流分配

IN系列常用整流二极管的主要参数

IN系列常用整流二极管的主要参数 型号反向工作峰值 电压URM/V 额定正向整流 电流I F /A 正向不重复浪涌峰 值电流I F SM/A 正向压降 U F /V 反向电流 I R /uA 工作频率 f/KHZ 外形封装 1N4000 25 1 30 ≤1 <5 3 DO-41 1N4001 50 1 30 ≤1 <5 3 DO-41 1N4002 100 1 30 ≤1 <5 3 DO-41 1N4003 200 1 30 ≤1 <5 3 DO-41 1N4004 400 1 30 ≤1 <5 3 DO-41 1N4005 600 1 30 ≤1 <5 3 DO-41 1N4006 800 1 30 ≤1 <5 3 DO-15 1N4007 1000 1 30 ≤1 <5 3 DO-15 1N5100 50 1.5 75 ≤1 <5 3 DO-15 1N5101 100 1.5 75 ≤1 <5 3 DO-15 1N5102 200 1.5 75 ≤1 <5 3 DO-15 1N5103 300 1.5 75 ≤1 <5 3 DO-15 1N5104 400 1.5 75 ≤1 <5 3 DO-15 1N5105 500 1.5 75 ≤1 <5 3 DO-15 1N5106 600 1.5 75 ≤1 <5 3 DO-15 1N5107 800 1.5 75 ≤1 <5 3 DO-15 1N5108 1000 1.5 75 ≤1 <5 3 DO-15 1N5200 50 2 100 ≤1 <10 3 DO-15 1N5201 100 2 100 ≤1 <10 3 DO-15 1N5202 200 2 100 ≤1 <10 3 DO-15 1N5203 300 2 100 ≤1 <10 3 DO-15 1N5204 400 2 100 ≤1 <10 3 DO-15 1N5205 500 2 100 ≤1 <10 3 DO-15 1N5206 600 2 100 ≤1 <10 3 DO-15 1N5207 800 2 100 ≤1 <10 3 DO-15 1N5208 1000 2 100 ≤1 <10 3 DO-15 1N5400 50 3 150 ≤0.8 <10 3 DO-27 1N5401 100 3 150 ≤0.8 <10 3 DO-27 1N5402 200 3 150 ≤0.8 <10 3 DO-27 1N5403 300 3 150 ≤0.8 <10 3 DO-27 1N5404 400 3 150 ≤0.8 <10 3 DO-27 1N5405 500 3 150 ≤0.8 <10 3 DO-27 1N5406 600 3 150 ≤0.8 <10 3 DO-27 1N5407 800 3 150 ≤0.8 <10 3 DO-27 1N5408 1000 3 150 ≤0.8 <10 3 DO-27

常用二极管型号及参数大全

1.塑封整流二极管 序号型号IF VRRM VF Trr 外形 A V V μs 1 1A1-1A7 1A 50-1000V 1.1 R-1 2 1N4001-1N4007 1A 50-1000V 1.1 DO-41 3 1N5391-1N5399 1.5A 50-1000V 1.1 DO-15 4 2A01-2A07 2A 50-1000V 1.0 DO-15 5 1N5400-1N5408 3A 50-1000V 0.95 DO-201AD 6 6A05-6A10 6A 50-1000V 0.95 R-6 7 TS750-TS758 6A 50-800V 1.25 R-6 8 RL10-RL60 1A-6A 50-1000V 1.0 9 2CZ81-2CZ87 0.05A-3A 50-1000V 1.0 DO-41 10 2CP21-2CP29 0.3A 100-1000V 1.0 DO-41 11 2DZ14-2DZ15 0.5A-1A 200-1000V 1.0 DO-41 12 2DP3-2DP5 0.3A-1A 200-1000V 1.0 DO-41 13 BYW27 1A 200-1300V 1.0 DO-41 14 DR202-DR210 2A 200-1000V 1.0 DO-15 15 BY251-BY254 3A 200-800V 1.1 DO-201AD 16 BY550-200~1000 5A 200-1000V 1.1 R-5 17 PX10A02-PX10A13 10A 200-1300V 1.1 PX 18 PX12A02-PX12A13 12A 200-1300V 1.1 PX 19 PX15A02-PX15A13 15A 200-1300V 1.1 PX 20 ERA15-02~13 1A 200-1300V 1.0 R-1 21 ERB12-02~13 1A 200-1300V 1.0 DO-15 22 ERC05-02~13 1.2A 200-1300V 1.0 DO-15 23 ERC04-02~13 1.5A 200-1300V 1.0 DO-15 24 ERD03-02~13 3A 200-1300V 1.0 DO-201AD 25 EM1-EM2 1A-1.2A 200-1000V 0.97 DO-15 26 RM1Z-RM1C 1A 200-1000V 0.95 DO-15 27 RM2Z-RM2C 1.2A 200-1000V 0.95 DO-15 28 RM11Z-RM11C 1.5A 200-1000V 0.95 DO-15 29 RM3Z-RM3C 2.5A 200-1000V 0.97 DO-201AD 30 RM4Z-RM4C 3A 200-1000V 0.97 DO-201AD 2.快恢复塑封整流二极管 序号型号IF VRRM VF Trr 外形 A V V μs (1)快恢复塑封整流二极管 1 1F1-1F7 1A 50-1000V 1.3 0.15-0.5 R-1 2 FR10-FR60 1A-6A 50-1000V 1. 3 0.15-0.5 3 1N4933-1N4937 1A 50-600V 1.2 0.2 DO-41 4 1N4942-1N4948 1A 200-1000V 1.3 0.15-0. 5 DO-41 5 BA157-BA159 1A 400-1000V 1.3 0.15-0.25 DO-41 6 MR850-MR858 3A 100-800V 1.3 0.2 DO-201AD

24脉波整流原理

等效24脉波整流机组原理分析 整流机组是地铁直流牵引供电系统中的重要设备之一。目前,城市轨道交通多数采用等效24脉波整流机组,一般都由两台12脉波的整流变压器和与之匹配的整流器共同组成。理论上只要满足12相24 脉波整流系统的要求,组成24脉波的2台变压器的联结组可以有很多种,如Dy5/Dd0一Dy7/Dd2、Dyl l /d0一Dyl /d2等。 12脉波整流采用的整流变压器为轴向双分裂式牵引整流变压器, 变压器阀侧绕组采用d 、Y 接法;与之相匹配的单台整流器由2个三相6 脉波全波整流桥组成,其中一个整流桥接至整流变压器二次侧“Y ”型 绕组,另一个整流桥接至整流变压器二次侧“△”型绕组,两个三相整流桥并联构成6相12脉波的整流变电系统。 单台12脉波整流机组输出波形如图1 所示。 图1 单台12脉波整流机组输出波形图 两套相同的十二脉波整流机组并联工作并不会改变整流脉波数,只 有当两套机组的整流变压器网侧绕组分别移相+7.5°和﹣7.5°,并联

t i m e a n d 工作时,才能形成等效二十四脉波整流。为了实现24脉波整流,两台 整流变压器的基本联结组别可采用Dyll /Dd0和Dyl /Dd2。每个牵引变电所内并联运行的2台整流变压器原边绕组分别移相+7.5°和一7.5°,目前为了实现两台整流变压器在网侧实现±7.5°的移相,在整流变压器原边采用延边三角形接法,其相量关系图如图2和图3所示。 一次侧三角绕组联结(延边三角形) 二次侧y 结构向量关系图 二次侧D 结构向量关系图 图2 +7.5°变压器向量关系图 一次侧三角绕组联结(延边三角形) 二次侧y 结构向量关系图 二次侧D 结构向量关系图 图3 ﹣7.5°变压器向量关系图

十种精密全波整流电路图

十种精密全波整流电路图 图中精密全波整流电路的名称,纯属本人命的名,只是为了区分;除非特殊说明,增益均按1设计. 图1是最经典的电路,优点是可以在电阻R5上并联滤波电容.电阻匹配关系为R1=R2,R4=R5=2R3;可以通过更改R5来调节增益。 图2优点是匹配电阻少,只要求R1=R2

图3的优点是输入高阻抗,匹配电阻要求R1=R2,R4=2R3 图4的匹配电阻全部相等,还可以通过改变电阻R1来改变增益.缺点是在输入信号的负半周,A1的负反馈由两路构成,其中一路是R5,另一路是由运放A2复合构成,也有复合运放的缺点。 图5 和图6 要求R1=2R2=2R3,增益为1/2,缺点是:当输入信号正半周时,输出阻抗比较高,可以在输出增加增益为2的同相放大器隔离.另外一个缺点是正半周和负半周的输入阻抗不相等,要求输入信号的内阻忽略不计。

图7正半周,D2通,增益=1+(R2+R3)/R1;负半周增益=-R3/R2;要求正负半周增益的绝对值相等,例如增益取2,可以选R1=30K,R2=10K,R3=20K 图8的电阻匹配关系为R1=R2 图9要求R1=R2,R4可以用来调节增益,增益等于1+R4/R2;如果R4=0,增益等于1;缺点是正负半波的输入阻抗不相等,要求输入信号的内阻要小,否则输出波形不对称。

图10是利用单电源运放的跟随器的特性设计的,单电源的跟随器,当输入信号大于0时,输出为跟随器;当输入信号小于0的时候,输出为0.使用时要小心单电源运放在信号很小时的非线性.而且,单电源跟随器在负信号输入时也有非线性。 图7,8,9三种电路,当运放A1输出为正时,A1的负反馈是通过二极管D2和运放A2构成的复合放大器构成的,由于两个运放的复合(乘积)作用,可能环路的增益太高,容易产生振荡。 精密全波电路还有一些没有录入,比如高阻抗型还有一种把A2的同相输入端接到A1的反相输入端的,其实和这个高阻抗型的原理一样,就没有专门收录,其它采用A1的输出只接一个二极管的也没有收录,因为在这个二极管截止时,A1处于开环状态。 结论: 虽然这里的精密全波电路达十种,仔细分析,发现优秀的并不多,确切的说只有3种,就是前面的3种。 图1的经典电路虽然匹配电阻多,但是完全可以用6个等值电阻R实现,其中电阻R3可以用两个R并联.可以通过R5调节增益,增益可以大于1,也可以小于1.最具有优势的是可以在R5上并电容滤波。 图2的电路的优势是匹配电阻少,只要一对匹配电阻就可以了。 图3的优势在于高输入阻抗。 其它几种,有的在D2导通的半周内,通过A2的复合实现A1的负反馈,对有些运放会出现自激. 有的两个半波的输入阻抗不相等,对信号源要求较高。

常用二极管型号_大全

常用整流二极管型号大全lzg 极管型号:4148安装方式:贴片功率特性:大功率 二极管型号:SA5.0A/CA-SA170A/CA安装方式:直插 二极管型号:IN4007/IN4001安装方式:直插功率特性:小功率频率特性:低频 二极管型号:70HF80安装方式:螺丝型功率特性:大功率频率特性:高频 二极管型号:MRA4003T3G安装方式:贴片 二极管型号:1SS355安装方式:贴片功率特性:大功率 二极管型号6A10安装方式:直插功率特性:大功率;型号:2DHG型安装方式:直插功率特性:大功率 二极管型号B5G090L安装方式:直插功率特性:小功率频率特性:超高频 型号最高反向峰值电压(v) 平均整流电流(a) 最大峰值浪涌电流(a 最大反向漏电流(Ua) 正向压降(V) 外型 IN4001 50 1.0 30 5.0 1.0 DO--41 IN4002 100 1.0 30 5.0 1.0 DO--41 IN4003 300 110 30 5.0 1.0 DO--41 IN4004 400 1.0 30 5.0 1.0 DO--41 IN4005 600 1.0 30 5.0 1.0 DO--41 IN4006 800 1.0 30 5.0 1.0 DO--41 IN4007 1000 1.0 30 5.0 1.0 DO--41 IN5391 50 1.5 50 5.0 1.5 DO--15 IN5392 100 1.5 50 5.0 1.5 DO--15 IN5393 200 1.5 50 5.0 1.5 DO--15 IN5394 300 1.5 50 5.0 1.5 DO--15 IN5395 400 1.5 50 5.0 1.5 DO--15 IN5396 500 1.5 50 5.0 1.5 DO--15 IN5397 600 1.5 50 5.0 1.5 DO--15 IN5398 800 1.5 50 5.0 1.5 DO--15 IN5399 1000 1.5 50 5.0 1.5 DO--15 RL151 50 1.5 60 5.0 1.5 DO--15 RL152 100 1.5 60 5.0 1.5 DO--15 RL153 200 1.5 60 5.0 1.5 DO--15 RL154 400 1.5 60 5.0 1.5 DO--15 RL155 600 1.5 60 5.0 1.5 DO--15 RL156 800 1.5 60 5.0 1.5 DO--15 RL157 1000 1.5 60 5.0 1.5 DO--15 普通整流二极管参数(二) 型号最高反向峰值电压(v) 平均整流电流(a) 最大峰值浪涌电流(a 最大反向漏电流(Ua) 正向压降(V) 外型 RL201 50 2 70 5 1 DO--15 RL202 100 2 70 5 1 DO--15 RL203 200 2 70 5 1 DO--15 RL204 400 2 70 5 1 DO--15

12脉波整流并(575v)

西安龙海电气有限公司

12 脉波 KGPS 中频电源控制原理
KGPS 系列感应加热晶闸管变频装置是利用晶闸管将三相工频交流电能转 换为几百或几千赫的单相交流电能。具有控制方便、运行可靠、 效率高等特 点,有利于提高产品的产量和质量。本装置采用全数字控制,扫频启动方式, 无须同步变压器等,线路简单,调试方便,负载适应能力强,启动可靠。应用 于铸钢、不锈钢、合金钢的冶炼,真空冶炼,感应加热等不同场合。 1.主电路原理 1.1 整流电路原理 整流电路主要是将 50HZ 的交流电整流成直流。由 12 个晶闸管组成的 12 脉 波串联全控整流电路,输入工频电网电压 575V,控制可控硅的导通,实现输出 0~750V 连续可调的直流电压。(如图)
六相 12 脉波全控整流桥工作原理 当触发脉冲在任意控制角时,其输出直流电压为: Ud = 1.35UaCosaX2

式中:Ua = 三相进线电压 a-控制角
1.2 逆变电路原理:
该产品采用了并联逆变器,这种逆变器对负载变化适应能力强,见图(4) 所示。它的主要作用是将三相整流电压 Ud 逆变成单相 400-10KC 的中频交流电。 一般,由于功率大小、进线电压等原因,逆变可控硅的数量有,四只、八只、 十六只三种,即采用单管、串管、并管等技术。但为了分析方便,将其等效为 图(4)电路。 下面分析一下逆变器的工作过程,假设图(4)中,先是①②导通③④截止, 则直流电流 Id 经电抗器 Ld,可控硅①②流向 Lc 谐振回路,Lc 产生谐振,振荡 电压正弦波。此时电容器两端的电压极性为左正右负,如果在电容器两端电压 尚未过零时之前的某一时刻产生脉冲去触发可控硅③④,此时形成可控硅 ①②③④同时导通状态,由于可控硅③④的导通,电容器两端的电压通过可控 硅③④加在可控硅①②上使可控硅①②两端承受反压而关断,也就是说可控硅 ①②将电流换给了③④。换流以后,直流电流 Id 经电抗器 Ld、可控硅③④反向 流向 LC 谐振回路。电容器两端的电压继续按正弦规律变化,而电容器两端电压

电子制作中常用二极管的主要参数及封装丝印

二极管是电子电路中常用的元件之一,其在电子电路中可以作为整流、检波、钳位保护等用途。本文介绍一下电子爱好者搞电子制作时经常用到的一些二极管的主要电参数及封装丝印。 1、常用的整流二极管 电子制作中常用二极管的主要参数及封装丝印 1N4001整流二极管 1N4001整流二极管是1N40xx系列中常用的管子,其耐压值为50V,整流电流为1A,在一些低压稳压电源中很常见。对于直插的1N4001二极管,带有白色色环的那一端为负极(其它型号的直插二极管亦然)。贴片封装的1N4001的丝印为M1,其参数与直插的1N4001的参数一样。 电子制作中常用二极管的主要参数及封装丝印 贴片1N4001二极管 电子制作中常用二极管的主要参数及封装丝印 ▲ 1N4007整流二极管 1N4007二极管可以说是1N40xx系列中最常用的二极管,该管耐压值为1000V,整流电流为1A,其广泛用于电子镇流器、LED驱动器中作为低频高压整流。 电子制作中常用二极管的主要参数及封装丝印 ▲ 贴片1N4007二极管 电子制作中常用二极管的主要参数及封装丝印 ▲ 1N5408整流二极管

1N40xx系列二极管的整流电流为1A,若需要大电流整流,可以选用整流电流为3A的1N54xx 的整流二极管。其中1N5408是该系列中最常用的二极管。该管的耐压值可达1000V。 电子制作中常用二极管的主要参数及封装丝印 ▲ 6A10整流二极管 电子制作中常用二极管的主要参数及封装丝印 ▲ 10A10整流二极管 若需要更大电流的整流二极管,可以选用6A10及10A10,它们的耐压值皆为1000V,整流电流分别为6A和10A。 2、常用的肖特基二极管 肖特基二极管高频性能良好,正向压降小,多用于开关电源及逆变器中作高频整流。 电子制作中常用二极管的主要参数及封装丝印 ▲ 1N5819肖特基二极管 1N5819肖特基二极管高频性能良好,正向压降低(在左右),在一些输出电流1A以下的锂电池充电器中很常见。1N5819的耐压值为40V,整流电流为1A。 电子制作中常用二极管的主要参数及封装丝印 贴片封装的1N5819肖特基二极管 电子制作中常用二极管的主要参数及封装丝印 1N5822肖特基二极管 电子制作中常用二极管的主要参数及封装丝印 贴片封装的1N5822肖特基二极管

相关文档
最新文档