大学物理(上册)一二章习题
大学物理答案第1~2章

大学物理答案第1~2章-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第一章 质点的运动1-1已知质点运动方程为t R x ω-=sin ,)cos 1(t R y ω-=,式中R ,ω为常量,试求质点作什么运动,并求其速度和加速度。
解:22cos ,sin x y x y dx dy v Rw wt v Rw wtdt dt v v v Rw==-==-∴=+=22222sin ,cos y x x y x y dv dv a Rw wt a Rw wtdt dt a a a Rw ====∴=+=sin ,(1cos )x R wt y R wt ==- 222()x y R R ∴+-=轨迹方程为质点轨迹方程以R 为半径,圆心位于(0,R )点的圆的方程,即质点作匀速率圆周运动,角速度为ω;速度v = R ω;加速度 a = R ω21-2竖直上抛运动的物体上升到高度h 处所需时间为t 1,自抛出经最高点再回到同一高度h 处所需时间为t 2,求证:h =gt 1 t 2/2解:设抛出点的速度为v 0,从高度h 到最高点的时间为t 3,则012132012221201112()0,2()/2()1122212v g t t t t t v g t t t t h v t gt g t gt gt t -+=+=∴=++∴=-=-= 1-3一艘正以v 0匀速直线行驶的汽艇,关闭发动机后,得到一个与船速反向大小与船速平方成正比的加速度,即a =kv 2,k 为一常数,求证船在行驶距离x 时的速率为v=v 0e kx .解:取汽艇行驶的方向为正方向,则0200,,ln v xv kxdv dx a kv v dt dt dv dv kvdt kdx v v dv kdx v vkx v v v e -==-=∴=-=-∴=-=-∴=⎰⎰ 1-4行人身高为h ,若人以匀速v 0用绳拉一小车行走,而小车放在距地面高为H 的光滑平台上,求小车移动的速度和加速度。
大学物理(上册)参考答案

第一章作业题P211.1; 1.2; 1.4;1.9 质点沿x 轴运动,其加速度和位置的关系为 a =2+62x,a 的单位为2sm -⋅,x 的单位为 m. 质点在x =0处,速度为101s m -⋅,试求质点在任何坐标处的速度值. 解: ∵x v v t x x v t v a d d d d d d d d ===分离变量:x x adx d )62(d 2+==υυ 两边积分得 cx x v ++=322221由题知,0=x 时,100=v ,∴50=c∴ 13s m 252-⋅++=x x v1.10已知一质点作直线运动,其加速度为 a =4+3t 2sm -⋅,开始运动时,x =5 m ,v =0,求该质点在t =10s 时的速度和位置.解:∵ t t va 34d d +==分离变量,得 t t v d )34(d +=积分,得 12234c t t v ++=由题知,0=t ,00=v ,∴01=c故2234t t v += 又因为2234d d t t t x v +== 分离变量, tt t x d )234(d 2+=积分得 232212c t t x ++=由题知 0=t ,50=x ,∴52=c故 521232++=t t x所以s 10=t 时m70551021102s m 190102310432101210=+⨯+⨯=⋅=⨯+⨯=-x v1.11一质点沿半径为1 m 的圆周运动,运动方程为 θ=2+33t ,θ式中以弧度计,t 以秒计,求:(1) t = 2 s 时,质点的切向和法向加速度;(2)当加速度的方向和半径成45°角时,其角位移是多少?解:t t t t 18d d ,9d d 2====ωβθω(1)s 2=t 时, 2s m 362181-⋅=⨯⨯==βτR a2222s m 1296)29(1-⋅=⨯⨯==ωR a n(2)当加速度方向与半径成ο45角时,有145tan ==︒na a τ即βωR R =2亦即t t 18)9(22= 则解得 923=t 于是角位移为rad67.29232323=⨯+=+=t θ1.12 质点沿半径为R 的圆周按s =2021bt t v -的规律运动,式中s 为质点离圆周上某点的弧长,0v ,b 都是常量,求:(1)t 时刻质点的加速度;(2) t 为何值时,加速度在数值上等于b .解:(1) bt v t sv -==0d d R bt v R v a btv a n 202)(d d -==-==τ则 240222)(R bt v b a a a n -+=+=τ加速度与半径的夹角为20)(arctanbt v Rb a a n --==τϕ(2)由题意应有2402)(R bt v b b a -+== 即 0)(,)(4024022=-⇒-+=bt v R bt v b b∴当b v t 0=时,b a = 第二章作业题P612.9 质量为16 kg 的质点在xOy 平面内运动,受一恒力作用,力的分量为x f =6 N ,y f =-7 N ,当t =0时,==y x 0,x v =-2 m ·s -1,y v =0.求当t = 2 s时质点的 (1)位矢;(2)速度.解:2s m 83166-⋅===m f a x x 2s m 167-⋅-==m f a y y(1)⎰⎰--⋅-=⨯-=+=⋅-=⨯+-=+=20101200s m 872167s m 452832dt a v v dt a v v y y y x x x于是质点在s 2时的速度1s m 8745-⋅--=ji v(2)m874134)167(21)4832122(21)21(220j i ji jt a i t a t v r y x--=⨯-+⨯⨯+⨯-=++=2.10 质点在流体中作直线运动,受与速度成正比的阻力kv (k 为常数)作用,t =0时质点的速度为0v ,证明(1) t 时刻的速度为v =t mk ev )(0-;(2) 由0到t 的时间内经过的距离为x =(k mv 0)[1-t m ke )(-];(3)停止运动前经过的距离为)(0k m v ;(4)证明当k m t =时速度减至0v 的e 1,式中m 为质点的质量.答: (1)∵t v m kv a d d =-= 分离变量,得m t k v v d d -= 即 ⎰⎰-=v v t m tk vv 00d dmkt e v v -=ln ln 0∴tm kev v -=0(2)⎰⎰---===tttm k m k e k mv t ev t v x 000)1(d d(3)质点停止运动时速度为零,即t →∞,故有⎰∞-=='00d k mv t ev x tm k(4)当t=k m时,其速度为e v e v ev v kmm k 0100===-⋅-即速度减至0v 的e 1.2.11一质量为m 的质点以与地的仰角θ=30°的初速0v从地面抛出,若忽略空气阻力,求质点落地时相对抛射时的动量的增量. 解: 依题意作出示意图如题2-6图题2-6图在忽略空气阻力情况下,抛体落地瞬时的末速度大小与初速度大小相同,与轨道相切斜向下, 而抛物线具有对y 轴对称性,故末速度与x 轴夹角亦为o30,则动量的增量为0v m v m p -=∆由矢量图知,动量增量大小为v m,方向竖直向下.2.13作用在质量为10 kg 的物体上的力为i t F)210(+=N ,式中t 的单位是s ,(1)求4s后,这物体的动量和速度的变化,以及力给予物体的冲量.(2)为了使这力的冲量为200 N ·s ,该力应在这物体上作用多久,试就一原来静止的物体和一个具有初速度j6-m ·s -1的物体,回答这两个问题.解: (1)若物体原来静止,则it i t t F p t10401s m kg 56d )210(d -⋅⋅=+==∆⎰⎰,沿x 轴正向,i p I im p v111111s m kg 56s m 6.5--⋅⋅=∆=⋅=∆=∆若物体原来具有6-1s m -⋅初速,则⎰⎰+-=+-=-=t ttF v m t m F v m p v m p 000000d )d (,于是 ⎰∆==-=∆t p t F p p p 0102d, 同理, 12v v∆=∆,12I I =这说明,只要力函数不变,作用时间相同,则不管物体有无初动量,也不管初动量有多大,那么物体获得的动量的增量(亦即冲量)就一定相同,这就是动量定理. (2)同上理,两种情况中的作用时间相同,即⎰+=+=tt t t t I 0210d )210(亦即 0200102=-+t t解得s 10=t ,(s 20='t 舍去)3.14一质量为m 的质点在xOy 平面上运动,其位置矢量为j t b i t a rωωsin cos +=求质点的动量及t =0 到ωπ2=t 时间内质点所受的合力的冲量和质点动量的改变量.解: 质点的动量为)cos sin (j t b i t a m v m pωωω+-==将0=t 和ωπ2=t 分别代入上式,得j b m pω=1,i a m p ω-=2,则动量的增量亦即质点所受外力的冲量为)(12j b i a m p p p I+-=-=∆=ω2.15 一颗子弹由枪口射出时速率为10s m -⋅v ,当子弹在枪筒内被加速时,它所受的合力为 F =(bt a -)N(b a ,为常数),其中t 以秒为单位:(1)假设子弹运行到枪口处合力刚好为零,试计算子弹走完枪筒全长所需时间;(2)求子弹所受的冲量.(3)求子弹的质量. 解: (1)由题意,子弹到枪口时,有0)(=-=bt a F ,得b a t =(2)子弹所受的冲量⎰-=-=tbt at t bt a I 0221d )(将b at =代入,得b a I 22=(3)由动量定理可求得子弹的质量202bv a v I m ==第三章作业题P883.1; 3.2; 3.7;3.13计算题2-27图所示系统中物体的加速度.设滑轮为质量均匀分布的圆柱体,其质量为M ,半径为r ,在绳与轮缘的摩擦力作用下旋转,忽略桌面与物体间的摩擦,设1m =50kg ,2m =200 kg,M =15 kg, r =0.1 m解: 分别以1m ,2m 滑轮为研究对象,受力图如图(b)所示.对1m ,2m 运用牛顿定律,有a m T g m 222=- ① a m T 11= ②对滑轮运用转动定律,有β)21(212Mr r T r T =- ③又, βr a = ④联立以上4个方程,得2212s m 6.721520058.92002-⋅=++⨯=++=M m m g m a题2-27(a)图 题2-27(b)图题2-28图3.14 如题2-28图所示,一匀质细杆质量为m ,长为l ,可绕过一端O 的水平轴自由转动,杆于水平位置由静止开始摆下.求: (1)初始时刻的角加速度; (2)杆转过θ角时的角速度. 解: (1)由转动定律,有β)31(212ml mg=∴l g 23=β (2)由机械能守恒定律,有22)31(21sin 2ωθml l mg =∴ l g θωsin 3=题2-29图3.15 如题2-29图所示,质量为M ,长为l 的均匀直棒,可绕垂直于棒一端的水平轴O 无摩擦地转动,它原来静止在平衡位置上.现有一质量为m 的弹性小球飞来,正好在棒的下端与棒垂直地相撞.相撞后,使棒从平衡位置处摆动到最大角度=θ30°处. (1)设这碰撞为弹性碰撞,试计算小球初速0v 的值; (2)相撞时小球受到多大的冲量?解: (1)设小球的初速度为0v,棒经小球碰撞后得到的初角速度为ω,而小球的速度变为v ,按题意,小球和棒作弹性碰撞,所以碰撞时遵从角动量守恒定律和机械能守恒定律,可列式:mvl I l mv +=ω0 ①2220212121mv I mv +=ω ②上两式中231Ml I =,碰撞过程极为短暂,可认为棒没有显著的角位移;碰撞后,棒从竖直位置上摆到最大角度o30=θ,按机械能守恒定律可列式:)30cos 1(2212︒-=lMg I ω ③由③式得2121)231(3)30cos 1(⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡︒-=l g I Mgl ω由①式ml I v v ω-=0 ④由②式m I v v 2202ω-= ⑤所以22001)(2ωωm v ml I v -=-求得glmM m m M l ml I l v +-=+=+=31232(6)311(2)1(220ωω (2)相碰时小球受到的冲量为⎰-=∆=0d mvmv mv t F由①式求得ωωMl l I mv mv t F 31d 0-=-=-=⎰glM 6)32(6--=负号说明所受冲量的方向与初速度方向相反.第五章作业题P1455.1; 5.2;5.7 质量为kg 10103-⨯的小球与轻弹簧组成的系统,按)SI ()328cos(1.0ππ+=x 的规律作谐振动,求:(1)振动的周期、振幅和初位相及速度与加速度的最大值;(2)最大的回复力、振动能量、平均动能和平均势能,在哪些位置上动能与势能相等? (3)s 52=t 与s 11=t 两个时刻的位相差;解:(1)设谐振动的标准方程为)cos(0φω+=t A x ,则知:3/2,s 412,8,m 1.00πφωππω===∴==T A又 πω8.0==A v m 1s m -⋅ 51.2=1s m -⋅2.632==A a m ω2s m -⋅(2) N 63.0==m m a FJ 1016.32122-⨯==m mv E J 1058.1212-⨯===E E E k p当p k E E =时,有p E E 2=,即)21(212122kA kx ⋅= ∴ m 20222±=±=A x (3) ππωφ32)15(8)(12=-=-=∆t t5.8 一个沿x 轴作简谐振动的弹簧振子,振幅为A ,周期为T ,其振动方程用余弦函数表示.如果0=t 时质点的状态分别是:(1)A x -=0;(2)过平衡位置向正向运动;(3)过2Ax =处向负向运动; (4)过2Ax -=处向正向运动.试求出相应的初位相,并写出振动方程.解:因为 ⎩⎨⎧-==000sin cos φωφA v A x将以上初值条件代入上式,使两式同时成立之值即为该条件下的初位相.故有)2cos(1πππφ+==t TA x)232cos(232πππφ+==t T A x)32cos(33πππφ+==t T A x)452cos(454πππφ+==t T A x5.9 一质量为kg 10103-⨯的物体作谐振动,振幅为cm 24,周期为s 0.4,当0=t 时位移为cm 24+.求:(1)s 5.0=t 时,物体所在的位置及此时所受力的大小和方向; (2)由起始位置运动到cm 12=x 处所需的最短时间; (3)在cm 12=x 处物体的总能量.解:由题已知 s 0.4,m 10242=⨯=-T A∴ 1s rad 5.02-⋅==ππωT又,0=t 时,0,00=∴+=φA x故振动方程为m )5.0cos(10242t x π-⨯=(1)将s 5.0=t 代入得0.17m m )5.0cos(102425.0=⨯=-t x πN102.417.0)2(10103232--⨯-=⨯⨯⨯-=-=-=πωxm ma F方向指向坐标原点,即沿x 轴负向. (2)由题知,0=t 时,00=φ,t t =时 3,0,20πφ=<+=t v A x 故且 ∴ s 322/3==∆=ππωφt(3)由于谐振动中能量守恒,故在任一位置处或任一时刻的系统的总能量均为J 101.7)24.0()2(10102121214223222--⨯=⨯⨯⨯===πωA m kA E5.11 图为两个谐振动的t x -曲线,试分别写出其谐振动方程.题4-8图解:由题4-8图(a),∵0=t 时,s 2,cm 10,,23,0,0000===∴>=T A v x 又πφ 即 1s rad 2-⋅==ππωT故 m )23cos(1.0ππ+=t x a 由题4-8图(b)∵0=t 时,35,0,2000πφ=∴>=v A x01=t 时,22,0,0111ππφ+=∴<=v x又 ππωφ253511=+⨯= ∴ πω65=故 m t x b )3565cos(1.0ππ+= 5.12 一轻弹簧的倔强系数为k ,其下端悬有一质量为M 的盘子.现有一质量为m 的物体从离盘底h 高度处自由下落到盘中并和盘子粘在一起,于是盘子开始振动. (1)此时的振动周期与空盘子作振动时的周期有何不同? (2)此时的振动振幅多大?(3)取平衡位置为原点,位移以向下为正,并以弹簧开始振动时作为计时起点,求初位相并写出物体与盘子的振动方程.解:(1)空盘的振动周期为k M π2,落下重物后振动周期为km M +π2,即增大. (2)按(3)所设坐标原点及计时起点,0=t 时,则kmgx -=0.碰撞时,以M m ,为一系统动量守恒,即0)(2v M m gh m +=则有 Mm ghm v +=20于是gM m khk mg M m gh m k mg v x A )(21))(2()()(22222++=++=+=ω(3)g m M khx v )(2tan 000+=-=ωφ (第三象限),所以振动方程为 ⎥⎦⎤⎢⎣⎡+++++=g m M kh t M m k gM m khk mg x )(2arctan cos )(215.15 试用最简单的方法求出下列两组谐振动合成后所得合振动的振幅:(1) ⎪⎩⎪⎨⎧+=+=cm )373cos(5cm )33cos(521ππt x t x (2)⎪⎩⎪⎨⎧+=+=cm)343cos(5cm )33cos(521ππt x t x解: (1)∵ ,233712πππφφφ=-=-=∆∴合振幅 cm 1021=+=A A A(2)∵ ,334πππφ=-=∆∴合振幅 0=A5.16 一质点同时参与两个在同一直线上的简谐振动,振动方程为⎪⎩⎪⎨⎧-=+=m)652cos(3.0m )62cos(4.021ππt x t x 试分别用旋转矢量法和振动合成法求合振动的振动幅和初相,并写出谐振方程。
《大学物理》各章练习题及答案解析

《大学物理》各章练习题及答案解析第1章 质点运动学一、选择题:1.以下五种运动中,加速度a保持不变的运动是 ( D ) (A) 单摆的运动。
(B) 匀速率圆周运动。
(C) 行星的椭圆轨道运动。
(D) 抛体运动。
(E) 圆锥摆运动。
2.下面表述正确的是( B )(A)质点作圆周运动,加速度一定与速度垂直; (B) 物体作直线运动,法向加速度必为零; (C)轨道最弯处法向加速度最大; (D)某时刻的速率为零,切向加速度必为零。
3.某质点做匀速率圆周运动,则下列说法正确的是( C )(A)质点的速度不变; (B)质点的加速度不变 (C)质点的角速度不变; (D)质点的法向加速度不变4.一运动质点在某瞬时位于矢径()y x r , 的端点处,其速度大小为( D )()()(()22⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛dt dy dt dx D C dtrd B dt drA5. 一质点在平面上运动,运动方程为:j t i t r222+=,则该质点作( B )(A)匀速直线运动 (B)匀加速直线运动(C)抛物线运动 (D)一般曲线运动6.一质点做曲线运动,r 表示位置矢量,v 表示速度,a表示加速度,s 表示路程,a t 表示切向加速度,对下列表达式,正确的是( B )(A)dt dr v = (B) dt ds v = (C) dtdv a = (D) dt vd a t=7. 某质点的运动方程为 3723+-=t t X (SI ),则该质点作 [ D ](A)匀加速直线运动,加速度沿 x 轴正方向; (B)匀加速直线运动,加速度沿 x 轴负方向; (C)变加速直线运动.加速度沿 x 轴正方向; (D)变加速直线运动,加速度沿 x 轴负方向8.一质点沿x 轴运动,其运动方程为()SI t t x 3235-=,当t=2s 时,该质点正在( A )(A)加速 (B)减速 (C)匀速 (D)静止1.D2. B3. C4.D5.B ,6B ,7A 8 A二 、填空题1. 一质点的运动方程为x =2t ,y =4t 2-6t ,写出质点的运动方程(位置矢量)j t t i t r)64(22-+=,t =1s 时的速度j i v22+=,加速度j a 8=,轨迹方程为x x y 32-=。
《大学物理习题集》(上)习题解答

)2(选择题(5)选择题单元一 质点运动学(一)一、选择题1. 下列两句话是否正确:(1) 质点作直线运动,位置矢量的方向一定不变;【 ⨯ 】(2) 质点作园周运动位置矢量大小一定不变。
【 ⨯ 】 2. 一物体在1秒内沿半径R=1m 的圆周上从A 点运动到B 点,如图所示,则物体的平均速度是: 【 A 】 (A) 大小为2m/s ,方向由A 指向B ; (B) 大小为2m/s ,方向由B 指向A ; (C) 大小为3.14m/s ,方向为A 点切线方向; (D) 大小为3.14m/s ,方向为B 点切线方向。
3. 某质点的运动方程为x=3t-5t 3+6(SI),则该质点作 【 D 】(A) 匀加速直线运动,加速度沿X 轴正方向; (B) 匀加速直线运动,加速度沿X 轴负方向;(C) 变加速直线运动,加速度沿X 轴正方向; (D)变加速直线运动,加速度沿X 轴负方向 4. 一质点作直线运动,某时刻的瞬时速度v=2 m/s ,瞬时加速率a=2 m/s 2则一秒钟后质点的速度:【 D 】(A) 等于零(B) 等于-2m/s (C) 等于2m/s (D) 不能确定。
5. 如图所示,湖中有一小船,有人用绳绕过岸上一定高度处的定滑轮拉湖中的船向边运动。
设该人以匀速度V 0收绳,绳不伸长、湖水静止,则小船的运动是 【 C 】(A)匀加速运动; (B) 匀减速运动; (C) 变加速运动; (D) 变减速运动; (E) 匀速直线运动。
6. 一质点沿x 轴作直线运动,其v-t 曲线如图所示,如t=0时,质点位于坐标原点,则t=4.5s 时,(7)选择题质点在x 轴上的位置为 【 C 】(A) 0; (B) 5m ; (C) 2m ; (D) -2m ; (E) -5m*7. 某物体的运动规律为t kv dtdv2-=,式中的k 为大于零的常数。
当t=0时,初速为v 0,则速度v 与时间t 的函数关系是 【 C 】(A) 02v kt 21v += (B) 02v kt 21v +-= (C)2v 1kt 21v 1+= (D)2v 1kt 21v 1+-=二、填空题1. )t t (r )t (r ∆+ 与为某质点在不同时刻的位置矢量,)t (v 和)t t (v ∆+为不同时刻的速度矢量,试在两个图中分别画出s ,r ,r ∆∆∆ 和v ,v ∆∆。
大学物理上册第一章 质点运动学 习题及答案

第一章 质点运动学一、简答题1、运动质点的路程和位移有何区别?答:路程是标量,位移是矢量;路程表示质点实际运动轨迹的长度,而位移表示始点指向终点的有向线段。
2、质点运动方程为()()()()k t z j t y i t x t r ++=,其位置矢量的大小、速度及加速度如何表示? 答:()()()t z t y t x r 222r ++==()()()k t z j t y i t xv ++= ()()()k t z j t y i t x a ++=3、质点做曲线运动在t t t ∆+→时间内速度从1v 变为到2v ,则平均加速度和t时刻的瞬时加速度各为多少? 答:平均加速度 t v v a ∆-=12 ,瞬时加速度()()dt v d t v v a t t lim t 120 =∆-=→∆4、画出示意图说明什么是伽利略速度变换公式? 其适用条件是什么?答:牵连相对绝对U V +=V ,适用条件宏观低速5、什么质点? 一个物体具备哪些条件时才可以被看作质点?答:质点是一个理想化的模型,它是实际物体在一定条件下的科学抽象。
条件:只要物体的形状和大小在所研究的问题中属于无关因素或次要因素,物体就能被看作质点。
二、选择题1、关于运动和静止的说法中正确的是 ( C )A 、我们看到的物体的位置没有变化,物体一定处于静止状态B 、两物体间的距离没有变化,两物体就一定都静止C 、自然界中找不到不运动的物体,运动是绝对的,静止是相对的D 、为了研究物体的运动,必须先选参考系,平时说的运动和静止是相对地球而言的2、下列说法中正确的是 ( D )A 、物体运动的速度越大,加速度也一定越大B 、物体的加速度越大,它的速度一定越大C 、加速度就是“加出来的速度”D 、加速度反映速度变化的快慢,与速度大小无关3、质点沿x 轴作直线运动,其t v-曲线如图所示,如s t 0=时,质点位于坐标原点,则s .t 54=时,质点在x 轴的位置为 ( B )A 、5 mB 、2 mC 、0 mD 、-2 m4、质点作匀速率圆周运动,则 ( B )A 、线速度不变B 、角速度不变C 、法向加速度不变D 、加速度不变5、质点作直线运动,某时刻的瞬时速度为s /m v 2=,瞬时加速度为22s /m a -=,则一秒钟后质点的速度 ( D )A 、等于0B 、等于s /m 2-C 、等于s /m 2D 、不能确定6、质点作曲线运动,r 表示位置矢量的大小,s 表示路程,z a 表示切向加速度的大小,v 表示速度的大小。
2020大学物理上习题册

1.7
质点作曲线运动,
r
表示位置矢量,s
表示路程,
at
表示切向加速度的大小,下列表
达式中正确的是:[ ]
(A) dv a ; dt
(B) dr dt
v
;
(C) dv dt
at ;
(D) ds v 。 dt
1.8 一物体作圆周运动,则:[ ]
(A)加速度方向必指向圆心; (B)切向加速度必定为零;
间的函数关系。设 x 0时, v0 4ms 1 。
1.6 一质点的运动学方程是 x t 2 , y (t 1)2 , x 和 y 均以 m 为单位,t 以 s 为单位,试求:
(1) (2)
质点的轨迹方程; 在 t = 2s 时,质点的速度
v
和加速度
a
。
1
专业班级
学号
姓名
序号
§1.2~1.3
为 M 和 m 。当炮弹飞离炮口时,炮车的动能与炮弹动能之比为
。
3.5 质量为 m0 1.5kg 的物体,用一根长为 l 1.25m 的细绳悬挂在天花板上。今有一质量
为 m 10g 的子弹以 v0 500m / s 的水平速度射穿物体,刚传穿出物体时子弹的速度大小为
v 30m / s ,设穿透时间极短。求(1)子弹刚穿出时绳中的张力大小;(2)子弹在穿透
则从 t=0 到 t 时刻质点走过的路程 s(t)
;t 时刻质点的加速度切向分量为
;法向加速度大小为
。
1.11 一质点在半径为 0.2m 的圆周上运动,其角位置为 2 4t 3 (SI)。求:
(1)t = 2s 时的法向加速度和切向加速度的大小; (2)当切向加速度大小恰等于总加速度大小的一半时,其角坐标θ的值为多少?
大学物理答案第1~2章

第一章 质点的运动1-1已知质点运动方程为t R x ω-=sin ,)cos 1(t R y ω-=,式中R ,ω为常量,试求质点作什么运动,并求其速度和加速度。
解:cos ,sin x y dx dy v Rw wt v Rw wt dt dt v Rw==-==-∴==222sin ,cos y xx y x dv dv a Rw wt a Rw wt dt dt a a Rw ====∴==sin ,(1cos )x R wt y R wt ==- 222()x y R R ∴+-=轨迹方程为质点轨迹方程以R 为半径,圆心位于(0,R )点的圆的方程,即质点作匀速率圆周运动,角速度为ω;速度v = R ω;加速度 a = R ω21-2竖直上抛运动的物体上升到高度h 处所需时间为t 1,自抛出经最高点再回到同一高度h 处所需时间为t 2,求证:h =gt 1 t 2/2解:设抛出点的速度为v 0,从高度h 到最高点的时间为t 3,则012132012221201112()0,2()/2()1122212v g t t t t t v g t t t t h v t gt g t gt gt t -+=+=∴=++∴=-=-= 1-3一艘正以v 0匀速直线行驶的汽艇,关闭发动机后,得到一个与船速反向大小与船速平方成正比的加速度,即a =-kv 2,k 为一常数,求证船在行驶距离x 时的速率为v=v 0e -kx .解:取汽艇行驶的方向为正方向,则0200,,ln v xv kxdvdx a kv v dtdtdv dv kvdt kdx v v dv kdx v vkx v v v e -==-=∴=-=-∴=-=-∴=⎰⎰ 1-4行人身高为h ,若人以匀速v 0用绳拉一小车行走,而小车放在距地面高为H 的光滑平台上,求小车移动的速度和加速度。
解:人前进的速度V 0,则绳子前进的速度大小等于车移动的速度大小,22220222203/222220()()()l v t H h dldt H h v d l dt H h v t =+-∴=-=⎡⎤-+⎣⎦所以小车移动的速度220220)(tv h H tv v --=小车移动的加速度[]2/3220222)()(tv h H v h H a +--=1-5一质点由静止开始作直线运动,初始的加速度a 0,以后加速度以t ba a a 00+=均匀增加(式中b 为一常数),求经t 秒后,质点的速度和位移。
大学物理课后习题答案详解

第一章质点运动学1、(习题:一质点在xOy 平面内运动,运动函数为2x =2t,y =4t 8-。
(1)求质点的轨道方程;(2)求t =1 s t =2 s 和时质点的位置、速度和加速度。
解:(1)由x=2t 得,y=4t 2-8 可得: y=x 2-8 即轨道曲线(2)质点的位置 : 22(48)r ti t j =+-r r r由d /d v r t =r r 则速度: 28v i tj =+r r r由d /d a v t =r r 则加速度: 8a j =r r则当t=1s 时,有 24,28,8r i j v i j a j =-=+=rr r rrrrr当t=2s 时,有 48,216,8r i j v i j a j =+=+=r r r r r rr r2、(习题): 质点沿x 在轴正向运动,加速度kv a -=,k 为常数.设从原点出发时速度为0v ,求运动方程)(t x x =.解:kv dtdv-= ⎰⎰-=t v v kdt dv v 001 t k e v v -=0t k e v dtdx-=0 dt e v dx t k tx-⎰⎰=000)1(0t k e kv x --=3、一质点沿x 轴运动,其加速度为a 4t (SI),已知t 0时,质点位于x 10 m处,初速度v0.试求其位置和时间的关系式.解: =a d v /d t 4=t d v 4=t d t ⎰⎰=vv 0d 4d tt t v 2=t 2v d =x /d t 2=t 2t t x txx d 2d 020⎰⎰= x 2= t 3 /3+10 (SI)4、一质量为m 的小球在高度h 处以初速度0v 水平抛出,求:(1)小球的运动方程;(2)小球在落地之前的轨迹方程;(3)落地前瞬时小球的d d r t v ,d d v t v,tvd d .解:(1) t v x 0= 式(1)2gt 21h y -= 式(2) 201()(h -)2r t v t i gt j =+v v v(2)联立式(1)、式(2)得 22v 2gx h y -=(3)0d -gt d rv i j t=v v v 而落地所用时间 gh2t =所以0d d r v i j t =v vd d v g j t=-v v 2202y 2x )gt (v v v v -+=+=2120212202)2(2])([gh v gh g gt v t g dt dv +=+= 5、 已知质点位矢随时间变化的函数形式为22r t i tj =+v vv,式中r 的单位为m ,t 的单位为s .求:(1)任一时刻的速度和加速度;(2)任一时刻的切向加速度和法向加速度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章 习题课
1. 对于一个物体系来说,在下列条件中,哪种情 况下系统的机械能守恒?
(A) 合外力为0; (B) 合外力不作功; (C) 外力和非保守内力都不作功; (D) 外力和保守内力都不作功。
2.两个质量相等的小球由一轻弹簧相连接,再用一细
绳悬挂于天花板上,处于静止状态,如图所示.将绳
选(C)
二、填空题
第三章 习题课
1. 一个力F作用在质量为1.0kg的质点上,使之
沿x轴运动,已知在此力作用下质点的运动方程
为 x 3t 4t 2 t(3 SI),在0到4s的时间间隔内
(1)力F的冲量大小I= 16N s ,
(2)力F对质点所作的功A= 176J
.
2. 力 F 12i (SI)作用在质量m=2kg的物体上,使物 体由原点从静止开始运动,则它在3s末的动量大小
F 0.6kR 0.6mg cosq 1.6R/ 2R 0.8
sinq 1 0.64 0.6
2mg sinq cosq 0.6mg sinq ma t
at 0.6g 5.88 m/s 2
N N F cosq mgcos 2q 0.2mg
第三章 习题课
mg sin2q F sinq ma t
为 36kg m s1 。
第三章 习题课
3.如图所示,一物体放在水平传送带上,物体与传送
带间无相对滑动,当传送带作匀速运动时,静摩擦力
对物体作功为____零______;当传送带作加速运动时,
静摩擦力对物体作功为____正______;当传送带作减速
运动时,静摩擦力对物体作功为___负_______.(仅填
k
x0
O
第三章 习题课
三.计算题
1. 一半圆形的光滑槽,质量为M、半径为R,放在光滑
的桌面上.一小物体,质量为m,可在槽内滑动.起始位置
如图所示,半圆槽静止,小物体静止于与圆心同高的A
处.求:
(1) 小物体滑到任意位置C处时,小物体对半圆槽及
半圆槽对地的速度各为多少?
(2) 当小物体滑到半圆槽最低点B时,半圆槽移动了
2 如图所示,一辆质量为M的平顶小车静止在光滑的
水平轨道上,今有一质量为m的小物体以水平速度vo滑 向车顶.设物体与车顶之间的摩擦系数为,求:(1)从
物体滑上车顶到相对车顶静止需多少时间?(2)要物
体不滑下车顶,车长至少应为多少?
解 (M+m):水平方向不受外力, 动量守恒, v是相对静止时的速度.
大压缩量为l,试求木箱与水平面间的摩擦系数.
m
解: m落入木箱前的瞬时速度 h
v0 2gh
q
M
k
以M、m为系统,m落入木箱时沿水平方 l
向m与M间的冲力(内力)远大于地面
与木箱间的摩擦力(外力),在水平方
向动量守恒 mv0 cosq (M m)v
v m 2gh cosq /(M m)
第三章 习题课
1 m[(V v sinq )2 (v cosq )2 ] 1 MV 2 mgRsinq (2)
2
2
第三章 习题课
MV m(V vsinq ) MV 0 (1)
1 m[(V v sinq )2 (v cosq )2 ] 1 MV 2 mgRsinq (2)
2
2
m sinq (M m)2gRsinq
kxC2
cosq 1.6R/ 2R 0.8
anc vC2 / R 0.8g
xB 0.6R
vC2 0.8gR N 0.8mg
第三章 习题课
5. 如图所示,质量为m的木块,从高为h,倾角为q 的光滑 斜面上由静止开始下滑,滑入装着砂子的木箱中,砂子和 木箱的总质量为M,木箱与一端固定, 劲度系数为k的水 平轻弹簧连接,最初弹簧为原长,木块落入后,弹簧的最
原长时弹性势能为0.设弹簧被压
缩x0后,再进一步被压缩x1,则
x
1 2
Mv22
1 2
kx02
Mgx1
1 2
k( x0
x1 )2
1 2
Mv22
Mgx1
1 2
kx12
kx1 x0
1 x1( 2
kx1
kx0
Mg)
1 2
kx12
x0
h0
M
Mv
2 2
kx12
x1
M k
v
2
2m 2Mgh0 Mm K
v2
5.一船浮于静水中,船长L,质量为m,一个质量也为m的人
从船尾走到船头. 不计水和空气的阻力,则在此过程中
船将
(A) 不动.
(B) 后退L.
(C) 后退L/2.
(D) 后退L/3. [ C ]
第三章 习题课
6.关于机械能守恒条件和动量守恒条件有以下几种 说法,其中正确的是 [ C ]
(A) 不受外力作用的系统,其动量和机械能必然同 时守恒.
子剪断的瞬间,球1和球2的加速度分别为
(A) a1=g,a2=g.(B) a1=0,a2=g. 球1 (C) a1=g,a2=0. (D) a1=2g,a2=0.
选(D)
球2
第三章 习题课
3.今有一劲度系数为k的轻弹簧,竖直放置,下端悬一质 量为m的小球,开始时使弹簧为原长而小球恰好与地接 触,今将弹簧上端缓慢地提起,直到小球刚能脱离地面 为止,在此过程中外力作功为
m2g2 (A)
4k
4m2 g2 (B)
k
m2g2 (C)
2k
2m2 g2 (D)
k
外力: F=kx,这是一个变力.
F
物体m脱离地面的条件是 kxo=mg
所以外力作的功为
第三章 习题课
4.一质点在几个外力同时作用下运动时,下述哪种说法 正确?
(A)质点的动量改变时,质点的动能一定改变. (B)质点的动能不变时,质点的动量也一定不变. (C)外力的冲量是零,外力的功一定为零. (D)外力的功为零,外力的冲量一定为零. [ C ]
“正”,“负”或“零”)
m
4. 质量为100kg的货物,平放在卡车底板上.卡车 以4 m/s2的加速度启动.货物与卡车底板无相对 滑动.则在开始的4秒钟内摩擦力对该货物作的功 W = 12800 J .
第三章 习题课
5.下列物理量:质量、动量、冲量、动能、势能、 功中与参考系的选取有关的物理量是 _动__量__、__动__能__、__功_.(不考虑相对论效应)
(B) 所受合外力为零,内力都是保守力的系统,其 机械能必然守恒.
(C) 不受外力,而内力都是保守力的系统,其动量 和机械能必然同时守恒.
(D)外力对一个系统做的功为零,则该系统的机械 能和动量必然同时守恒.
7. 质量为的m质点,以不变速率v沿正三角
形的水平光滑轨道运动,越过A角时轨道对
A
质点的冲量为:(A)mv; B)1.42mv; C)1.73mv; D)2mv
多少距离?
RO m
qA
M
B
C
第三章 习题课
解: (1) 以小物体及半圆槽为系统,水平方向动量守恒. 设小物体对半圆槽速度为v,槽及小物体对地的速度分 别为V和v1, 向右为速度正方向.
RO m
qA
M
B
C
MV m(V vsinq ) MV 0 (1)
以小物体、半圆槽、地球为系统,机械能守恒
2m mM
2 gh0
第三章 习题课
或: 取平衡位置为坐标原点.设
此时重力势能和弹性势能均为
0,系统总势能为
x0
O
1 2
kx12
1 2
Mv22
1 2
kx12
x
h0
M
x1
M k
v
2
2m Mm
2 Mgh0 K
第三章 习题课
作业:
P95 3-13 3-23 3-35
知识回顾 Knowledge Review
mvo=(M+m)v (1)对物体m应用动量定理
m v0
M
- mg.t =mv -mvo
x
第三章 习题课
(2) 要物体不滑下车顶,车长至少应为多少? 由于一对内力(摩擦力)的功与参考系无关, 可取车 为参考系来计算摩擦力的功, 由系统动能定理得
mvo=(M+m)v
要物体不滑下车顶, 车的 最小长度为
V Mm
(M m) m sin2 q
v
(M m)2gRsinq (M m) m sin2 q
RO m
qA
M B vC
方向沿切线方向,如图.
小物体对地的速度大小为多少?
第三章 习题课
(2) 当小物体滑到半圆槽最低点B时,半圆槽移动了多 少距离?
取x轴水平向右,则
RO m
qA
M
C B
x
或
第三章 习题课
m v0
M
x
第三章 习题课
3. 一质量为mA的物体A与一轻弹簧相连放在光滑 水平桌面上,弹簧的另一端固定在墙上,弹簧的劲度
系数为 k,现在用力推 A,从而弹簧被压缩了 x0.在弹 簧的原长处放有质量 mB的物体 B,如图所示.由静止 释放物体 A后 , A将与静止的物体 B发生弹性碰撞.
求碰撞后A物体还能把弹簧压缩多大距离.
N F cosq mg cos 2q ma n
A
an v2 / R
(2)对于C点:q =0 at 0 kR mg
N F mg ma n
N mvC2 / R
q
1.6R F
RN
B
mg
C
求vC ,由机械能守恒定律
1 2
kxB2
m g(2 R