大学物理上册一二章习题
大学物理答案第1~2章

大学物理答案第1~2章-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第一章 质点的运动1-1已知质点运动方程为t R x ω-=sin ,)cos 1(t R y ω-=,式中R ,ω为常量,试求质点作什么运动,并求其速度和加速度。
解:22cos ,sin x y x y dx dy v Rw wt v Rw wtdt dt v v v Rw==-==-∴=+=22222sin ,cos y x x y x y dv dv a Rw wt a Rw wtdt dt a a a Rw ====∴=+=sin ,(1cos )x R wt y R wt ==- 222()x y R R ∴+-=轨迹方程为质点轨迹方程以R 为半径,圆心位于(0,R )点的圆的方程,即质点作匀速率圆周运动,角速度为ω;速度v = R ω;加速度 a = R ω21-2竖直上抛运动的物体上升到高度h 处所需时间为t 1,自抛出经最高点再回到同一高度h 处所需时间为t 2,求证:h =gt 1 t 2/2解:设抛出点的速度为v 0,从高度h 到最高点的时间为t 3,则012132012221201112()0,2()/2()1122212v g t t t t t v g t t t t h v t gt g t gt gt t -+=+=∴=++∴=-=-= 1-3一艘正以v 0匀速直线行驶的汽艇,关闭发动机后,得到一个与船速反向大小与船速平方成正比的加速度,即a =kv 2,k 为一常数,求证船在行驶距离x 时的速率为v=v 0e kx .解:取汽艇行驶的方向为正方向,则0200,,ln v xv kxdv dx a kv v dt dt dv dv kvdt kdx v v dv kdx v vkx v v v e -==-=∴=-=-∴=-=-∴=⎰⎰ 1-4行人身高为h ,若人以匀速v 0用绳拉一小车行走,而小车放在距地面高为H 的光滑平台上,求小车移动的速度和加速度。
大学物理第一章习题《上册》

解答提示
光从齿轮到镜面,再反射回到齿轮所用的时间为
t
500 3108
v N
A
rO
B
mg
C
由牛顿第二定律得:
D
切向 F ma
mg sin m dv
dt
①
法向 Fn man
N mg cos m v2
r
②
dv dv d dv dv v dt d dt d d r
由①式得 mg sin m dv v d r
dv dv dx kv2 (1) dt dx dt
dx v (2) dt
分离变量积分,得 ln v ln v0 kx
v v0ekx,
1-10 飞机 A 以 vA = 103 km/s 速率 (相对地面)向南行,同时另一 架飞机 B 以 vB = 800 km/s 速率 (相对地面 ) 向东偏南 30o 角方向飞行。 求 A 机相对 B 机的速度和 B 机相对 A 机的速度。
1-9 一艘正在沿直线行驶的汽艇,在发动机关闭后,其加速度方向与
速度方向相反,满足 dv kv2 , dt
式中 k 为常数。试证明汽艇在关闭发动机
后又行驶 x 距离时的速度为 v v0ekx , 其中 v0 是关闭发动机时的速度。
解答提示
对题中所给关系式 dv kv2 作一数学处理如下: dt
N N 3mg cos
大学物理(上册)参考答案

第一章作业题P211.1; 1.2; 1.4;1.9 质点沿x 轴运动,其加速度和位置的关系为 a =2+62x,a 的单位为2sm -⋅,x 的单位为 m. 质点在x =0处,速度为101s m -⋅,试求质点在任何坐标处的速度值. 解: ∵x v v t x x v t v a d d d d d d d d ===分离变量:x x adx d )62(d 2+==υυ 两边积分得 cx x v ++=322221由题知,0=x 时,100=v ,∴50=c∴ 13s m 252-⋅++=x x v1.10已知一质点作直线运动,其加速度为 a =4+3t 2sm -⋅,开始运动时,x =5 m ,v =0,求该质点在t =10s 时的速度和位置.解:∵ t t va 34d d +==分离变量,得 t t v d )34(d +=积分,得 12234c t t v ++=由题知,0=t ,00=v ,∴01=c故2234t t v += 又因为2234d d t t t x v +== 分离变量, tt t x d )234(d 2+=积分得 232212c t t x ++=由题知 0=t ,50=x ,∴52=c故 521232++=t t x所以s 10=t 时m70551021102s m 190102310432101210=+⨯+⨯=⋅=⨯+⨯=-x v1.11一质点沿半径为1 m 的圆周运动,运动方程为 θ=2+33t ,θ式中以弧度计,t 以秒计,求:(1) t = 2 s 时,质点的切向和法向加速度;(2)当加速度的方向和半径成45°角时,其角位移是多少?解:t t t t 18d d ,9d d 2====ωβθω(1)s 2=t 时, 2s m 362181-⋅=⨯⨯==βτR a2222s m 1296)29(1-⋅=⨯⨯==ωR a n(2)当加速度方向与半径成ο45角时,有145tan ==︒na a τ即βωR R =2亦即t t 18)9(22= 则解得 923=t 于是角位移为rad67.29232323=⨯+=+=t θ1.12 质点沿半径为R 的圆周按s =2021bt t v -的规律运动,式中s 为质点离圆周上某点的弧长,0v ,b 都是常量,求:(1)t 时刻质点的加速度;(2) t 为何值时,加速度在数值上等于b .解:(1) bt v t sv -==0d d R bt v R v a btv a n 202)(d d -==-==τ则 240222)(R bt v b a a a n -+=+=τ加速度与半径的夹角为20)(arctanbt v Rb a a n --==τϕ(2)由题意应有2402)(R bt v b b a -+== 即 0)(,)(4024022=-⇒-+=bt v R bt v b b∴当b v t 0=时,b a = 第二章作业题P612.9 质量为16 kg 的质点在xOy 平面内运动,受一恒力作用,力的分量为x f =6 N ,y f =-7 N ,当t =0时,==y x 0,x v =-2 m ·s -1,y v =0.求当t = 2 s时质点的 (1)位矢;(2)速度.解:2s m 83166-⋅===m f a x x 2s m 167-⋅-==m f a y y(1)⎰⎰--⋅-=⨯-=+=⋅-=⨯+-=+=20101200s m 872167s m 452832dt a v v dt a v v y y y x x x于是质点在s 2时的速度1s m 8745-⋅--=ji v(2)m874134)167(21)4832122(21)21(220j i ji jt a i t a t v r y x--=⨯-+⨯⨯+⨯-=++=2.10 质点在流体中作直线运动,受与速度成正比的阻力kv (k 为常数)作用,t =0时质点的速度为0v ,证明(1) t 时刻的速度为v =t mk ev )(0-;(2) 由0到t 的时间内经过的距离为x =(k mv 0)[1-t m ke )(-];(3)停止运动前经过的距离为)(0k m v ;(4)证明当k m t =时速度减至0v 的e 1,式中m 为质点的质量.答: (1)∵t v m kv a d d =-= 分离变量,得m t k v v d d -= 即 ⎰⎰-=v v t m tk vv 00d dmkt e v v -=ln ln 0∴tm kev v -=0(2)⎰⎰---===tttm k m k e k mv t ev t v x 000)1(d d(3)质点停止运动时速度为零,即t →∞,故有⎰∞-=='00d k mv t ev x tm k(4)当t=k m时,其速度为e v e v ev v kmm k 0100===-⋅-即速度减至0v 的e 1.2.11一质量为m 的质点以与地的仰角θ=30°的初速0v从地面抛出,若忽略空气阻力,求质点落地时相对抛射时的动量的增量. 解: 依题意作出示意图如题2-6图题2-6图在忽略空气阻力情况下,抛体落地瞬时的末速度大小与初速度大小相同,与轨道相切斜向下, 而抛物线具有对y 轴对称性,故末速度与x 轴夹角亦为o30,则动量的增量为0v m v m p -=∆由矢量图知,动量增量大小为v m,方向竖直向下.2.13作用在质量为10 kg 的物体上的力为i t F)210(+=N ,式中t 的单位是s ,(1)求4s后,这物体的动量和速度的变化,以及力给予物体的冲量.(2)为了使这力的冲量为200 N ·s ,该力应在这物体上作用多久,试就一原来静止的物体和一个具有初速度j6-m ·s -1的物体,回答这两个问题.解: (1)若物体原来静止,则it i t t F p t10401s m kg 56d )210(d -⋅⋅=+==∆⎰⎰,沿x 轴正向,i p I im p v111111s m kg 56s m 6.5--⋅⋅=∆=⋅=∆=∆若物体原来具有6-1s m -⋅初速,则⎰⎰+-=+-=-=t ttF v m t m F v m p v m p 000000d )d (,于是 ⎰∆==-=∆t p t F p p p 0102d, 同理, 12v v∆=∆,12I I =这说明,只要力函数不变,作用时间相同,则不管物体有无初动量,也不管初动量有多大,那么物体获得的动量的增量(亦即冲量)就一定相同,这就是动量定理. (2)同上理,两种情况中的作用时间相同,即⎰+=+=tt t t t I 0210d )210(亦即 0200102=-+t t解得s 10=t ,(s 20='t 舍去)3.14一质量为m 的质点在xOy 平面上运动,其位置矢量为j t b i t a rωωsin cos +=求质点的动量及t =0 到ωπ2=t 时间内质点所受的合力的冲量和质点动量的改变量.解: 质点的动量为)cos sin (j t b i t a m v m pωωω+-==将0=t 和ωπ2=t 分别代入上式,得j b m pω=1,i a m p ω-=2,则动量的增量亦即质点所受外力的冲量为)(12j b i a m p p p I+-=-=∆=ω2.15 一颗子弹由枪口射出时速率为10s m -⋅v ,当子弹在枪筒内被加速时,它所受的合力为 F =(bt a -)N(b a ,为常数),其中t 以秒为单位:(1)假设子弹运行到枪口处合力刚好为零,试计算子弹走完枪筒全长所需时间;(2)求子弹所受的冲量.(3)求子弹的质量. 解: (1)由题意,子弹到枪口时,有0)(=-=bt a F ,得b a t =(2)子弹所受的冲量⎰-=-=tbt at t bt a I 0221d )(将b at =代入,得b a I 22=(3)由动量定理可求得子弹的质量202bv a v I m ==第三章作业题P883.1; 3.2; 3.7;3.13计算题2-27图所示系统中物体的加速度.设滑轮为质量均匀分布的圆柱体,其质量为M ,半径为r ,在绳与轮缘的摩擦力作用下旋转,忽略桌面与物体间的摩擦,设1m =50kg ,2m =200 kg,M =15 kg, r =0.1 m解: 分别以1m ,2m 滑轮为研究对象,受力图如图(b)所示.对1m ,2m 运用牛顿定律,有a m T g m 222=- ① a m T 11= ②对滑轮运用转动定律,有β)21(212Mr r T r T =- ③又, βr a = ④联立以上4个方程,得2212s m 6.721520058.92002-⋅=++⨯=++=M m m g m a题2-27(a)图 题2-27(b)图题2-28图3.14 如题2-28图所示,一匀质细杆质量为m ,长为l ,可绕过一端O 的水平轴自由转动,杆于水平位置由静止开始摆下.求: (1)初始时刻的角加速度; (2)杆转过θ角时的角速度. 解: (1)由转动定律,有β)31(212ml mg=∴l g 23=β (2)由机械能守恒定律,有22)31(21sin 2ωθml l mg =∴ l g θωsin 3=题2-29图3.15 如题2-29图所示,质量为M ,长为l 的均匀直棒,可绕垂直于棒一端的水平轴O 无摩擦地转动,它原来静止在平衡位置上.现有一质量为m 的弹性小球飞来,正好在棒的下端与棒垂直地相撞.相撞后,使棒从平衡位置处摆动到最大角度=θ30°处. (1)设这碰撞为弹性碰撞,试计算小球初速0v 的值; (2)相撞时小球受到多大的冲量?解: (1)设小球的初速度为0v,棒经小球碰撞后得到的初角速度为ω,而小球的速度变为v ,按题意,小球和棒作弹性碰撞,所以碰撞时遵从角动量守恒定律和机械能守恒定律,可列式:mvl I l mv +=ω0 ①2220212121mv I mv +=ω ②上两式中231Ml I =,碰撞过程极为短暂,可认为棒没有显著的角位移;碰撞后,棒从竖直位置上摆到最大角度o30=θ,按机械能守恒定律可列式:)30cos 1(2212︒-=lMg I ω ③由③式得2121)231(3)30cos 1(⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡︒-=l g I Mgl ω由①式ml I v v ω-=0 ④由②式m I v v 2202ω-= ⑤所以22001)(2ωωm v ml I v -=-求得glmM m m M l ml I l v +-=+=+=31232(6)311(2)1(220ωω (2)相碰时小球受到的冲量为⎰-=∆=0d mvmv mv t F由①式求得ωωMl l I mv mv t F 31d 0-=-=-=⎰glM 6)32(6--=负号说明所受冲量的方向与初速度方向相反.第五章作业题P1455.1; 5.2;5.7 质量为kg 10103-⨯的小球与轻弹簧组成的系统,按)SI ()328cos(1.0ππ+=x 的规律作谐振动,求:(1)振动的周期、振幅和初位相及速度与加速度的最大值;(2)最大的回复力、振动能量、平均动能和平均势能,在哪些位置上动能与势能相等? (3)s 52=t 与s 11=t 两个时刻的位相差;解:(1)设谐振动的标准方程为)cos(0φω+=t A x ,则知:3/2,s 412,8,m 1.00πφωππω===∴==T A又 πω8.0==A v m 1s m -⋅ 51.2=1s m -⋅2.632==A a m ω2s m -⋅(2) N 63.0==m m a FJ 1016.32122-⨯==m mv E J 1058.1212-⨯===E E E k p当p k E E =时,有p E E 2=,即)21(212122kA kx ⋅= ∴ m 20222±=±=A x (3) ππωφ32)15(8)(12=-=-=∆t t5.8 一个沿x 轴作简谐振动的弹簧振子,振幅为A ,周期为T ,其振动方程用余弦函数表示.如果0=t 时质点的状态分别是:(1)A x -=0;(2)过平衡位置向正向运动;(3)过2Ax =处向负向运动; (4)过2Ax -=处向正向运动.试求出相应的初位相,并写出振动方程.解:因为 ⎩⎨⎧-==000sin cos φωφA v A x将以上初值条件代入上式,使两式同时成立之值即为该条件下的初位相.故有)2cos(1πππφ+==t TA x)232cos(232πππφ+==t T A x)32cos(33πππφ+==t T A x)452cos(454πππφ+==t T A x5.9 一质量为kg 10103-⨯的物体作谐振动,振幅为cm 24,周期为s 0.4,当0=t 时位移为cm 24+.求:(1)s 5.0=t 时,物体所在的位置及此时所受力的大小和方向; (2)由起始位置运动到cm 12=x 处所需的最短时间; (3)在cm 12=x 处物体的总能量.解:由题已知 s 0.4,m 10242=⨯=-T A∴ 1s rad 5.02-⋅==ππωT又,0=t 时,0,00=∴+=φA x故振动方程为m )5.0cos(10242t x π-⨯=(1)将s 5.0=t 代入得0.17m m )5.0cos(102425.0=⨯=-t x πN102.417.0)2(10103232--⨯-=⨯⨯⨯-=-=-=πωxm ma F方向指向坐标原点,即沿x 轴负向. (2)由题知,0=t 时,00=φ,t t =时 3,0,20πφ=<+=t v A x 故且 ∴ s 322/3==∆=ππωφt(3)由于谐振动中能量守恒,故在任一位置处或任一时刻的系统的总能量均为J 101.7)24.0()2(10102121214223222--⨯=⨯⨯⨯===πωA m kA E5.11 图为两个谐振动的t x -曲线,试分别写出其谐振动方程.题4-8图解:由题4-8图(a),∵0=t 时,s 2,cm 10,,23,0,0000===∴>=T A v x 又πφ 即 1s rad 2-⋅==ππωT故 m )23cos(1.0ππ+=t x a 由题4-8图(b)∵0=t 时,35,0,2000πφ=∴>=v A x01=t 时,22,0,0111ππφ+=∴<=v x又 ππωφ253511=+⨯= ∴ πω65=故 m t x b )3565cos(1.0ππ+= 5.12 一轻弹簧的倔强系数为k ,其下端悬有一质量为M 的盘子.现有一质量为m 的物体从离盘底h 高度处自由下落到盘中并和盘子粘在一起,于是盘子开始振动. (1)此时的振动周期与空盘子作振动时的周期有何不同? (2)此时的振动振幅多大?(3)取平衡位置为原点,位移以向下为正,并以弹簧开始振动时作为计时起点,求初位相并写出物体与盘子的振动方程.解:(1)空盘的振动周期为k M π2,落下重物后振动周期为km M +π2,即增大. (2)按(3)所设坐标原点及计时起点,0=t 时,则kmgx -=0.碰撞时,以M m ,为一系统动量守恒,即0)(2v M m gh m +=则有 Mm ghm v +=20于是gM m khk mg M m gh m k mg v x A )(21))(2()()(22222++=++=+=ω(3)g m M khx v )(2tan 000+=-=ωφ (第三象限),所以振动方程为 ⎥⎦⎤⎢⎣⎡+++++=g m M kh t M m k gM m khk mg x )(2arctan cos )(215.15 试用最简单的方法求出下列两组谐振动合成后所得合振动的振幅:(1) ⎪⎩⎪⎨⎧+=+=cm )373cos(5cm )33cos(521ππt x t x (2)⎪⎩⎪⎨⎧+=+=cm)343cos(5cm )33cos(521ππt x t x解: (1)∵ ,233712πππφφφ=-=-=∆∴合振幅 cm 1021=+=A A A(2)∵ ,334πππφ=-=∆∴合振幅 0=A5.16 一质点同时参与两个在同一直线上的简谐振动,振动方程为⎪⎩⎪⎨⎧-=+=m)652cos(3.0m )62cos(4.021ππt x t x 试分别用旋转矢量法和振动合成法求合振动的振动幅和初相,并写出谐振方程。
大学物理力学一、二章作业答案

大学物理力学一、二章作业答案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第一章 质点运动学一、选择题1、一质点在xoy 平面内运动,其运动方程为2,ct b y at x +==,式中a 、b 、c 均为常数。
当运动质点的运动方向与x 轴成450角时,它的速率为[ B ]。
A .a ;B .a 2;C .2c ;D .224c a +。
2、设木块沿光滑斜面从下端开始往上滑动,然后下滑,则表示木块速度与时间关系的曲线是图1-1中的[ D ]。
3、一质点的运动方程是j t R i t R rωωsin cos +=,R 、ω为正常数。
从t =ωπ/到t =ωπ/2时间内该质点的路程是[ B ]。
A .2R ;B .R π;C . 0;D .ωπR 。
4、质量为0.25kg 的质点,受i t F =(N)的力作用,t =0时该质点以v=2j m/s 的速度通过坐标原点,该质点任意时刻的位置矢量是[ B ]。
A .22t i +2j m ; B .j t i t2323+m ;C .j t i t343243+; D .条件不足,无法确定。
二、填空题1、一质点沿x 轴运动,其运动方程为225t t x -+=(x 以米为单位,t 以秒为单位)。
质点的初速度为 2m/s ,第4秒末的速度为 -6m/s ,第4秒末的加速度为 -2m/s 2 。
2、一质点以π(m/s )的匀速率作半径为5m 的圆周运动。
该质点在5s 内的平均速度的大小为 2m/s ,平均加速度的大小为 22m /5s π 。
3、一质点沿半径为0.1m 的圆周运动,其运动方程为22t +=θ(式中的θ以弧度计,t 以秒计),质点在第一秒末的速度为 0.2m/s ,切向加速度为 0.2m/s 2 。
4、一质点沿半径1m 的圆周运动,运动方程为θ=2+3t 3,其中θ以弧度计,t 以秒计。
T =2s 时质点的切向加速度为 36m/s 2 ;当加速度的方向和半径成45º角时角位移是 38rad 。
山东理工大学大学物理上_---练习题册及答案(1——8)

第一章 力学的基本概念(一)第1单元序号 学号 姓名 专业、班级一 选择题[ A ]1. 一小球沿斜面向上运动,其运动方程为(SI),则小球运动到最高点的时285t t s -+=刻是: (A) s 4=t ;(B) s 2=t ; (C) s 8=t ;(D) s 5=t 。
[ D ]2. 一运动质点在某瞬时位于矢径 r (x,y)的端点处,其速度大小为(A)dtdr (B) dt d r(C)dt d r (D)22)()(dt dy dt dx +[ D ]3. 某质点的运动方程x=3t-53t +6 (SI),则该质点作: (A ) 匀加速直线运动,加速度沿x 轴正方向; (B ) 匀加速直线运动,加速度沿x 轴负方向;(C ) 变加速直线运动,加速度沿x 轴正方向;(D ) 变加速直线运动,加速度沿x 轴负方向。
[ C ]4. 某物体的运动规律为dtdv =-k 2v t,式中k 为常数,当t=0时,初速度为0v ,则速度v 与时间的函数关系为:(A ) v=21 k 2t +0v ; (B ) v=-21k 2t +0v(C ) v 1=21k 2t +01v(D ) v1=-21k 2t +01v[ D ]5. 一质点从静止出发,沿半径为1m 的圆周运动,角位移θ=3+92t ,当切向加速度与合加速度的夹角为︒45时,角位移θ等于:(A) 9 rad, (B )12 rad, (C)18 rad, (D) rad[ D ]6. 质点作曲线运动,r 表示位置矢量,s 表示路径,t a 表示切向加速度,下列表达式中: (1)dt dv =a; (2)dt dr =v; (3)dtds=v; (4)dt d v =t a ,则,(A ) 只有(1)、(4)是对的;(B ) 只有(2)、(4)是对的; (C ) 只有(2)是对的; (D ) 只有(3)是对的。
[ B ]7. 一质点在平面上运动,已知质点位置矢量的表示式为j i r 22bt at +=(其中a,b 为常量)则该质点作:(A) 匀速直线运动 (B) 变速直线运动 (C) 抛物线运动 (D) 一般曲线运动二 填空题1. 设质点在平面上的运动方程为r =Rcos t ωi +Rsin tωj ,R 、ω为常数,则质点运动的速度v =j t con R i t R ϖϖωωωω+-sin ,轨迹为 半径为R 的圆 。
《大学物理》各章练习题及答案解析

《大学物理》各章练习题及答案解析第1章 质点运动学一、选择题:1.以下五种运动中,加速度a保持不变的运动是 ( D ) (A) 单摆的运动。
(B) 匀速率圆周运动。
(C) 行星的椭圆轨道运动。
(D) 抛体运动。
(E) 圆锥摆运动。
2.下面表述正确的是( B )(A)质点作圆周运动,加速度一定与速度垂直; (B) 物体作直线运动,法向加速度必为零; (C)轨道最弯处法向加速度最大; (D)某时刻的速率为零,切向加速度必为零。
3.某质点做匀速率圆周运动,则下列说法正确的是( C )(A)质点的速度不变; (B)质点的加速度不变 (C)质点的角速度不变; (D)质点的法向加速度不变4.一运动质点在某瞬时位于矢径()y x r , 的端点处,其速度大小为( D )()()(()22⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛dt dy dt dx D C dtrd B dt drA5. 一质点在平面上运动,运动方程为:j t i t r222+=,则该质点作( B )(A)匀速直线运动 (B)匀加速直线运动(C)抛物线运动 (D)一般曲线运动6.一质点做曲线运动,r 表示位置矢量,v 表示速度,a表示加速度,s 表示路程,a t 表示切向加速度,对下列表达式,正确的是( B )(A)dt dr v = (B) dt ds v = (C) dtdv a = (D) dt vd a t=7. 某质点的运动方程为 3723+-=t t X (SI ),则该质点作 [ D ](A)匀加速直线运动,加速度沿 x 轴正方向; (B)匀加速直线运动,加速度沿 x 轴负方向; (C)变加速直线运动.加速度沿 x 轴正方向; (D)变加速直线运动,加速度沿 x 轴负方向8.一质点沿x 轴运动,其运动方程为()SI t t x 3235-=,当t=2s 时,该质点正在( A )(A)加速 (B)减速 (C)匀速 (D)静止1.D2. B3. C4.D5.B ,6B ,7A 8 A二 、填空题1. 一质点的运动方程为x =2t ,y =4t 2-6t ,写出质点的运动方程(位置矢量)j t t i t r)64(22-+=,t =1s 时的速度j i v22+=,加速度j a 8=,轨迹方程为x x y 32-=。
大学物理(上册)课后习题及答案

因此有: ,∴
⑵由 得: ,两边积分得:
∴
⑶质点停止运动时速度为零, ,即t→∞,
故有:
⑷ 时,其速度为: ,
即速度减至 的 .
2.13作用在质量为10 kg的物体上的力为 N,式中 的单位是s,⑴求4s后,这物体的动量和速度的变化,以及力给予物体的冲量。⑵为了使这力的冲量为200 N·s,该力应在这物体上作用多久,试就一原来静止的物体和一个具有初速度 m/s的物体,回答这两个问题。
将 ,及 代入上式,即得: 。
6.9沿绳子传播的平面简谐波的波动方程为 =0.05cos(10 ),式中 , 以米计, 以秒计。求:
⑴设 =100 N,问可使飞轮在多长时间内停止转动?在这段时间里飞轮转了几转?⑵如果在2s内飞轮转速减少一半,需加多大的力 ?
解:⑴先作闸杆和飞轮的受力分析图(如图(b))。图中 、 是正压力, 、 是摩擦力, 和 是杆在 点转轴处所受支承力, 是轮的重力, 是轮在 轴处所受支承力。
杆处于静止状态,所以对 点的合力矩应为零,设闸瓦厚度不计,则有:
解:因为
将以上初值条件代入上式,使两式同时成立之值即为该条件下的初位相。故有: ,
,
5.9一质量为 的物体作谐振动,振幅为 ,周期为 ,当 时位移为 。求:
⑴ 时,物体所在的位置及此时所受力的大小和方向;
⑵由起始位置运动到 处所需的最短时间;
⑶在 处物体的总能量。
解:由题已知 ,∴
又, 时,
故振动方程为:
⑴将 代入得:
方向指向坐标原点,即沿 轴负向。
⑵由题知, 时, ; 时,
∴
⑶由于谐振动中能量守恒,故在任一位置处或任一时刻的系统的总能量均为:
大学物理上册作业题

大学物理上册作业题(总17页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--2014 ~2015学年第二学期 大学物理作业题第1章 质点运动学 作业一、教材:选择题1 ~ 4;计算题:9,13,14,17 二、附加题 (一)、选择题1、某物体的运动规律为d v /dt=-kv 2t ,式中的k 为大于零的常量.当t=0时,初速为v 0,则速度v 与时间t 的函数关系是[ ]A 、0221v kt v +=;B 、0221v kt v +-=;C 、02121v kt v +=;D 、02121v kt v +-=2、某质点作直线运动的运动学方程为x =3t-5t 3+6(SI),则该质点作[ ] A 、匀加速直线运动,加速度沿x 轴正方向 B 、匀加速直线运动,加速度沿x 轴负方向 C 、变加速直线运动,加速度沿x 轴正方向 D 、变加速直线运动,加速度沿x 轴负方向3、一质点在t=0时刻从原点出发,以速度v 0沿x 轴运动,其加速度与速度的关系为a =-kv 2,k 为正常数。
这个质点的速度v 与所经路程x 的关系是[ ] A 、kxe v v -=0;B 、)21(200v x v v -=;C 、201x v v -= ;D 、条件不足不能确定4、一质点在平面上运动,已知质点位置矢量的表示式为 j bt i at r 22+=(其中a 、b 为常量), 则该质点作[ ]A 、匀速直线运动B 、变速直线运动C 、抛物线运动D 、一般曲线运动(二)、计算题1一质点在一平面内做运动,其运动方程为: 2=+-r t ti t j()5(10)(SI)试求:(1)质点的轨道方程 (2)质点从t=0到t=5s这段时间的平均速度 (3)质点在第5s末的速度; (4)质点的加速度;2、已知质点沿x轴运动,其加速度和坐标的关系为a = 2+6x2 (SI),且质点在x= 0 处的速率为10m/s,求该质点的速度v与坐标x的关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
m
解: m落入木箱前的瞬时速度 v0 2 gh
h
q
M
k
以M、m为系统,m落入木箱时沿水平方 向m与M间的冲力(内力)远大于地面 与木箱间的摩擦力(外力),在水平方 向动量守恒 mv0 cos q ( M m )v v m 2 gh cos q /( M m )
l
第三章 习题课
原长
x0
A B
第三章 习题课
解:释放物体A到A与B碰撞前.以A与弹簧为系统,
1 2 1 kx0 m Av 2 2 2 (1)
A与B碰撞过程中以A、B为系统,动量守恒, 机械能守恒 原长 x0 m Av m AvA mBv (2) B
1 1 1 2 A2 m B v 2 m Av m Av B 2 2 2 ( 3)
R B C
第三章 习题课
解: 对于任意一点,沿自然坐标系分解 2q mg sin 2q F sinq ma t N F cos q mg cos 2q ma n
an v 2 / R
A
1.6R q F R N B mg C
kR mg (1)对于B点:vB=0 an 0 F 0.6kR 0.6mg cosq 1.6R / 2R 0.8
2
k
x0
O
第三章 习题课
三.计算题 1. 一半圆形的光滑槽,质量为M、半径为R,放在光滑 的桌面上.一小物体,质量为m,可在槽内滑动.起始位置 如图所示,半圆槽静止,小物体静止于与圆心同高的A 处.求: (1) 小物体滑到任意位置C处时,小物体对半圆槽及 半圆槽对地的速度各为多少? (2) 当小物体滑到半圆槽最低点B时,半圆槽移动了 多少距离? O
4. 质量为100kg的货物,平放在卡车底板上.卡车 以4 m/s2的加速度启动.货物与卡车底板无相对 滑动.则在开始的4秒钟内摩擦力对该货物作的功 W = 12800 J .
第三章 习题课
5.下列物理量:质量、动量、冲量、动能、势能、 功中与参考系的选取有关的物理量是 动量、动能、功 ______________.(不考虑相对论效应) 6.劲度系数为k的弹簧,上端固定,下端悬挂重物.当 弹簧伸长x0,重物在O处达到平衡,现取重物在O处时 各种势能均为零,则当弹簧长度为原长时,系统的重 1 2 2 kx 0 力势能为________;系统的弹性势能为_______;系统 kx0 2 1 2 kx0 的总势能为__________. (答案用k和x0表示)
第三章 习题课 3.今有一劲度系数为k的轻弹簧,竖直放置,下端悬一质 量为m的小球,开始时使弹簧为原长而小球恰好与地接 触,今将弹簧上端缓慢地提起,直到小球刚能脱离地面 为止,在此过程中外力作功为
(A) m2 g2 4k
4m g (B) k
2 2
m g (C) 2k
2
2
2m 2 g 2 (D) k
m
v0
M
x
第三章 习题课
(2) 要物体不滑下车顶,车长至少应为多少? 由于一对内力(摩擦力)的功与参考系无关, 可取车 为参考系来计算摩擦力的功, 由系统动能定理得
mvo=(M+m)v 要物体不滑下车顶, 车的 最小长度为
m
v0
M
x
第三章 习题课
3. 一质量为mA的物体A与一轻弹簧相连放在光滑 水平桌面上,弹簧的另一端固定在墙上,弹簧的劲度 系数为 k,现在用力推 A,从而弹簧被压缩了 x0.在弹 簧的原长处放有质量 mB的物体 B,如图所示.由静止 释放物体 A后 , A将与静止的物体 B发生弹性碰撞. 求碰撞后A物体还能把弹簧压缩多大距离.
O
碰撞后,把钢板、弹簧和地球作一 系统,机械能守恒.令钢板在静止 位置时的重力势能为0,弹簧处于 原长时弹性势能为0.设弹簧被压 x 缩x0后,再进一步被压缩x1,则 1 1 2 1 2 Mv2 kx0 Mgx1 k ( x0 x1 )2 2 2 2 1 1 2 2 Mv2 Mgx1 kx1 kx1 x0 2 2 1 1 2 x1 ( kx1 kx0 Mg) kx1 2 2
( 2)
第三章 习题课
MV m(V v sinq ) MV 0 (1)
1 1 2 2 m[(V v sinq ) (v cos q ) ] MV 2 mgR sinq 2 2
m sinq V Mm ( M m )2 gR sinq ( M m ) m sin2 q
R
q
m A
M
B
C
第三章 习题课 解: (1) 以小物体及半圆槽为系统,水平方向动量守恒. 设小物体对半圆槽速度为v,槽及小物体对地的速度分 别为V和v1, 向右为速度正方向.
R O
q
m A C
M
B
MV m(V v sinq ) MV 0 (1)
以小物体、半圆槽、地球为系统,机械能守恒 1 1 2 2 m[(V v sinq ) (v cos q ) ] MV 2 mgR sinq 2 2
v m 2 gh cos q /( M m )
由功能原理
1 2 1 ( m M ) gl kl ( m M )v 2 2 2
1 1 2 2 ( m M ) gl ( m M )v kl 2 2
m h
q
M
k
l
m 2 h cos 2 q kl ( M m ) 2 l 2( M m ) g
第三章 习题课
二、填空题 1. 一个力F作用在质量为1.0kg的质点上,使之 沿x轴运动,已知在此力作用下质点的运动方程 3 为 x 3t 4t 2 t (SI),在0到4s的时间间隔内 (1)力F的冲量大小I=
16 N s ,
176J (2)力F对质点所作的功A= . 2. 力 F 12i (SI)作用在质量m=2kg的物体上,使物 体由原点从静止开始运动,则它在3s末的动量大小簧,机械能守恒
1 1 2 m AvA kx02 2 2 ( 4)
( m A m B ) x0 x0 m A mB
第三章 习题课
4. 弹簧原长等于光滑圆环半径R.当弹簧下端悬挂质 量为m的小环状重物时,弹簧的伸长也为R.现将弹簧 一端系于竖直放置的圆环上顶点A,将重物套在圆环 的B点,AB长为 1.6R,如图所示.放手后重物由静止沿 圆环滑动.求(1)重物在B点的加速度和对圆环的正压 力(2)当重物滑到最低点C时,重物的加速度和对圆环 的正压力. A
第三章 习题课 6.关于机械能守恒条件和动量守恒条件有以下几种 说法,其中正确的是 [C ] (A) 不受外力作用的系统,其动量和机械能必然 同时守恒. (B) 所受合外力为零,内力都是保守力的系统,其 机械能必然守恒. (C) 不受外力,而内力都是保守力的系统,其动量 和机械能必然同时守恒. (D)外力对一个系统做的功为零,则该系统的机械 能和动量必然同时守恒. 7. 质量为的m质点,以不变速率v沿正三角 A 形的水平光滑轨道运动,越过A角时轨道对 质点的冲量为:(A)mv; B)1.42mv; C)1.73mv; D)2mv 选(C)
( 2)
O
因为是弹性碰撞,所以 v2 v1 v0 ( 3)
mM mM v1 v0 m M m M 2m v2 m M
2 v1 2gh1
x0
h0
M
2gh0
x
2 gh0
2 v1 mM 2 h1 ( ) h0 2g mM
第三章 习题课
2m v2 m M 2 gh0
第三章 习题课
6. 如图所示,一轻质弹簧,其劲度系数为k,竖直地固定在 地面上.试求(1)在弹簧上放一质量为M的钢板,当他们 停止后,弹簧被压缩了多少?(2)质量为m(m<M)的小 球从钢板正上方h0处自由落下,与钢板发生弹性碰撞,则 小球从原来钢板的位置上升的最大高度为多少?弹簧 能再压缩的长度为多少? 解 (1) Mg kx0
an v 2 / R
A
(2)对于C点:q =0 a t 0 kR mg
N F mg ma n
2 N m vC / R
1.6R q F R N B mg C
cosq 1.6R / 2R 0.8
x B 0.6 R
2 C
求vC ,由机械能守恒定律 1 2 1 1 2 2 kxB mg ( 2 R 1.6 R cos q ) mvC kxC 2 2 2
sinq 1 0.64 0.6
2mg sinq cos q 0.6mg sinq ma t
at 0.6 g 5.88 m/s 2 N N F cosq mg cos 2q 0.2mg
第三章 习题课
mg sin 2q F sinq ma t N F cos q mg cos 2q ma n
(2) 小球将与钢板发生碰撞时的 速度为 v0 2 gh0 (1)
Mg x0 k
O
x0
h0
M
取小球、钢板为一系统,在碰撞 瞬间,内力大于外力(重力、弹 x 性力),所以系统动量守恒. mv0 mv1 Mv2 ( 2)
第三章 习题课
v0 2 gh0 (1)