第十六章 习题课:动量守恒定律的应用

合集下载

6 习题课2 三种碰撞模型

6 习题课2 三种碰撞模型

(2)430vg20
栏目 导引
第十六章 动量守恒定律
[针对训练 2] 如图所示,在光滑水平面上放置 一个质量为 M 的滑块,滑块的一侧是一个14圆 弧形凹槽 OAB,凹槽半径为 R,A 点切线水 平.另有一个质量为 m 的小球以速度 v0 从 A 点冲上凹槽,重力 加速度大小为 g,不计摩擦.下列说法中正确的是( ) A.当 v0= 2gR时,小球能到达 B 点 B.如果小球的速度足够大,则小球将从滑块的左侧离开滑块后 落到水平面上 C.当 v0= 2gR时,小球在弧形凹槽上运动的过程中,滑块的 动能一直增大 D.如果滑块固定,则小球返回 A 点时对滑块的压力为 mvR20
栏目 导引
(1)离开弹簧时 a、b 球的速度大小;
第十六章 动量守恒定律
(2)释放小球前弹簧具有的弹性势能.
解析:(1)设两个小球离开弹簧时的速度分别为 va、vb,弹簧的 弹性势能为 Ep,根据题意 ma=m,对 b 球,由机械能守恒定律
有12mbv2b=mbg·10R
对 a 球,由机械能守恒定律有12mav2a=12mav2A+mag·2R a 球恰好能通过圆环轨道最高点 A 需满足 mag=mRav2A
栏目 导引
(1)求该物块的质量;
第十六章 动量守恒定律
(2)若物块最终未从平板车上滑落,求物块在平板车上滑动过程
中产生的热量.
解析:(1)设四分之一圆弧的半径为 R,物块的质量为 m,在 b 点轨道对物块的支持力为 F,物块从 a 到 b 由机械能守恒定律
有 mgR=12mv2b 物块运动到 b 点,由牛顿第二定律有 F-mg=mvR2b 联立解得 F=3mg. 由牛顿第三定律知 F=30 N 联立解得 m=1 kg.
栏目 导引

反冲运动火箭及习题课

反冲运动火箭及习题课

反冲是生活和生产实践中常见的一种现象, 如何处理反冲运动的问题?
分析:发生反冲运动时间极短,作用力非常大,
两部分相互作用的内力会远远大于外力, 可以认为动量守恒
因此,反冲运动可用动量守恒处理
例1.机关枪重M=8kg,射出的子弹质量m=20克,
若子弹的出口速度是V0=1000m/s,则机枪的后退速 度V是多少?
例5:在沙堆上有一木块,M=5K g,木块上放一 爆竹,质量为m=0.10Kg,点燃后木块陷入沙中5 cm,若沙对木块运动的阻力恒为58N,不计火药 质量和空气阻力,求爆竹上升的最大高度?
Mgs fs 0 1 Mv2 2
Mv mv' 0 h v'2
2g
h=1.7m
1. 定义:向气体喷出的反方向

逃逸塔

整流罩


二级火箭
型F
运 载
一级火箭


助推器
演示:神舟7号发射全程
有一只长为L=3m,质量为M=120kg的小船停在静水 中,一个质量为m=60kg的人立在船头,若不计水的 阻力,当人从船头走到船尾的过程中,船和人对地面 的位移各是多少?
船1米 人2米
总结
一、反冲运动 1、定义:一个静止的物体在内力的作用下分裂
提示:发射人造卫星的最小速度是7.9Km/s
喷气的速度 目前常用的液体燃料是液氢,用液氧做 氧化剂,喷气速度在2000m/s到4000m/s
质量比 火箭的质量比在6-10 左右, 要发射人造卫星,这样的火箭还不能达到所需的速度
问题:如何解决卫星发射问题?
为了解决这个问题,人们想到了利用多 级火箭,结构如下页图所示
m V0
(M m

高考物理动量守恒定律的应用及其解题技巧及练习题(含答案)

高考物理动量守恒定律的应用及其解题技巧及练习题(含答案)

高考物理动量守恒定律的应用及其解题技巧及练习题 (含答案)一、高考物理精讲专题动量守恒定律的应用1.竖直平面内存在着如图甲所示管道,虚线左侧管道水平,虚线右侧管道是半径R=1m 的半圆形,管道截面是不闭合的圆,管道半圆形部分处在竖直向上的匀强电场中,电场强度 E=4X 10/m .小球a 、b 、c 的半径略小于管道内径, b 、c 球用长L 2m 的绝缘细轻杆连接,开始时c 静止于管道水平部分右端P 点处,在M 点处的a 球在水平推力F 的作用下由静止向右运动,当 F 减到零时恰好与b 发生了弹性碰撞,F-t 的变化图像如图乙所示,且满足F 2 t 2 —.已知三个小球均可看做质点且 m a =0.25kg , m b =0.2kg , m c =0.05kg ,小球 (1) 小球a 与b 发生碰撞时的速度 v o ; (2) 小球c 运动到Q 点时的速度v ;(3) 从小球c 开始运动到速度减为零的过程中,小球 c 电势能的增加量.【答案】(1) V 4m/s (2) v=2m/s (3) E p 3.2J 【解析】【分析】对小球 a ,由动量定理可得小球 a 与b 发生碰撞时的速度;小球a 与小球b 、c 组 成的系统发生弹性碰撞由动量守恒和机械能守恒可列式,小球c 运动到Q 点时,小球b 恰好运动到P 点,由动能定理可得小球 c 运动到Q 点时的速度;由于b 、c 两球转动的角速 度和半径都相同,故两球的线速度大小始终相等,从c 球运动到Q 点到减速到零的过程列能量守恒可得; 解:⑴对小球a ,由动量定理可得I m a V 。

0 由题意可知,F-图像所围的图形为四分之一圆弧 ,面积为拉力F 的冲量,由圆方程可知S 1m 2 代入数据可得:v 0 4m/s(2)小球a 与小球b 、c 组成的系统发生弹性碰撞 , 由动量守恒可得 m a V 0 m a V | (m b m c )v 21 2 1 2 12由机械能守恒可得 m a v 0m a v 1 (m b m c )v 222 2解得 V 1 0, V 2 4m/ sA E阳1r c 带q=5 x 1'0)C 的正电荷,其他小球不带电,不计一切摩擦, g=10m/s 2,求小球c运动到Q点时,小球b恰好运动到P点,由动能定理1 2 1 2 m c gR qER ㊁血 mjv ㊁血 mjv ?代入数据可得v 2m/ s⑶由于b 、c 两球转动的角速度和半径都相同,故两球的线速度大小始终相等,假设当两球速度减到零时,设b 球与O 点连线与竖直方向的夹角为 从c 球运动到Q 点到减速到零的过程列能量守恒可得:1 2(m b m c )v qERsin 22.如图所示,小明参加户外竞技活动,站在平台边缘抓住轻绳一端,轻绳另一端固定在 '点,绳子刚好被拉直且偏离竖直方向的角度0 =60.小明从A 点由静止往下摆,达到 O 点正下方B 点突然松手,顺利落到静止在水平平台的平板车上,然后随平板车一起向右运 动•到达C 点,小明跳离平板车(近似认为水平跳离),安全落到漂浮在水池中的圆形浮漂 上•绳长L=1.6m ,浮漂圆心与 C 点的水平距离x=2.7m 、竖直高度y=1.8m ,浮漂半径 R=0.3m 、不计厚度,小明的质量m=60kg ,平板车的质量 m=20kg ,人与平板车均可视为质点,不计平板车与平台之间的摩擦.重力加速度g=10m/s 2,求:_*』吩(1) 轻绳能承受最大拉力不得小于多少? (2) 小明跳离平板车时的速度在什么范围?(3) 若小明跳离平板车后恰好落到浮漂最右端,他在跳离过程中做了多少功 ?【答案】(1) 1200N (2) 4m/s Wv< 5m/s( 3) 480J 【解析】 【分析】(1)首先根据机械能守恒可以计算到达B 点的速度,再根据圆周运动知识计算拉力大小.(2)由平抛运动规律,按照位移大小可以计算速度范围( 3)由动量守恒和能量守恒规律计算即可. 【详解】解(I)从A 到B .由功能关系可得1 2 mgL(1 cos ) mv ①2代人数据求得v=4 m/s ②m b gR(1cos ) m c gRsin 解得sin0637因此小球c 电势能的增加量: E p qER(1 sin ) 3.2J2在最低点B处,T mg mv③联立①②解得,轻绳能承受最大拉力不得小于T=1200N(2) 小明离开滑板后可认为做平抛运动1 2竖直位移y gt1 2 3④2离C点水平位移最小位移x R v min t⑤离C点水平位移最大为X R V min t⑥联立④⑤⑥解得小明跳离滑板时的速度 4 m/s Wvw 5 m/s(3) 小明落上滑板时,动量守恒mv (m m0)V| ⑦代人数据求得V i=3 m/s⑧离开滑板时,动量守恒(m m0)v| mv C m o V2⑨将⑧代人⑨得V2=-3 m/s由功能关系可得1 2 1 2 1 2 W ( — mv C m0v2) m m0 v1⑩.2 2 2解得W=480 J3. 某种弹射装置的示意图如图所示,光滑的水平导轨MN右端N处于倾斜传送带理想连接,传送带长度L=15.0m,皮带以恒定速率v=5m/s顺时针转动,三个质量均为m=1.0kg的滑块A、B C置于水平导轨上, B C之间有一段轻弹簧刚好处于原长,滑块B与轻弹簧连接,C未连接弹簧,B C处于静止状态且离N点足够远,现让滑块A以初速度V0=6m/s 沿B、C 连线方向向B运动,A与B碰撞后粘合在一起•碰撞时间极短,滑块C脱离弹簧后滑上倾角0 =37的传送带,并从顶端沿传送带方向滑出斜抛落至地面上,已知滑块C与传送带之间的动摩擦因数卩=0.8重力加速度g=10m/s2, sin37=0.6, cos37°0.8.1滑块A、B碰撞时损失的机械能;2滑块C在传送带上因摩擦产生的热量Q;3若每次实验开始时滑块A的初速度V。

习题课动量守恒定律的应用

习题课动量守恒定律的应用

01
适用范围
动量守恒定律适用于宏观低速运动的物体,在微观高速运动领域(如相
对论)中需进行修正。
02
适用条件
系统不受外力或所受外力矢量和为零。这意味着在碰撞、爆炸等过程中,
只要系统内力远大于外力,就可以近似认为动量守恒。
03
注意点
在运用动量守恒定律时,需要选取合适的系统,确保系统内的相互作用
力属于内力,并且要考虑外力的影响。同时,要注意动量的矢量性,正
反冲问题解析
通过分析反冲前后物体的运动状 态和相互作用力,利用动量守恒 定律求解相关问题。
解题思路与技巧
在解决爆炸、反冲问题时,需要 注意分析物体的运动状态和相互 作用力,正确运用动量守恒定律 进行求解。同时,还需要注意选 择合适的坐标系和参考系,以便 简化问题并方便求解。
05 动量守恒定律在综合问题 中应用
易错点一
易错点二
忽视动量守恒的条件。在应用动量守恒定 律时,必须确保系统不受外力或所受外力 的矢量和为零。
忽视动量的矢量性。在解题过程中,容易 忽视动量的矢量性,从而导致计算错误。
计算题答题规范及步骤梳理
规范一
明确已知条件。在解答计算题时,首 先要明确题目中给出的已知条件,包 括物体的质量、速度等。
典型问题二
两物体在光滑水平面上发生非弹性正碰。解析:根据动量守恒条件,结合能量损失情况,求解得到碰撞后两物体的速 度。
典型问题三
两物体在光滑水平面上发生斜碰。解析:通过矢量分解将速度分解为沿碰撞方向和垂直于碰撞方向的两 个分量,分别应用动量守恒定律进行求解。对于弹性斜碰,还需应用机械能守恒条件进行联立求解。
案例分析:历年高考真题剖析
案例一
(某年某地高考真题)。题目描述了一个碰撞过程,要求考生判断碰撞前后动量的 变化情况。通过分析可知,碰撞过程中系统不受外力作用,因此动量守恒。根据动 量守恒定律可知,碰撞前后系统的总动量保持不变。

习题课 动量守恒定律的应用

习题课 动量守恒定律的应用

习题课动量守恒定律的应用题组一动量守恒条件及系统和过程的选取1.在匀速行驶的船上,当船上的人相对于船竖直向上抛出一个物体时,船的速度将(水的阻力不变) ()A.变大B.变小C.不变D.无法判定2. 如图10所示,A、B两木块紧靠在一起且静止于光滑水平面上,物块C以一定的初速度v0从A的左端开始向右滑行,最后停在B木块的右端,对此过程,下列叙述正确的是() 图10A.当C在A上滑行时,A、C组成的系统动量守恒B.当C在B上滑行时,B、C组成的系统动量守恒C.无论C是在A上滑行还是在B上滑行,A、B、C三物块组成的系统动量都守恒D.当C在B上滑行时,A、B、C组成的系统动量不守恒3. 平板车B静止在光滑水平面上,在其左端另有物体A以水平初速度v0向车的右端滑行,如图11所示.由于A、B间存在摩擦,因而A在B上滑行后,A开始做减速运动,B做加速运动(设B车足够长),则B车速度达到最大时,应出现在()图11A.A的速度最小时B.A、B速度相等时C.A在B上相对静止时D.B车开始做匀速直线运动时4. 如图12所示,在质量为M的小车上挂有一单摆,摆球的质量为m0,小车和摆球以恒定的速度v沿光滑水平地面运动,与位于正对面的质量为m的静止木块发生碰撞,碰撞的时间极短,在此碰撞过程中,下列可能发生的情况是() 图12A.小车、木块、摆球的速度都发生变化,分别变为v1、v2、v3,满足(M+m0)v=M v1+m v2+m0v3B.摆球的速度不变,小车和木块的速度分别变为v1、v2,有M v=M v1+m v2C.摆球的速度不变,小车和木块的速度都变为v′,有M v=(M+m)v′D.小车和摆球速度都变为v1,木块的速度变为v2,有(M+m0)v=(M+m0)v1+m v25. 如图13所示,小车放在光滑的水平面上,将系着绳的小球拉开一定的角度,然后同时放开小球和小车,那么在以后的过程中( ) 图13A .小球向左摆动时,小车也向左运动,且系统动量守恒B .小球向左摆动时,小车向右运动,且系统动量守恒C .小球向左摆到最高点,小球的速度为零而小车的速度不为零D .在任意时刻,小球和小车在水平方向上的动量一定大小相等、方向相反6. 如图14所示,小车放在光滑水平面上,A 、B 两人站在车的两端,这两人同时开始相向行走,发现车向左运动,分析小车运动的原因可能是( ) 图14A .A 、B 质量相等,但A 比B 速率大 B .A 、B 质量相等,但A 比B 速率小C .A 、B 速率相等,但A 比B 的质量大D .A 、B 速率相等,但A 比B 的质量小 题组二 多物体多过程动量守恒定律的应用7.一弹簧枪对准以6 m/s 的速度沿光滑桌面迎面滑来的木块发射一颗铅弹,射出速度为10 m/s ,铅弹射入木块后未穿出,木块继续向前运动,速度变为5 m/s.如果想让木块停止运动,并假定铅弹射入木块后都不会穿出,则应再向木块迎面射入的铅弹数为( )A .5颗B .6颗C .7颗D .8颗8. 如图15所示,一轻质弹簧两端连着物体A 和B ,放在光滑的水平面上,物体A 被水平速度为v 0的子弹射中并且子弹嵌在其中.已知物体A的质量m A 是物体B 的质量m B 的34,子弹的质量m 是物体B 的质量的14,求弹簧压缩到最短时B 的速度. 图159. 如图16所示,在光滑水平面上有两个木块A、B,木块B左端放置小物块C并保持静止,已知m A=m B=0.2 kg,m C=0.1kg,现木块A以初速度v=2 m/s沿水平方向向右滑动,木块A与B相度(但不粘连),C与A、B间均有摩擦.求:图16(1)木块A与B相碰瞬间A木块及小物块C的速度大小;(2)设木块A足够长,求小物块C的最终速度.题组三综合应用10.以初速度v0与水平方向成60°角斜向上抛出的手榴弹,到达最高点时炸成质量分别是m和2m的两块.其中质量大的一块沿着原来的方向以2v0的速度飞行.求质量较小的另一块弹片速度的大小和方向.11.如图17所示,质量分别为m1和m2的两个等半径小球,在光滑的水平面上分别以速度v1、v2向右运动,并发生对心正碰,碰后m2被墙弹回,与墙碰撞过程中无能量损失,m2返回后又与m1相向碰撞,碰后两球都静止,求第一次碰后m1球的速度.图1712.质量为M=2 kg的小平板车静止在光滑水平面上,车的一端静止着质量为m A=2 kg的物体A(可视为质点),如图18所示,一颗质量为m B=20 g的子弹以600 m/s的水平速度射穿A后,速度变为100 m/s,最后物体A相对车静止,若物体A与小车间的动摩擦因数μ=0.5,取g=10 m/s2,求平板车最后的速度是多大.图1813.光滑水平轨道上有三个木块A、B、C,质量分别为m A=3m、m B=m C=m,开始时B、C均静止,A以初速度v0向右运动,A与B碰撞后分开,B又与C发生碰撞并粘在一起,此后A与B间的距离保持不变.求B与C碰撞前B的速度大小.图1914.如图20所示,滑块A、C的质量均为m,滑块B的质量为32m.开始时A、B分别以v1、v2的速度沿光滑水平轨道向固定在右侧的挡板运动,现将C无初速地放在A上,并与A粘合不再分开,此时A与B相距较近,B与挡板相距足够远.若B与挡板碰撞将以原速率反弹,A与B碰撞将粘合在一起.为使B能与挡板碰撞两次,v1、v2应满足什么关系?图201、C2、BC 3.ABCD 4.BC5. BD6. AC7. D弹木块停止,有(m 1+m 2)v 1-nm 2v =0,解得n =8.8.答案 v 08解析 弹簧压缩到最短时,子弹、A 、B 具有共同的速度v 1,且子弹、A 、B 组成的系统,从子弹开始射入物体A 一直到弹簧被压缩到最短的过程中,系统所受外力(重力、支持力)之和始终为零,故整个过程系统的动量守恒,由动量守恒定律得m v 0=(m +m A +m B )v 1,又m =14m B ,m A =34m B ,故v 1=m v 0m +m A +m B =v 08, 即弹簧压缩到最短时B 的速度为v 08.9.答案 (1)1 m/s 0(2)23 m/s 方向水平向右解析 (1)木块A 与B 相碰瞬间C 的速度为0,A 、B 木块的速度相同,由动量守恒定律得m A v =(m A +m B )v A ,v A =v 2=1 m/s.(2)C 滑上A 后,摩擦力使C 加速,使A 减速,直至A 、C 具有共同速度,以A 、C 整体为系统,由动量守恒定律得m A v A =(m A +m C )v C ,v C =23 m/s ,方向水平向右.10.答案 2.5v 0 与爆炸前速度方向相反解析 手榴弹爆炸过程中,爆炸产生的作用力是内力,远大于重力,因此爆炸过程中各弹片组成的系统动量守恒.斜抛的手榴弹在水平方向上做匀速直线运动,在最高点处爆炸前的速度v 1=v 0cos 60°=12v 0.设v 1的方向为正方向,如图所示,由动量守恒定律得3m v 1=2m v 1′+m v 2.其中爆炸后大块弹片的速度v 1′=2v 0,小块弹片的速度v 2为待求量,解得v 2=-2.5v 0,“-”号表示v 2的速度方向与爆炸前速度方向相反.11.答案 m 1v 1+m 2v 22m 1方向向右解析 设m 1、m 2碰后的速度大小分别为v 1′、v 2′,则由动量守恒定律知m 1v 1+m 2v 2=m 1v 1′+m 2v 2′m 1v 1′-m 2v 2′=0,解得v 1′=m 1v 1+m 2v 22m 1,方向向右. 12.答案 2.5 m/s 解析 子弹击穿A 后,A 在水平方向上获得一个速度v A ,最后当A 相对车静止时,它们的共同速度为v .子弹射穿A 的过程极短,因此车对A 的摩擦力、子弹的重力作用可略去,即认为子弹和A 组成的系统水平方向动量守恒,同时,由于作用时间极短,可认为A 的位置没有发生变化,设子弹击穿A 后的速度为v ′,由动量守恒定律有m B v 0=m B v ′+m A v A ,得v A =m B (v 0-v ′)m A =0.02×(600-100)2m/s =5 m/s A 获得速度v A 相对车滑动,由于A 与车间有摩擦,最后A 相对车静止,以共同速度v 运动,对于A 与车组成的系统,水平方向动量守恒,因此有:m A v A =(m A +M )v ,所以v =m A v Am A +M =2×52+2 m/s =2.5 m/s. 13.答案 65v 0解析 设A 与B 碰撞后,A 的速度为v A ,B 与C 碰撞前B 的速度为v B ,B 与C 碰撞后粘在一起的速度为v ,由动量守恒定律得对A 、B 木块:m A v 0=m A v A +m B v B①对B 、C 木块:m B v B =(m B +m C )v②由A 与B 间的距离保持不变可知v A =v③。

高中物理动量守恒定律的应用解题技巧及经典题型及练习题(含答案)及解析

高中物理动量守恒定律的应用解题技巧及经典题型及练习题(含答案)及解析
8.如图所示,质量为m=0.5kg的小球用长为r=0.4m的细绳悬挂于O点,在O点的正下方有一个质量为m1=1.0kg的小滑块,小滑块放在一块静止在光滑水平面上、质量为m2=1.0kg的木板左端.现将小球向左上方拉至细绳与竖直方向夹角θ=60°的位置由静止释放,小球摆到最低点与小滑块发生正碰并被反弹,碰撞时间极短,碰后瞬间细绳对小球的拉力比碰前瞬间的减小了△T=4.8N,而小滑块恰好不会从木板上掉下.已知小滑块与木板之间的动摩擦因数为μ=0.12,不计空气阻力,重力加速度g取10m/s2.求:
4.在游乐场中,父子两人各自乘坐的碰碰车沿同一直线相向而行,在碰前瞬间双方都关闭了动力,此时父亲的速度大小为v,儿子的速度大小为2v.两车瞬间碰撞后儿子沿反方向滑行,父亲运动的方向不变且经过时间t停止运动.已知父亲和车的总质量为3m,儿子和车的总质量为m,两车与地面之间的动摩擦因数均为μ,重力加速度大小为g,求:
(2)根据能量守恒定律和牛顿第二定律结合求解圆弧轨道的半径R;
(3)根据动量守恒定律和能量关系求解恰好能共速的临界摩擦力因数的值,然后讨论求解热量Q.
【详解】
(1)设弹簧恢复到自然长度时A、B的速度分别为vA、vB,由动量守恒定律: 由能量关系:
解得vA=2m/s;vB=4m/s
(2)设B经过d点时速度为vd,在d点:
v′= 0.4m/s
(2)小球与小滑块碰撞过程,动量守恒
mv= -mv′+m1v1
v1= (v+v′) = 1.2m/s
小滑块在木板上滑动过程中,动量守恒
m1v1=(m1+m2)v2
v2= v1= 0.6m/s
由能量守恒可得
μm1gL= m1v12- (m1+m2)v22

第十六章 专题 动量和能量的综合应用

第十六章  专题 动量和能量的综合应用

第16章 动量守恒定律 专题 动量和能量的综合应用题型一 滑块—木板模型例1.如图所示,B 是放在光滑的水平面上质量为3m 的一块木板,物块A (可看成质点)质量为m ,与木板间的动摩擦因数为μ.最初木板B 静止,物块A 以水平初速度v 0滑上长木板,木板足够长.求:(重力加速度为g )(1)木板B 的最大速度是多少?(2)木块A 从刚开始运动到A 、B 速度刚好相等的过程中,木块A 所发生的位移是多少?(3)若物块A 恰好没滑离木板B ,则木板至少多长?练习1.如图所示,质量为M 、长为L 的长木板放在光滑水平面上,一个质量也为M 的物块(视为质点)以一定的初速度从左端冲上长木板,如果长木板是固定的,物块恰好停在长木板的右端,如果长木板不固定,则物块冲上长木板后在长木板上最多能滑行的距离为( )A .L B.3L 4C.L 4D.L 2【小结】:1.把滑块、木板看做一个整体,摩擦力为内力,在光滑水平面上滑块和木板组成的系统动量守恒.2.由于摩擦生热,机械能转化为内能,系统机械能不守恒,应由能量守恒求解问题.3.注意:若滑块不滑离木板,就意味着二者最终具有共同速度,机械能损失最多.班级: 姓名:题型二子弹打木块模型例2.如图所示,在水平地面上放置一质量为M的木块,一质量为m的子弹以水平速度v射入木块(未穿出),若木块与地面间的动摩擦因数为μ,求:(重力加速度为g)(1)射入的过程中,系统损失的机械能;(2)子弹射入后,木块在地面上前进的距离.练习2.矩形滑块由不同材料的上、下两层粘合在一起组成,将其放在光滑的水平面上,质量为m的子弹以速度v0水平射向滑块,若射击下层,子弹刚好不射出,若射击上层,则子弹刚好能射穿一半厚度,如图所示,则上述两种情况相比较,下列说法不正确的是()A.子弹的末速度大小相等B.系统产生的热量一样多C.子弹对滑块做的功相同D.子弹和滑块间的水平作用力一样大【小结】:1.子弹打木块的过程很短暂,认为该过程内力远大于外力,则系统动量守恒.2.在子弹打木块过程中摩擦生热,系统机械能不守恒,机械能向内能转化.3.若子弹不穿出木块,二者最后有共同速度,机械能损失最多.题型三 弹簧类模型例3.两块质量都是m 的木块A 和B 在光滑水平面上均以速度v 02向左匀速运动,中间用一根劲度系数为k 的水平轻弹簧连接,如图3所示.现从水平方向迎面射来一颗子弹,质量为m 4,速度为v 0,子弹射入木块A 并留在其中.求:(1)在子弹击中木块后的瞬间木块A 、B 的速度v A 和v B 的大小.(2)在子弹击中木块后的运动过程中弹簧的最大弹性势能.练习3.如图所示,与水平轻弹簧相连的物体A 停放在光滑的水平面上,物体B 沿水平方向向右运动,跟与A 相连的轻弹簧相碰.在B 跟弹簧相碰后,对于A 、B 和轻弹簧组成的系统,下列说法中正确的是( )A .弹簧压缩量最大时,A 、B 的速度相同B .弹簧压缩量最大时,A 、B 的动能之和最小C .弹簧被压缩的过程中系统的总动量不断减少D .物体A 的速度最大时,弹簧的弹性势能为零【小结】:1.对于弹簧类问题,在作用过程中,若系统合外力为零,则满足动量守恒.2.整个过程往往涉及到多种形式的能的转化,如:弹性势能、动能、内能、重力势能的转化,应用能量守恒定律解决此类问题.3.注意:弹簧压缩最短或弹簧拉伸最长时,弹簧连接的两物体速度相等,此时弹簧弹性势能最大.例4.(动量与能量的综合应用)如图所示,固定的光滑圆弧面与质量为6 kg的小车C的上表面平滑相接,在圆弧面上有一个质量为2 kg的滑块A,在小车C的左端有一个质量为2 kg的滑块B,滑块A与B均可看做质点.现使滑块A从距小车的上表面高h=1.25 m处由静止下滑,与B碰撞后瞬间粘合在一起共同运动,最终没有从小车C上滑出.已知滑块A、B与小车C间的动摩擦因数均为μ=0.5,小车C与水平地面间的摩擦忽略不计,取g=10 m/s2.求:(1)滑块A与B碰撞后瞬间的共同速度的大小;(2)小车C上表面的最短长度.第16章 动量守恒定律专题 动量和能量的综合应用课后练习(一)1.如图所示,在光滑水平面上,有一质量M =3 kg 的薄板和质量m =1 kg 的物块都以v =4 m/s 的初速度相向运动,它们之间有摩擦,薄板足够长,当薄板的速度为2.9 m/s 时,物块的运动情况是( )A .做减速运动B .做加速运动C .做匀速运动D .以上运动都有可能2.质量为M 、内壁间距为L 的箱子静止于光滑的水平面上,箱子中间有一质量为m 的小物块,小物块与箱子底板间的动摩擦因数为μ,初始时小物块停在箱子正中间,如图所示.现给小物块一水平向右的初速度v ,小物块与箱壁碰撞N 次后恰又回到箱子正中间,并与箱子保持相对静止.设碰撞都是弹性的,则整个过程中,系统损失的动能为( )A.12m v 2 B .μmgLC.12NμmgLD.mM v 22(m +M )3.用不可伸长的细线悬挂一质量为M 的小木块,木块静止,如图4所示.现有一质量为m 的子弹自左方水平射向木块,并停留在木块中,子弹初速度为v 0,重力加速度为g ,则下列说法正确的是( )A .从子弹射向木块到一起上升到最高点的过程中系统的机械能守恒B .子弹射入木块瞬间动量守恒,故子弹射入木块瞬间子弹和木块的共同速度为m v 0M +mC .忽略空气阻力,子弹和木块一起上升过程中系统机械能守恒,其机械能等于子弹射入木块前的动能D .子弹和木块一起上升的最大高度为m 2v 022g (M +m )24.如图所示,静止在光滑水平面上的木板,质量M =2 kg ,右端有一根轻质弹簧沿水平方向与木板相连,质量m =1 kg 的铁块以水平速度v 0=6 m/s ,从木板的左端沿板面向右滑行,压缩弹簧又被弹回,最后恰好停在木板的左端.在上述过程中弹簧具有的最大弹性势能为( )A .3 JB .4 JC .12 JD . 6 J班级: 姓名:5.如图所示,水平轻质弹簧的一端固定在墙上,另一端与质量为m 的物体A 相连,A 放在光滑水平面上,有一质量与A 相同的物体B ,从离水平面高h 处由静止开始沿固定光滑曲面滑下,与A 相碰后一起将弹簧压缩,弹簧复原过程中某时刻B 与A 分开且沿原曲面上升.下列说法正确的是(重力加速度为g )( )A .弹簧被压缩时所具有的最大弹性势能为mghB .弹簧被压缩时所具有的最大弹性势能为mgh 2C .B 与A 分开后能达到的最大高度为h 4D .B 与A 分开后能达到的最大高度不能计算6.如图所示,光滑水平面上一质量为M 、长为L 的木板右端紧靠竖直墙壁.质量为m 的小滑块(可视为质点)以水平速度v 0滑上木板的左端,滑到木板的右端时速度恰好为零.(1)求小滑块与木板间的摩擦力大小;(2)现小滑块以某一速度v 滑上木板的左端,滑到木板的右端时与竖直墙壁发生弹性碰撞,然后向左运动,刚好能够滑到木板左端而不从木板上落下,试求v v 0的值.动量守恒定律专题 动量和能量的综合应用课后练习(二)1.如图,质量为M =0.2 kg 的长木板静止在光滑的水平地面上,现有一质量为m =0.2 kg 的滑块(可视为质点)以v 0=1.2 m/s 的速度滑上长木板的左端,小滑块与长木板间的动摩擦因数=0.4,小滑块刚好没有滑离长木板,求:(g 取10 m/s 2)(1)小滑块的最终速度大小;(2)在整个过程中,系统产生的热量;(3)以地面为参照物,小滑块滑行的距离为多少?2.两物块A 、B 用水平轻弹簧相连,质量均为2 kg ,初始时弹簧处于原长,A 、B 两物块都以v =6 m/s 的速度在光滑的水平地面上运动,质量为4 kg 的物块C 静止在前方,如图所示.B 与C 碰撞后二者会粘在一起运动.则在以后的运动中:(1)当弹簧的弹性势能最大时,物块A 的速度为多大?(2)系统中弹性势能的最大值是多少?班级: 姓名:3.如图所示,物体A置于静止在光滑水平面上的平板小车B的左端,在A的上方O点用不可伸长的细线悬挂一小球C(可视为质点),线长L=0.8 m.现将小球C拉至水平(细线绷直)无初速度释放,并在最低点与A物体发生水平正碰,碰撞后小球C反弹的最大高度为h=0.2 m.已知A、B、C的质量分别为m A=4 kg、m B=8 kg和m C=1 kg,A、B间的动摩擦因数μ=0.2,A、C碰撞时间极短,且只碰一次,取重力加速度g =10 m/s2.(1)求小球C与物体A碰撞前瞬间受到细线的拉力大小;(2)求A、C碰撞后瞬间A的速度大小;(3)若物体A未从小车B上掉落,则小车B的最小长度为多少?4.如图所示,质量m B=2 kg的平板车B上表面水平,在平板车左端相对于车静止着一块质量m A=2 kg 的物块A,A、B一起以大小为v1=0.5 m/s的速度向左运动,一颗质量m0=0.01 kg的子弹以大小为v0=600 m/s的水平初速度向右瞬间射穿A后,速度变为v=200 m/s .已知A与B之间的动摩擦因数不为零,且A 与B最终达到相对静止时A刚好停在B的右端,车长L=1 m,g=10 m/s2,求:(1)A、B间的动摩擦因数;(2)整个过程中因摩擦产生的热量为多少?微型专题 动量和能量的综合应用[学习目标] 1.进一步熟练掌握动量守恒定律的应用.2.综合应用动量和能量观点解决力学问题.一、滑块—木板模型1.把滑块、木板看做一个整体,摩擦力为内力,在光滑水平面上滑块和木板组成的系统动量守恒.2.由于摩擦生热,机械能转化为内能,系统机械能不守恒,应由能量守恒求解问题.3.注意:若滑块不滑离木板,就意味着二者最终具有共同速度,机械能损失最多.例1 如图1所示,B 是放在光滑的水平面上质量为3m 的一块木板,物块A (可看成质点)质量为m ,与木板间的动摩擦因数为μ.最初木板B 静止,物块A 以水平初速度v 0滑上长木板,木板足够长.求:(重力加速度为g )图1(1)木板B 的最大速度是多少?(2)木块A 从刚开始运动到A 、B 速度刚好相等的过程中,木块A 所发生的位移是多少?(3)若物块A 恰好没滑离木板B ,则木板至少多长?答案 (1)v 04 (2)15v 0232μg (3)3v 028μg解析 (1)由题意知,A 向右减速,B 向右加速,当A 、B 速度相等时B 速度最大.以v 0的方向为正方向,根据动量守恒定律:m v 0=(m +3m )v ①得:v =v 04② (2)A 向右减速的过程,根据动能定理有-μmgx 1=12m v 2-12m v 02③ 则木块A 所发生的位移为x 1=15v 0232μg④ (3)方法一:B 向右加速过程的位移设为x 2.则μmgx 2=12×3m v 2⑤ 由⑤得:x 2=3v 0232μg木板的最小长度:L =x 1-x 2=3v 028μg方法二:从A 滑上B 至达到共同速度的过程中,由能量守恒得:μmgL =12m v 02-12(m +3m )v 2 得:L =3v 028μg. 二、子弹打木块模型1.子弹打木块的过程很短暂,认为该过程内力远大于外力,则系统动量守恒.2.在子弹打木块过程中摩擦生热,系统机械能不守恒,机械能向内能转化.3.若子弹不穿出木块,二者最后有共同速度,机械能损失最多.例2 如图2所示,在水平地面上放置一质量为M 的木块,一质量为m 的子弹以水平速度v 射入木块(未穿出),若木块与地面间的动摩擦因数为μ,求:(重力加速度为g )图2(1)射入的过程中,系统损失的机械能;(2)子弹射入后,木块在地面上前进的距离.答案 (1)Mm v 22(M +m )(2)m 2v 22(M +m )2μg解析 因子弹未射出,故碰撞后子弹与木块的速度相同,而系统损失的机械能为初、末状态系统的动能之差.(1)设子弹射入木块后,二者的共同速度为v ′,取子弹的初速度方向为正方向,则由动量守恒得:m v =(M +m )v ′①射入过程中系统损失的机械能ΔE =12m v 2-12(M +m )v ′2② 解得:ΔE =Mm v 22(M +m ). (2)子弹射入木块后二者一起沿地面滑行,设滑行的距离为x ,由动能定理得:-μ(M +m )gx =0-12(M +m )v ′2③ 由①③两式解得:x =m 2v 22(M +m )2μg.子弹打木块模型与滑块—木板模型类似,都是通过系统内的滑动摩擦力相互作用,系统动量守恒.当子弹不穿出木块时,相当于完全非弹性碰撞,机械能损失最多. 三、弹簧类模型1.对于弹簧类问题,在作用过程中,若系统合外力为零,则满足动量守恒.2.整个过程往往涉及到多种形式的能的转化,如:弹性势能、动能、内能、重力势能的转化,应用能量守恒定律解决此类问题.3.注意:弹簧压缩最短或弹簧拉伸最长时,弹簧连接的两物体速度相等,此时弹簧弹性势能最大. 例3 两块质量都是m 的木块A 和B 在光滑水平面上均以速度v 02向左匀速运动,中间用一根劲度系数为k的水平轻弹簧连接,如图3所示.现从水平方向迎面射来一颗子弹,质量为m4,速度为v 0,子弹射入木块A 并留在其中.求:图3(1)在子弹击中木块后的瞬间木块A 、B 的速度v A 和v B 的大小. (2)在子弹击中木块后的运动过程中弹簧的最大弹性势能. 答案 (1)v 05 v 02 (2)140m v 02解析 (1)在子弹打入木块A 的瞬间,由于相互作用时间极短,弹簧来不及发生形变,A 、B 都不受弹簧弹力的作用,故v B =v 02;由于此时A 不受弹簧的弹力,木块A 和子弹构成的系统在这极短过程中所受合外力为零,系统动量守恒,选向左为正方向,由动量守恒定律得: m v 02-m v 04=(m4+m )v A 解得v A =v 05(2)由于子弹击中木块A 后木块A 、木块B 运动方向相同且v A <v B ,故弹簧开始被压缩,分别给A 、B 木块施以弹力,使得木块A 加速、B 减速运动,弹簧不断被压缩,弹性势能增大,直到二者速度相等时弹簧弹性势能最大,在弹簧压缩过程木块A (包括子弹)、B 与弹簧构成的系统动量守恒,机械能守恒. 设弹簧压缩量最大时共同速度为v ,弹簧的最大弹性势能为E pm , 选向左为正方向,由动量守恒定律得:54m v A +m v B =(54m +m )v 由机械能守恒定律得:12×54m v A 2+12m v B 2=12×(54m +m )v 2+E pm 联立解得v =13v 0,E pm =140m v 02.1.(滑块—木板模型)如图4所示,质量为M 、长为L 的长木板放在光滑水平面上,一个质量也为M 的物块(视为质点)以一定的初速度从左端冲上长木板,如果长木板是固定的,物块恰好停在长木板的右端,如果长木板不固定,则物块冲上长木板后在长木板上最多能滑行的距离为( )图4A .L B.3L 4 C.L 4 D.L2答案 D解析 长木板固定时,由动能定理得:-μMgL =0-12M v 02,若长木板不固定,以物块初速度的方向为正方向,有M v 0=2M v ,μMgs =12M v 02-12×2M v 2,得s =L2,D 项正确,A 、B 、C 项错误.2.(子弹打木块模型)矩形滑块由不同材料的上、下两层粘合在一起组成,将其放在光滑的水平面上,质量为m 的子弹以速度v 0水平射向滑块,若射击下层,子弹刚好不射出,若射击上层,则子弹刚好能射穿一半厚度,如图5所示,则上述两种情况相比较,下列说法不正确的是( )图5A .子弹的末速度大小相等B .系统产生的热量一样多C .子弹对滑块做的功相同D .子弹和滑块间的水平作用力一样大 答案 D解析 设子弹的质量是m ,初速度是v 0,滑块的质量是M ,选择子弹初速度的方向为正方向,由动量守恒定律知滑块获得的最终速度(最后滑块和子弹的共同速度)为v.则:m v0=(m+M)v所以:v=m v0M+m可知两种情况下子弹的末速度是相同的,故A正确;子弹嵌入下层或上层过程中,系统产生的热量都等于系统减少的动能,而子弹减少的动能一样多(子弹初、末速度相等),滑块增加的动能也一样多,则系统减少的动能一样,故系统产生的热量一样多,故B正确;滑块的末速度是相等的,所以获得的动能是相同的,根据动能定理,滑块动能的增量是子弹做功的结果,所以两次子弹对滑块做的功一样多,故C正确;子弹嵌入下层或上层过程中,系统产生的热量都等于系统减少的动能,Q=F f·x相对,由于两种情况相比较子弹能射穿的厚度不相等,即相对位移x相对不相等,所以两种情况下子弹和滑块间的水平作用力不一样大,故D错误.3.(弹簧类模型)(多选)如图6所示,与水平轻弹簧相连的物体A停放在光滑的水平面上,物体B沿水平方向向右运动,跟与A相连的轻弹簧相碰.在B跟弹簧相碰后,对于A、B和轻弹簧组成的系统,下列说法中正确的是()图6A.弹簧压缩量最大时,A、B的速度相同B.弹簧压缩量最大时,A、B的动能之和最小C.弹簧被压缩的过程中系统的总动量不断减少D.物体A的速度最大时,弹簧的弹性势能为零答案ABD解析物体B与弹簧接触时,弹簧发生形变,产生弹力,可知B做减速运动,A做加速运动,当两者速度相等时,弹簧的压缩量最大,故A正确.A、B和弹簧组成的系统动量守恒,压缩量最大时,弹性势能最大,根据能量守恒,此时A、B的动能之和最小,故B正确.弹簧在压缩的过程中,A、B和弹簧组成的系统动量守恒,故C错误.当两者速度相等时,弹簧的压缩量最大,然后A继续加速,B继续减速,弹簧逐渐恢复原长,当弹簧恢复原长时,A的速度最大,此时弹簧的弹性势能为零,故D正确.4.(动量与能量的综合应用)如图7所示,固定的光滑圆弧面与质量为6 kg的小车C的上表面平滑相接,在圆弧面上有一个质量为2 kg的滑块A,在小车C的左端有一个质量为2 kg的滑块B,滑块A与B均可看做质点.现使滑块A从距小车的上表面高h=1.25 m处由静止下滑,与B碰撞后瞬间粘合在一起共同运动,最终没有从小车C上滑出.已知滑块A、B与小车C间的动摩擦因数均为μ=0.5,小车C与水平地面间的摩擦忽略不计,取g=10 m/s2.求:图7(1)滑块A 与B 碰撞后瞬间的共同速度的大小; (2)小车C 上表面的最短长度. 答案 (1)2.5 m/s (2)0.375 m解析 (1)设滑块A 滑到圆弧末端时的速度大小为v 1,由机械能守恒定律得:m A gh =12m A v 12①代入数据解得v 1=2gh =5 m/s ②设A 、B 碰后瞬间的共同速度为v 2,滑块A 与B 碰撞瞬间与车C 无关,滑块A 与B 组成的系统动量守恒,以向右的方向为正方向, m A v 1=(m A +m B )v 2③ 代入数据解得v 2=2.5 m/s ④(2)设小车C 上表面的最短长度为L ,滑块A 与B 最终恰好没有从小车C 上滑出,三者最终速度相同设为v 3,以向右的方向为正方向 根据动量守恒定律有: (m A +m B )v 2=(m A +m B +m C )v 3⑤ 根据能量守恒定律有:μ(m A +m B )gL =12(m A +m B )v 22-12(m A +m B +m C )v 32⑥联立⑤⑥式代入数据解得L =0.375 m.一、选择题考点一 滑块-木板模型1.如图1所示,在光滑水平面上,有一质量M =3 kg 的薄板和质量m =1 kg 的物块都以v =4 m/s 的初速度相向运动,它们之间有摩擦,薄板足够长,当薄板的速度为2.9 m/s 时,物块的运动情况是( )图1A .做减速运动B .做加速运动C .做匀速运动D .以上运动都有可能答案 A解析 开始阶段,物块向左减速,薄板向右减速,当物块的速度为零时,设此时薄板的速度为v 1,规定向右为正方向,根据动量守恒定律得:(M -m )v =M v 1代入数据解得:v 1≈2.67 m/s <2.9 m/s ,所以物块处于向左减速的过程中.2.质量为M 、内壁间距为L 的箱子静止于光滑的水平面上,箱子中间有一质量为m 的小物块,小物块与箱子底板间的动摩擦因数为μ,初始时小物块停在箱子正中间,如图2所示.现给小物块一水平向右的初速度v ,小物块与箱壁碰撞N 次后恰又回到箱子正中间,并与箱子保持相对静止.设碰撞都是弹性的,则整个过程中,系统损失的动能为( )图2A.12m v 2 B .μmgL C.12NμmgL D.mM v 22(m +M )答案 D解析 由于箱子M 放在光滑的水平面上,则由箱子和小物块组成的整体动量始终是守恒的,直到箱子和小物块的速度相同时,小物块与箱子之间不再发生相对滑动,以v 的方向为正方向,有m v =(m +M )v 1 系统损失的动能是因为摩擦力做负功ΔE k =-W f =μmg ·NL =12m v 2-12(M +m )v 12=mM v 22(m +M ),故D 正确,A 、B 、C 错误.考点二 子弹打木块模型3.如图3所示,木块静止在光滑水平桌面上,一子弹水平射入木块的深度为d 时,子弹与木块相对静止,在子弹入射的过程中,木块沿桌面移动的距离为L ,木块对子弹的平均阻力为F f ,那么在这一过程中下列说法不正确的是( )图3A .木块的机械能增量为F f LB .子弹的机械能减少量为F f (L +d )C .系统的机械能减少量为F f dD .系统的机械能减少量为F f (L +d )答案 D解析子弹对木块的作用力大小为F f,木块相对于桌面的位移为L,则子弹对木块做功为F f L,根据动能定理得知,木块动能的增加量,即机械能的增量等于子弹对木块做的功,即为F f L.故A正确.木块对子弹的阻力做功为-F f(L+d),根据动能定理得知:子弹动能的减少量,即机械能的减少量等于子弹克服阻力做功,大小为F f(L+d),故B正确.子弹相对于木块的位移大小为d,则系统克服阻力做功为F f d,根据功能关系可知,系统机械能的减少量为F f d,故C正确,D错误.4.(多选)用不可伸长的细线悬挂一质量为M的小木块,木块静止,如图4所示.现有一质量为m的子弹自左方水平射向木块,并停留在木块中,子弹初速度为v0,重力加速度为g,则下列说法正确的是()图4A.从子弹射向木块到一起上升到最高点的过程中系统的机械能守恒B.子弹射入木块瞬间动量守恒,故子弹射入木块瞬间子弹和木块的共同速度为m v0M+mC.忽略空气阻力,子弹和木块一起上升过程中系统机械能守恒,其机械能等于子弹射入木块前的动能D.子弹和木块一起上升的最大高度为m2v022g(M+m)2答案BD解析从子弹射向木块到一起运动到最高点的过程可以分为两个阶段:子弹射入木块的瞬间系统动量守恒,但机械能不守恒,有部分机械能转化为系统内能,之后子弹在木块中与木块一起上升,该过程只有重力做功,机械能守恒但总能量小于子弹射入木块前的动能,故A、C错误;规定向右为正方向,由于弹簧射入木块瞬间系统动量守恒可知:m v0=(m+M)v′所以子弹射入木块后的共同速度为:v′=m v0M+m,故B正确;之后子弹和木块一起上升,该阶段根据机械能守恒得:12(M+m)v′2=(M+m)gh,可得上升的最大高度为:h=m2v022g(M+m)2,故D正确.考点三弹簧类模型5.如图5所示,位于光滑水平桌面上的小滑块P和Q质量相等,都可视作质点.Q与水平轻质弹簧相连.设Q静止,P以某一初速度向Q运动并与弹簧发生碰撞.在整个碰撞过程中,弹簧具有的最大弹性势能等于( )图5A .P 的初动能B .P 的初动能的12C .P 的初动能的13D .P 的初动能的14答案 B解析 把小滑块P 和Q 以及弹簧看成一个系统,系统的动量守恒.在整个碰撞过程中,当小滑块P 和Q 的速度相等时,弹簧的弹性势能最大.设小滑块P 的初速度为v 0,两滑块的质量均为m ,以v 0的方向为正方向,则m v 0=2m v ,v =v 02所以弹簧具有的最大弹性势能E pm =12m v 02-12×2m v 2=14m v 02=12E k0,故B 正确.6.如图6所示,静止在光滑水平面上的木板,质量M =2 kg ,右端有一根轻质弹簧沿水平方向与木板相连,质量m =1 kg 的铁块以水平速度v 0=6 m/s ,从木板的左端沿板面向右滑行,压缩弹簧又被弹回,最后恰好停在木板的左端.在上述过程中弹簧具有的最大弹性势能为( )图6A .3 JB .4 JC .12 JD .6 J 答案 D7.(多选)如图7所示,水平轻质弹簧的一端固定在墙上,另一端与质量为m 的物体A 相连,A 放在光滑水平面上,有一质量与A 相同的物体B ,从离水平面高h 处由静止开始沿固定光滑曲面滑下,与A 相碰后一起将弹簧压缩,弹簧复原过程中某时刻B 与A 分开且沿原曲面上升.下列说法正确的是(重力加速度为g )( )图7A .弹簧被压缩时所具有的最大弹性势能为mghB .弹簧被压缩时所具有的最大弹性势能为mgh2C .B 与A 分开后能达到的最大高度为h4D .B 与A 分开后能达到的最大高度不能计算答案 BC解析 根据机械能守恒定律可得B 刚到达水平面的速度v 0=2gh ,根据动量守恒定律可得A 与B 碰撞后的速度为v =12v 0,所以弹簧被压缩时所具有的最大弹性势能为E pm =12×2m v 2=12mgh ,即A 错误,B 正确;当弹簧再次恢复原长时,A 与B 分开,B 以大小为v 的速度向左沿曲面上滑,根据机械能守恒定律可得mgh ′=12m v 2,B 能达到的最大高度为h ′=14h ,即C 正确,D 错误. 二、非选择题8.(滑块—木板模型)如图8,质量为M =0.2 kg 的长木板静止在光滑的水平地面上,现有一质量为m =0.2 kg 的滑块(可视为质点)以v 0=1.2 m/s 的速度滑上长木板的左端,小滑块与长木板间的动摩擦因数=0.4,小滑块刚好没有滑离长木板,求:(g 取10 m/s 2)图8(1)小滑块的最终速度大小; (2)在整个过程中,系统产生的热量;(3)以地面为参照物,小滑块滑行的距离为多少? 答案 (1)0.6 m/s (2)0.072 J (3)0.135 m 解析 (1)小滑块与长木板组成的系统动量守恒, 规定向右为正方向,由动量守恒定律得: m v 0=(m +M )v 解得最终速度为:v =m v 0M +m =0.2×1.20.2+0.2 m/s =0.6 m/s (2)由能量守恒定律得: 12m v 02=12(m +M )v 2+Q 代入数据解得热量为:Q =0.072 J (3)对小滑块应用动能定理: -μmgs =12m v 2-12m v 02代入数据解得距离为s =0.135 m.9.(子弹打木块模型)如图9所示,质量m B =2 kg 的平板车B 上表面水平,在平板车左端相对于车静止着一块质量m A =2 kg 的物块A ,A 、B 一起以大小为v 1=0.5 m/s 的速度向左运动,一颗质量m 0=0.01 kg 的。

16.3练习 动量守恒定律的应用

16.3练习  动量守恒定律的应用

到的合外力等于零,由动量守恒定律得:
m V0= m V1+M V2 ①
要使滑块刚好不从木板上滑出,
则必须满足: V1= V2 ②
根据能量守恒定律得:
1 2
mv02
1 (m 2
M )v12
mgL

联立以上三式代入数据得:L=0.8m
即木板长度至少为0.8m。
针对练习
• 静止在光滑水平面上质量为M的木块, 一颗质量为m的子弹从木块的左端以v0 打进。设子弹在打穿木块的过程中受到 大小恒为Ff的阻力,子弹刚好从木块的 右端打出,木块的长度多大?
1 mv2 2
1 (m 2
M )v12
mgH

联立以上二式可得小球能滑至弧形槽内的最大
高度
H
Mv2
2m M
g
小结:
• 解决临界问题,一般有两种方法:
• 第一是以定理、定律为依据,首先求出 所研究问题的一般规律和一般解的形式, 然后再分析、讨论临界特殊规律和特殊 解;
• 第二是直接分析、讨论临界状态,找出 临界条件,从而通过临界条件求出临界 值。
V
【思路点拨】
由临界条件知,小球到达最高点时, 小球在竖直方向的分速度等于零,小球 和小车在水平方向应具有相同的速度。
解(1)小球到达最高点时,小球在竖直方向
的分速度等于零,小球和小车在水平方向应 具有相同的速度。由动量守恒定律得:
mv
v1
(m M
mv M m
)v1
① ②
(2)由能量守恒定律可知:
专题训练: 动量守恒定律应用中的临界问题
高二物理备课组
在动量守恒定律的应用中,常常 会遇到相互作用的两个物体相距最远、 避免相撞和开始反向等临界问题,而 分析临界问题的关键是寻找临界状态. 在与动量相关的临界问题中,临界条 件常常表现为:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图7
解析答案
1234
4.如图8所示,甲车的质量是2 kg,静止在光滑水平面上,上表面光滑, 右端放一个质量为1 kg的小物体,乙车质量为4 kg,以5 m/s的速度向左运 动,与甲车碰撞以后甲车获得8 m/s的速度,物体滑到乙车上,若乙车足 够长,上表面与物体的动摩擦因数为0.2,则物体在乙车上表面滑行多长 时间相对乙车静止?(g取10 m/s2)
二、多物体、多过程动量守恒定律的应用
求解这类问题时应注意: (1)正确分析作用过程中各物体状态的变化情况; (2)分清作用过程中的不同阶段,并按作用关系将系统内的物体分成几 个小系统,既要符合守恒条件,又方便解题. (3)对不同阶段、不同的小系统准确选取初、末状态,分别列动量守恒 方程.
例3 如图2所示,A、B两个木块质量分别
图4
解析答案
(2)设乙抓住迎面滑来的速度为v的箱子后返向运动,乙抓住箱子后的速 度变为多少?(用字母表示)
解析 箱子和乙作用的过程动量守恒, 以箱子的速度方向为正方向,由动量守 恒定律得:
图4 mv-Mv0=(m+M)v2 解得v2=mmv-+MMv0 答案 mv-Mv0
m+M
解析答案
(3)若甲、乙最后不相撞,则箱子被推出 的速度至少多大?
图8
解析答案
返回
有一个小球从斜面顶端由静止释放,在小球下滑的过程中,以下说法
正确的是( )
A.斜面和小球组成的系统动量守恒
B.斜面和小球组成的系统仅在水平方向上动量守恒
C.斜面向右运动
图5
D.斜面静止不动
解析答案
1234
2.如图6所示,质量为M的盒子放在光滑的水平面上,盒子内表面不光滑,
盒内放有一块质量为m的物体.从某一时刻起给m一个水平向右的初速度
解析 甲、乙不相撞的条件是v1≤v2
图4
其中v1=v2为甲、乙恰好不相撞的条件. 即v≥5M.2+mm/sM.v0-mv≤mmv-+MMv0 ,代入数据得
所以箱子被推出的速度为5.2 m/s时,甲、乙恰好不相撞.
答案 5.2 m/s
解析答案
返回
1234
达标检测
1.(多选)如图5所示,在光滑的水平面上有一静止的斜面,斜面光滑,现
为2 kg与0.9 kg,A、B与水平地面间接触光
滑,上表面粗糙,质量为0.1 kg的铁块以10
m/s的速度从A的左端向右滑动,最后铁块
与B的共同速度大小为0.5 m/s,求:
图2
(1)A的最终速度大小; 解析 选铁块和木块A、B为一系统,取水平向右为正方向,
由系统总动量守恒得:mv=(MB+m)vB+MAvA 可求得:vA=0.25 m/s
第十六章 动量守恒定律
习题课:动量守恒定律的应用
学习目标
1.进一步理解动量守恒定律的含义及守恒条件. 2.进一步熟练掌握应用动量守恒定律解决问题的方法和步骤.
典例精析 达标检测
一、动量守恒条件的扩展应用
典例精析
1.动量守恒定律成立的条件: (1)系统不受外力或所受外力的合力为零; (2)系统的内力远大于外力; (3)系统在某一方向上不受外力或所受外力的合力为0. 2.动量守恒定律的研究对象是系统.研究多个物体组成的系统时,必须合 理选择系统,再对系统进行受力分析.分清系统的内力与外力,然后判 断所选系统是否符合动量守恒的条件.
例1 如图1所示,质量为0.5 kg的小球在离车底面高度20 m处以一定的初 速度向左平抛,落在以7.5 m/s的速度沿光滑的水平面向右匀速行驶的敞 篷小车中,小车的底面上涂有一层油泥,车与油泥的总质量为4 kg,若 小球在落在车的底面前瞬间的速度是25 m/s,则当小球和小车相对静止 时,小车的速度是(g=10 m/s2)( )
A.5 m/s
Байду номын сангаас
B.4 m/s
C.8.5 m/s
D.9.5 m/s
图1
解析答案
例2 一弹丸在飞行到距离地面5 m高时仅有水平速度v=2 m/s,爆炸成 为甲、乙两块水平飞出,甲、乙的质量比为3∶1.不计质量损失,取重力 加速度g=10 m/s2.则下列图中两块弹片飞行的轨迹可能正确的是( )
解析答案
答案 0.25 m/s
解析答案
(2)铁块刚滑上B时的速度大小.
图2 解析 设铁块刚滑上B时的速度为v′,此时A、B的速度均为vA=0.25 m/s. 由系统动量守恒得:mv=mv′+(MA+MB)vA 可求得v′=2.75 m/s 答案 2.75 m/s
解析答案
针对训练 如图3所示,光滑水平面上有三个木块A、B、C,质量分别为 mA=mC=2m、mB=m.A、B用细绳连接,中间有一压缩的弹簧(弹簧与木块 不拴接).开始时A、B以共同速度v0运动,C静止.某时刻细绳突然断开,A、 B被弹开,然后B又与C发生碰撞并粘在一起,最终三木块速度恰好相同, 求B与C碰撞前B的速度.
v0,那么在物块与盒子前后壁多次往复碰撞后( )
A.两者的速度均为零
B.两者的速度总不会相等
C.物体的最终速度为,mv0 向右 M
D.物体的最终速度为,mv0 向右
图6
M+m
解析答案
1234
3.质量为M=2 kg的小平板车静止在光滑水平面上,车的一端静止放着质 量为mA=2 kg的物体A(可视为质点),如图7所示.一颗质量为mB=20 g的 子弹以600 m/s的水平速度射穿A后,速度变为100 m/s,最后物体A仍静 止在小平板车上,取g=10 m/s2.求平板车最后的速度大小.
图3
解析答案
三、动量守恒定律应用中的临界问题分析
分析临界问题的关键是寻找临界状态,在动量守恒定律的应用中, 常常出现相互作用的两物体相距最近、避免相碰和物体开始反向 等临界状态,其临界条件常常表现为两物体的相对速度关系与相 对位移关系,这些特定关系的判断是求解这类问题的关键.
例3 如图4所示,甲、乙两小孩各乘一辆冰车在水平冰面上游戏.甲和他 的冰车总质量共为M=30 kg,乙和他的冰车总质量也是30 kg.游戏时, 甲推着一个质量为m=15 kg的箱子和他一起以v0=2 m/s 的速度滑行,乙 以同样大小的速度迎面滑来.为了避免相撞,甲突然将箱子沿冰面推给乙, 箱子滑到乙处,乙迅速抓住.若不计冰面摩擦. (1)若甲将箱子以速度v推出,甲的速度 变为多少?(用字母表示).
相关文档
最新文档