动量守恒定律经典习题(带答案)
动量守恒定律练习题及答案

动量守恒定律练习一、选择题1、关于系统动量守恒正确的说法是:A.只要系统所受的合外力的冲量为零,系统动量就守恒B.只要系统内有摩擦力,动量就不可能守恒C.系统所受合外力不为零,其动量一定不守恒,但有可能在某一方向上守恒D.各物体动量的增量的矢量和一定为零2、ab两球在光滑的水平面上沿同一直线发生正碰,作用前动量Pa=10kgm/s,Pb=0,碰撞过程中,动量变化△P=-20kgm/s,则作用后Pb为:A.-20 kgm/s B.-10kgm/s C.20kgm /s D.10kgm/s3、两物体ma=2mb,中间有一压缩弹簧,放在光滑的水平面上,现由静止同时放开后一小段时间内:A.a的速率是b的一半B.a的动量大C.a的受力大D.系统总动量为零4、质量为m的子弹水平飞行击穿一块原静止在光滑水平面上质量为M的木块,在子弹穿透木块的过程中:A.m和M所受的冲量相等B.子弹和木块的速度的变化量相等C.子弹和木块的动量变化量大小相等D.子弹和木块作为系统的总动量守恒5、1kg的物体在距地面高5m处自由下落,落在正以5m /s沿光滑水平面匀速前进的砂车中,砂车质量为4kg,则当物体与车相对静止后,车速为:A.3m/s B.4m/s C.5m/s D.6m /s6、质量为m的小球A以速度v与质量为3m的静止小球B发生正碰后以v/2的速度被反弹回,则正碰后B球的速度大小是:A、v/6B、2vC、v/2 D、v/37、m的M碰撞前后的s-t图如图所示,由图可知:A.m:M=1: 3 B.m:M=3:1C.m:M=l:1 D、m:M=l:28、质量为m的人站在长为L的船M一端,系统原来静止。
当人从船一端走到另一端过程中,不计水的阻力A.人速度大,船后退的速度也大B.人突然停止,船也突然停止C.人突然停止时,船由于惯性仍在运动D.人从一端走到另一端时,船后退了mL/(M+m)9、如图所示,A、B两物体彼此接触静止于光滑的水平桌面上,物体A的上表面是半径为R的光滑圆形轨道,物体C由静止开始从A上圆形轨道的右侧最高点下滑,则有:A.A和B不会出现分离现象B.当C第一次滑到圆弧最低点时,A和B开始分离C.A将会在桌面左边滑出D.A不会在桌面上滑出10、如图所示,A、B两质量相等的物体静止在平板小车C上,A、B之间有一根被压缩的弹簧,A、B与平板车的上表面间的滑动摩擦力之比为3:2,地面光滑,当压缩弹簧突然释放后,则:A.A、B系统动量守恒B.小车向左运动C.A、B、C系统动量守恒D.小车向右运动二、填空题11、质量为m=70kg的人从质量为M=140kg的小船船头走到船尾。
动量守恒定律试题(含答案)

动量守恒定律试题(含答案) 一、动量守恒定律 选择题1.如图所示,一木块静止在长木板的左端,长木板静止在水平面上,木块和长木板的质量相等均为M ,木块和长木板之间、长木板和地面之间的动摩擦因数都为μ。
一颗质量为5M m =的子弹以一定速度水平射入木块并留在其中,木块在长木板上运动的距离为L ;静止后第二颗相同的子弹以相同的速度射入长木板并留在长木板中,则( )A .第一颗子弹射入木块前瞬间的速度为2gL μB .木块运动的加速度大小为g μC .第二颗子弹射入长木板后,长木板运动的加速度大小为2g μD .最终木块静止在距离长木板左端12L 处 2.如图所示为水平放置的固定光滑平行直轨道,窄轨间距为L ,宽轨间距为2L 。
轨道处于竖直向下的磁感应强度为B 的匀强磁场中,质量分别为m 、2m 的金属棒a 、b 垂直于导轨静止放置,其电阻分别为R 、2R ,现给a 棒一向右的初速度v 0,经t 时间后两棒达到匀速运动两棒运动过程中始终相互平行且与导轨良好接触,不计导轨电阻,b 棒一直在宽轨上运动。
下列说法正确的是( )A .a 棒开始运动时的加速度大小为2203B L v RmB .b 棒匀速运动的速度大小为03v C .整个过程中通过b 棒的电荷量为023mv BL D .整个过程中b 棒产生的热量为203mv 3.如图所示,用长为L 的细线悬挂一质量为M 的小木块,木块处于静止状态.一质量为m 、速度为v 0的子弹自左向右水平射穿木块后,速度变为v .已知重力加速度为g ,则A .子弹刚穿出木块时,木块的速度为0()m v v M- B .子弹穿过木块的过程中,子弹与木块组成的系统机械能守恒C .子弹穿过木块的过程中,子弹与木块组成的系统动量守恒D .木块上升的最大高度为2202mv mv Mg- 4.如图,在光滑的水平面上有一个长为L 的木板,小物块b 静止在木板的正中间,小物块a 以某一初速度0v 从左侧滑上木板。
物理动量守恒定律题20套(带答案)

考点:考查了动量守恒定律的应用 【名师点睛】要使两车不相撞,甲车以最小的水平速度将小球发射到乙车上的临界条件是 两车速度相同,以甲车、球与乙车为系统,由系统动量守恒列出等式,再以球与乙车为系 统,由系统动量守恒列出等式,联立求解
2.一质量为 的子弹以某一初速度水平射入置于光滑水平面上的木块 并留在其中, 与木块 用一根弹性良好的轻质弹簧连在一起,开始弹簧处于原长,如图所示.已知弹簧
代入数据解得:E 损=0.25J 答:①碰后 A 球的速度为 1.0m/s; ②碰撞过程中 A、B 系统损失的机械能为 0.25J. 【点评】小球碰撞过程中动量守恒、机械能不守恒,由动量守恒定律与能量守恒定律可以 正确解题,应用动量守恒定律解题时要注意正方向的选择.
9.如图所示,光滑平行金属导轨的水平部分处于竖直向下的 B=4T 的匀磁场中,两导轨间 距 L=0.5m,导轨足够长金属棒 a 和 b 的质量都为 m=1kg,电阻 Ra Rb 1 .b 棒静止于轨 道水平部分,现将 a 棒从 h=80cm 高处自静止沿弧形轨道下滑,通过 C 点进入轨道的水平 部分,已知两棒在运动过程中始终保持与导轨垂直,且两棒始终不相碰.求 a、b 两棒的最 终速度大小以及整个过程中 b 棒中产生的焦耳热(已知重力加速度 g 取 10m/s2)
根据题意: m1 : m2 2
有以上四式解得: v2 2 2gR
接下来男演员做平抛运动:由 4R 1 gt2 ,得 t 8R
2
g
因而: s v2t 8R ; 【点睛】
两演员一起从从 A 点摆到 B 点,只有重力做功,根据械能守恒定律求出最低点速度;女 演员在极短时间内将男演员沿水平方向推出,两演员系统动量守恒,由于女演员刚好能回
Q
物理动量守恒定律题20套(带答案)及解析

物理动量守恒定律题20套(带答案)及解析一、高考物理精讲专题动量守恒定律1.如图所示,在水平地面上有两物块甲和乙,它们的质量分别为2m 、m ,甲与地面间无摩擦,乙与地面间的动摩擦因数恒定.现让甲以速度0v 向着静止的乙运动并发生正碰,且碰撞时间极短,若甲在乙刚停下来时恰好与乙发生第二次碰撞,试求:(1)第一次碰撞过程中系统损失的动能 (2)第一次碰撞过程中甲对乙的冲量 【答案】(1)2014mv ;(2) 0mv 【解析】 【详解】解:(1)设第一次碰撞刚结束时甲、乙的速度分别为1v 、2v ,之后甲做匀速直线运动,乙以2v 初速度做匀减速直线运动,在乙刚停下时甲追上乙碰撞,因此两物体在这段时间平均速度相等,有:212v v =而第一次碰撞中系统动量守恒有:01222mv mv mv =+ 由以上两式可得:012v v =,20 v v = 所以第一次碰撞中的机械能损失为:222201201111222224E m v m v mv mv ∆=--=gg g g (2)根据动量定理可得第一次碰撞过程中甲对乙的冲量:200I mv mv =-=2.如图所示,一小车置于光滑水平面上,轻质弹簧右端固定,左端栓连物块b ,小车质量M =3kg ,AO 部分粗糙且长L =2m ,动摩擦因数μ=0.3,OB 部分光滑.另一小物块a .放在车的最左端,和车一起以v 0=4m/s 的速度向右匀速运动,车撞到固定挡板后瞬间速度变为零,但不与挡板粘连.已知车OB 部分的长度大于弹簧的自然长度,弹簧始终处于弹性限度内.a 、b 两物块视为质点质量均为m =1kg ,碰撞时间极短且不粘连,碰后一起向右运动.(取g =10m/s 2)求:(1)物块a 与b 碰后的速度大小;(2)当物块a 相对小车静止时小车右端B 到挡板的距离;(3)当物块a相对小车静止时在小车上的位置到O点的距离.【答案】(1)1m/s (2) (3) x=0.125m【解析】试题分析:(1)对物块a,由动能定理得:代入数据解得a与b碰前速度:;a、b碰撞过程系统动量守恒,以a的初速度方向为正方向,由动量守恒定律得:,代入数据解得:;(2)当弹簧恢复到原长时两物块分离,a以在小车上向左滑动,当与车同速时,以向左为正方向,由动量守恒定律得:,代入数据解得:,对小车,由动能定理得:,代入数据解得,同速时车B端距挡板的距离:;(3)由能量守恒得:,解得滑块a与车相对静止时与O点距离:;考点:动量守恒定律、动能定理。
完整版动量守恒定律习题及答案

动量守恒定律及答案•选择题(共32小题)1.把一支枪水平固定在小车上,小车放在光滑的水平面上,枪发射出一颗子弹时,关于枪、弹、车,下列说法正确的是( 枪和弹组成的系统,动量守恒枪和车组成的系统,动量守恒 因为枪弹和枪筒之间的摩擦力很大,使系统的动量变化很大,故系统动量 守恒D .三者组成的系统,动量守恒,因为系统只受重力和地面支持力这两个外力 作用,这两个外力的合力为零2.静止的实验火箭,总质量为 M ,当它以对地速度为V 0喷出质量为△ m 的高温 气体后,火箭的速度为( ) A △叫B 皿口C △呱D △叫A. H-ArnB. — C — D. M-Ain3 .据新华社报道,2018年5月9日凌晨,我国长征系列运载火箭,在太原卫星 发射中心完或第274次发射任务,成功发射高分五号卫星,该卫星是世界上第一颗实现对大气和陆地综合观测的全谱段高光谱卫星。
最初静止的运载火箭点火后喷出质量为M 的气体后,质量为m 的卫星(含未脱离的火箭)的速度大小为V ,不计卫星受到的重力和空气阻力。
则在上述过程中,卫星所受冲 4.在光滑的水平面上有一辆平板车,一个人站在车上用大锤敲打车的左端(如图)。
在连续的敲打下,关于这辆车的运动情况,下列说法中正确的是()A .B . C. B . (M+m ) v C. (M - m ) V D . mv量大小为(A . Mv7•质量为m i =2kg 和m 2的两个物体在光滑的水平面上正碰,碰撞时间不计,其 X-1 (位移-时间)图象如图所示,贝U m2的质量等于( )A .由于大锤不断的敲打,小车将持续向右运动B .由于大锤与小车之间的作用力为内力,小车将静止不动C 在大锤的连续敲打下,小车将左右移动D .在大锤的连续敲打下,小车与大锤组成的系统,动量守恒,机械能守恒 5 .设a 、b 两小球相撞,碰撞前后都在同一直线上运动。
若测得它们相撞前的速 度为V a 、V b ,相撞后的速度为V a'、V b 可知两球的质量之比絆于( A . V — V B.C. V 一V6 .两个质量相等的小球在光滑水平面上沿同一直线同向运动,A 球的动量是 8kg?m/s ,B 球的动量是6kg?m/s , A 球追上B 球时发生碰撞,则碰撞后 A 、B 两球的动量可能为(A . P A =0,PB =l4kg?m/sB . p A =4kg?m/s ,p B =10kg?m/sC. p A =6kg?m/s , p B =8kg?m/sD . p A =7kg?m/s ,p B =8kg?m/sA. 3kg B . 4kg C. 5kg &如图所示,光滑水平面上,甲、乙两个球分别以大小为速度做相向运动,碰撞后两球粘在一起以 0.5m/s 的速度向左运动,则甲、乙 两球的质量之比为()9 .质量为1kg 的木板B 静止在水平面上,可视为质点的物块 A 从木板的左侧沿 木板上表面水平冲上木板,如图甲所示。
动量守恒定律试题(含答案)

动量守恒定律试题(含答案)一、动量守恒定律 选择题1.一粒钢珠从静止状态开始自由下落,然后陷入泥潭中.若把它在空中自由下落的过程称为Ⅰ,进入泥潭直到停止的过程称为Ⅱ,忽略空气阻力,则( )A .过程Ⅰ中钢珠动量的改变量小于重力的冲量B .过程Ⅱ中钢珠所受阻力的冲量大小等于过程Ⅰ中重力冲量的大小C .过程Ⅱ中阻力的冲量大小等于过程Ⅰ与过程Ⅱ重力冲量的大小D .过程Ⅱ中钢珠的动量改变量等于阻力的冲量2.如图所示,固定的光滑金属水平导轨间距为L ,导轨电阻不计,左端接有阻值为R 的电阻,导轨处在磁感应强度大小为B 、方向竖直向下的匀强磁场中.质量为m 、电阻不计的导体棒ab ,在垂直导体棒的水平恒力F 作用下,由静止开始运动,经过时间t ,导体棒ab 刚好匀速运动,整个运动过程中导体棒始终与导轨垂直并保持良好接触.在这个过程中,下列说法正确的是A .导体棒ab 刚好匀速运动时的速度22FR vB L =B .通过电阻的电荷量2Ft q BL= C .导体棒的位移22244FtRB L mFR x B L -= D .电阻放出的焦耳热2222244232tRF B L mF R Q B L -= 3.如图所示,长木板A 放在光滑的水平面上,质量为m =4kg 的小物体B 以水平速度v 0=2m/s 滑上原来静止的长木板A 的表面,由于A 、B 间存在摩擦,之后A 、B 速度随时间变化情况如图乙所示,取g=10m/s 2,则下列说法正确的是( )A .木板A 获得的动能为2JB .系统损失的机械能为2JC .A 、B 间的动摩擦因数为0.1D .木板A 的最小长度为2m4.平静水面上停着一只小船,船头站立着一个人,船的质量是人的质量的8倍.从某时刻起,人向船尾走去,走到船中部时他突然停止走动.不计水对船的阻力,下列说法正确的是( )A .人在船上走动过程中,人的动能是船的动能的8倍B .人在船上走动过程中,人的位移是船的位移的9倍C .人走动时,它相对水面的速度大于小船相对水面的速度D .人突然停止走动后,船由于惯性还会继续运动一小段时间5.某研究小组通过实验测得两滑块碰撞前后运动的实验数据,得到如图所示的位移—时间图象.图中的线段a 、b 、c 分别表示沿光滑水平面上同一条直线运动的滑块Ⅰ、Ⅱ和它们发生正碰后结合体的位移变化关系.已知相互作用时间极短,由图象给出的信息可知( )A .碰前滑块Ⅰ与滑块Ⅱ速度大小之比为5∶2B .碰前滑块Ⅰ的动量大小比滑块Ⅱ的动量大小大C .碰前滑块Ⅰ的动能比滑块Ⅱ的动能小D .滑块Ⅰ的质量是滑块Ⅱ的质量的166.将质量为m 0的木块固定在光滑水平面上,一颗质量为m 的子弹以速度v 0沿水平方向射入木块,子弹射穿木块时的速度为03v .现将同样的木块放在光滑的水平桌面上,相同的子弹仍以速度v 0沿水平方向射入木块,设子弹在木块中所受阻力不变,则以下说法正确的是()A .若m 0=3m ,则能够射穿木块B .若m 0=3m ,子弹不能射穿木块,将留在木块中,一起以共同的速度做匀速运动C .若m 0=3m ,子弹刚好能射穿木块,此时子弹相对于木块的速度为零D .若子弹以3v 0速度射向木块,并从木块中穿出,木块获得的速度为v 1;若子弹以4v 0速度射向木块,木块获得的速度为v 2;则必有v 1<v 27.如图所示,在光滑的水平面上有体积相同、质量分别为m =0.1kg 和M =0.3kg 的两个小球A 、B ,两球之间夹着一根压缩的轻弹簧(弹簧与两球不相连),A 、B 两球原来处于静止状态.现突然释放弹簧,B 球脱离弹簧时的速度为2m/s ;A 球进入与水平面相切、半径为0.5m 的竖直面内的光滑半圆形轨道运动,PQ 为半圆形轨道竖直的直径,不计空气阻力,g 取10m/s 2,下列说法正确的是( )A .A 、B 两球离开弹簧的过程中,A 球受到的冲量大小等于B 球受到的冲量大小B .弹簧初始时具有的弹性势能为2.4JC .A 球从P 点运动到Q 点过程中所受合外力的冲量大小为1N ∙sD .若逐渐增大半圆形轨道半径,仍然释放该弹簧且A 球能从Q 点飞出,则落地的水平距离将不断增大8.如图所示,质量为M 的木板静止在光滑水平面上,木板左端固定一轻质挡板,一根轻弹簧左端固定在挡板上,质量为m 的小物块从木板最右端以速度v 0滑上木板,压缩弹簧,然后被弹回,运动到木板最右端时与木板相对静止。
动量守恒定律试题(含答案)

动量守恒定律试题(含答案)一、动量守恒定律 选择题1.质量相等的A 、B 两球在光滑水平面上沿同一直线、同一方向运动,A 球的动量是7 kg·m/s ,B 球的动量是5kg·m/s ,当A 球追上B 球发生碰撞,则碰撞后A 、B 两球的动量可能值是( )A .p A =6 kg·m/s ,pB =6 kg·m/sB .p A =3 kg·m/s ,p B =9 kg·m/sC .p A =-2 kg·m/s ,p B =14 kg·m/sD .p A =-4 kg·m/s ,p B =17 kg·m/s2.如图,斜面体固定在水平面上,斜面足够长,在斜面底端给质量为m 的小球以平行斜面向上的初速度1v ,当小球回到出发点时速率为2v 。
小球在运动过程中除重力和弹力外,另受阻力f (包含摩擦阻力),阻力f 大小与速率成正比即f kv =。
则小球在斜面上运动总时间t 为( )A .12sin v v t g θ+=⋅B .12sin v v t g θ-=⋅ C .1212sin 2mv mv t v v mg k θ+=+⋅+ D .1212sin 2mv mv t v v mg k θ-=+⋅- 3.如图所示,光滑的半圆槽置于光滑的地面上,且一定高度自由下落的小球m 恰能沿半圆槽的边缘的切线方向滑入原先静止的槽内,对此情况,以下说法正确的是( )A .小球第一次离开槽时,将向右上方做斜抛运动B .小球第一次离开槽时,将做竖直上抛运动C .小球离开槽后,仍能落回槽内,而槽将做往复运动D .槽一直向右运动4.如图所示,质量为M 、带有半径为R 的四分之一光滑圆弧轨道的滑块静置于光滑水平地面上,且圆弧轨道底端与水平面平滑连接,O 为圆心。
质量为m 的小滑块以水平向右的初速度0v 冲上圆弧轨道,恰好能滑到最高点,已知M =2m 。
高考物理动量守恒定律题20套(带答案)

高考物理动量守恒定律题20套(带答案)一、高考物理精讲专题动量守恒定律1.如图所示,在光滑的水平面上有一长为L 的木板B ,上表面粗糙,在其左端有一光滑的四分之一圆弧槽C ,与长木板接触但不相连,圆弧槽的下端与木板上表面相平,B 、C 静止在水平面上.现有滑块A 以初速度0v 从右端滑上B ,一段时间后,以02v 滑离B ,并恰好能到达C 的最高点.A 、B 、C 的质量均为m .求: (1)A 刚滑离木板B 时,木板B 的速度; (2)A 与B 的上表面间的动摩擦因数μ; (3)圆弧槽C 的半径R ;(4)从开始滑上B 到最后滑离C 的过程中A 损失的机械能.【答案】(1) v B =04v ;(2)20516v gL μ=(3)2064v R g =(4)201532mv E ∆=【解析】 【详解】(1)对A 在木板B 上的滑动过程,取A 、B 、C 为一个系统,根据动量守恒定律有:mv 0=m2v +2mv B 解得v B =4v (2)对A 在木板B 上的滑动过程,A 、B 、C 系统减少的动能全部转化为系统产生的热量222000111()2()22224v v mgL mv m m μ⨯=--解得20516v gLμ=(3)对A 滑上C 直到最高点的作用过程,A 、C 系统水平方向上动量守恒,则有:2mv +mv B =2mv A 、C 系统机械能守恒:22200111()()222242v v mgR m m mv +-⨯=解得264v R g= (4)对A 滑上C 直到离开C 的作用过程,A 、C 系统水平方向上动量守恒0024A C mv mv mv mv +=+ A 、C 系统初、末状态机械能守恒,2222001111()()222422A C m m m m +=+v v v v 解得v A =4v . 所以从开始滑上B 到最后滑离C 的过程中A 损失的机械能为:2220015112232A mv E mv mv ∆=-=【点睛】该题是一个板块的问题,关键是要理清A 、B 、C 运动的物理过程,灵活选择物理规律,能够熟练运用动量守恒定律和能量守恒定律列出等式求解.2.如图甲所示,物块A 、B 的质量分别是 m A =4.0kg 和m B =3.0kg .用轻弹簧拴接,放在光滑的水平地面上,物块B 右侧与竖直墙相接触.另有一物块C 从t =0时以一定速度向右运动,在t =4s 时与物块A 相碰,并立即与A 粘在一起不再分开,物块C 的v -t 图象如图乙所示.求:①物块C 的质量?②B 离开墙后的运动过程中弹簧具有的最大弹性势能E P ? 【答案】(1)2kg (2)9J 【解析】试题分析:①由图知,C 与A 碰前速度为v 1=9 m/s ,碰后速度为v 2=3 m/s ,C 与A 碰撞过程动量守恒.m c v 1=(m A +m C )v 2 即m c =2 kg②12 s 时B 离开墙壁,之后A 、B 、C 及弹簧组成的系统动量和机械能守恒,且当A 、C 与B 的速度相等时,弹簧弹性势能最大 (m A +m C )v 3=(m A +m B +m C )v 4得E p =9 J考点:考查了动量守恒定律,机械能守恒定律的应用【名师点睛】分析清楚物体的运动过程、正确选择研究对象是正确解题的关键,应用动量守恒定律、能量守恒定律、动量定理即可正确解题.3.人站在小车上和小车一起以速度v 0沿光滑水平面向右运动.地面上的人将一小球以速度v 沿水平方向向左抛给车上的人,人接住后再将小球以同样大小的速度v 水平向右抛出,接和抛的过程中车上的人和车始终保持相对静止.重复上述过程,当车上的人将小球向右抛出n 次后,人和车速度刚好变为0.已知人和车的总质量为M ,求小球的质量m . 【答案】02Mv m nv= 【解析】试题分析:以人和小车、小球组成的系统为研究对象,车上的人第一次将小球抛出,规定向右为正方向,由动量守恒定律:Mv 0-mv=Mv 1+mv 得:102mvv v M=-车上的人第二次将小球抛出,由动量守恒: Mv 1-mv=Mv 2+mv 得:2022mvv v M=-⋅同理,车上的人第n 次将小球抛出后,有02n mvv v n M=-⋅ 由题意v n =0, 得:02Mv m nv=考点:动量守恒定律4.如图所示,一条带有圆轨道的长轨道水平固定,圆轨道竖直,底端分别与两侧的直轨道相切,半径R =0.5m ,物块A 以v 0=6m/s 的速度滑入圆轨道,滑过最高点Q ,再沿圆轨道滑出后,与直轨道上P 处静止的物块B 碰撞,碰后粘在一起运动,P 点左侧轨道光滑,右侧轨道呈粗糙段、光滑段交替排列,每段长度都为L =0.1m ,物块与各粗糙段间的动摩擦因数都为μ=0.1,A 、B 的质量均为m =1kg(重力加速度g 取10m/s 2;A 、B 视为质点,碰撞时间极短).(1)求A 滑过Q 点时的速度大小v 和受到的弹力大小F ; (2)若碰后AB 最终停止在第k 个粗糙段上,求k 的数值; (3)求碰后AB 滑至第n 个(n <k )光滑段上的速度v n 与n 的关系式. 【答案】(1)5m/s v =, F =22 N (2) k =45 (3)90.2m/s ()n v n n k =-<【解析】⑴物块A 从开始运动到运动至Q 点的过程中,受重力和轨道的弹力作用,但弹力始终不做功,只有重力做功,根据动能定理有:-2mgR =-解得:v ==4m/s在Q 点,不妨假设轨道对物块A 的弹力F 方向竖直向下,根据向心力公式有:mg +F =解得:F =-mg =22N ,为正值,说明方向与假设方向相同。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
动量守恒定律习题(带答案)(基础、典型)例1、质量为1kg的物体从距地面5m高处自由下落,正落在以5m/s的速度沿水平方向匀速前进的小车上,车上装有砂子,车与砂的总质量为4kg,地面光滑,则车后来的速度为多少?例2、质量为1kg的滑块以4m/s的水平速度滑上静止在光滑水平面上的质量为3kg的小车,最后以共同速度运动,滑块与车的摩擦系数为0.2,则此过程经历的时间为多少?例3、一颗手榴弹在5m高处以v0=10m/s的速度水平飞行时,炸裂成质量比为3:2的两小块,质量大的以100m/s的速度反向飞行,求两块落地点的距离。
(g取10m/s2)例4、如图所示,质量为0.4kg的木块以2m/s的速度水平地滑上静止的平板小车,车的质量为1.6kg,木块与小车之间的摩擦系数为0.2(g取10m/s2)。
设小车足够长,求:(1)木块和小车相对静止时小车的速度。
(2)从木块滑上小车到它们处于相对静止所经历的时间。
(3)从木块滑上小车到它们处于相对静止木块在小车上滑行的距离。
例5、甲、乙两小孩各乘一辆冰车在水平冰面上游戏,甲和他所乘的冰车的质量共为30kg,乙和他所乘的冰车的质量也为30kg。
游戏时,甲推着一个质量为15kg的箱子和甲一起以2m/s的速度滑行,乙以同样大小的速度迎面滑来。
为了避免相撞,甲突然将箱子沿冰面推向乙,箱子滑到乙处,乙迅速将它抓住。
若不计冰面的摩擦,甲至少要以多大的速度(相对于地面)将箱子推出,才能避免与乙相撞?答案:1.分析:以物体和车做为研究对象,受力情况如图所示。
在物体落入车的过程中,物体与车接触瞬间竖直方向具有较大的动量,落入车后,竖直方向上的动量减为0,由动量定理可知,车给重物的作用力远大于物体的重力。
因此地面给车的支持力远大于车与重物的重力之和。
系统所受合外力不为零,系统总动量不守恒。
但在水平方向系统不受外力作用,所以系统水平方向动量守恒。
以车的运动方向为正方向,由动量守恒定律可得:车 重物初:v 0=5m/s 0末:v v ⇒Mv 0=(M+m)v⇒s m v m N M v /454140=⨯+=+=即为所求。
2、分析:以滑块和小车为研究对象,系统所受合外力为零,系统总动量守恒。
以滑块的运动方向为正方向,由动量守恒定律可得滑块 小车初:v 0=4m/s 0末:v v ⇒mv 0=(M+m)v⇒s m v m M M v /143110=⨯+=+=再以滑块为研究对象,其受力情况如图所示,由动量定理可得ΣF=-ft=mv-mv 0⇒s g v v t 5.1102.0)41(0=⨯--=-=μf=μmg 即为所求。
3、分析:手榴弹在高空飞行炸裂成两块,以其为研究对象,系统合外力不为零,总动量不守恒。
但手榴弹在爆炸时对两小块的作用力远大于自身的重力,且水平方向不受外力,系统水平方向动量守恒,以初速度方向为正。
由已知条件:m 1:m 2=3:2m 1 m 2初:v 0=10m/s v 0=10m/s末:v 1=-100m/s v 2=?⇒(m 1+m 2)v 0=m 1v 1+m 2v 2⇒s m m v m v m m v /1752)100(3105)(2110212=-⨯-⨯=-+=炸后两物块做平抛运动,其间距与其水平射程有关。
Δx=(v 1+v 2)t⇒mg h v v x 2751052)175100(2)(21=⨯⨯+=+=∆y=h=gt 221即为所求。
4、分析:(1)以木块和小车为研究对象,系统所受合外力为零,系统动量守恒,以木块速度方向为正方向,由动量守恒定律可得:木块m 小车M 初:v 0=2m/s v 0=0末:v v ⇒mv 0=(M+m)v⇒s m v m M m v /4.026.14.04.00=⨯+=+=(2)再以木块为研究对象,其受力情况如图所示,由动量定理可得ΣF=-ft=mv-mv 0⇒s g v v t 8.04102.0)24.0(0=⨯⨯--=-=μf=μmg(3)木块做匀减速运动,加速度21/2s m g mfa ===μ车做匀加速运动,加速度,由运动学22/5.06.1104.02.0s m M mg M f a =⨯⨯===μ公式v t 2-v 02=2as 可得:在此过程中木块的位移m a v v S t 96.02224.02222021=⨯--=-=车的位移m t a S 16.08.05.021212222=⨯⨯==由此可知,木块在小车上滑行的距离为ΔS=S 1-S 2=0.8m即为所求。
另解:设小车的位移为S 2,则木块的位移为S 1+ΔS ,ΔS 为木块在小车上滑行的距离,也即小车与木块之间的位移差。
作出木块、小车的v-t 图线如图所示,则木块在小车上的滑行距离数值上等于图中阴影部分的三角形的“面积”。
5、分析:设甲推出箱子后速度为v 甲,乙抓住箱子后的速度为v 乙。
分别以甲、箱子;乙、箱子为研究对象,系统在运动过程中所受合外力为零,总动量守恒。
以甲的速度方向为正方向,由动量守恒定律可得:甲推箱子的过程:甲:M 箱子:m 初:v 0=2m/s v 0=2m/s 末:v 甲 v=? ⇒(M+m)v 0=Mv 甲+mv (1)乙接箱子的过程乙:M 箱子;m 初:v 0=-2m/s v 末:v 乙 v 乙 ⇒Mv 0+mv=(M+m)v 乙 (2)甲、乙恰不相撞的条件:v 甲=v 乙三式联立,代入数据可求得:v=5.2m/s:反馈练习1、质量分别为2kg 和5kg 的两静止的小车m 1、m 2中间压缩一根轻弹簧后放在光滑水平面上,放手后让小车弹开,今测得m 2受到的冲量为10N ·s ,则(1)在此过程中,m 1的动量的增量为A 、2kg ·m/sB 、-2kg ·m/sC 、10kg ·m/sD 、-10kg ·m/s (2)弹开后两车的总动量为A 、20kg ·m/sB 、10kg ·m/sC 、0D 、无法判断2、质量为50kg 的人以8m/s 的速度跳上一辆迎面驶来的质量为200kg 、速度为4m/s 的平板车。
人跳上车后,车的速度为A 、4.8m/sB 、3.2m/sC 、1.6m/sD 、2m/s 3、如图所示,滑块质量为1kg ,小车质量为4kg 。
小车与地面间无摩擦,车底板距地面1.25m 。
现给滑块一向右的大小为5N ·s 的瞬时冲量。
滑块飞离小车后的落地点与小车相距1.25m ,则小车后来的速度为A 、0.5m/s ,向左B 、0.5m/s ,向右C 、1m/s ,向右D 、1m/s ,向左4、在光滑的水平地面上有一辆小车,甲乙两人站在车的中间,甲开始向车头走,同时乙向车尾走。
站在地面上的人发现小车向前运动了,这是由于A 、甲的速度比乙的速度小B 、甲的质量比乙的质量小C 、甲的动量比乙的动量小D 、甲的动量比乙的动量大5、A 、B 两条船静止在水面上,它们的质量均为M 。
质量为的人以2M对地速度v 从A 船跳上B 船,再从B 船跳回A 船,经过几次后人停在B 船上。
不计水的阻力,则A 、A 、B 两船速度均为零 B 、v A :v B =1:1C 、v A :v B =3:2D 、v A :v B =2:36、质量为100kg 的小船静止在水面上,船两端有质量40kg 的甲和质量60kg 的乙,当甲、乙同时以3m/s 的速率向左、向右跳入水中后,小船的速率为A 、0B 、0.3m/s ,向左C 、0.6m/s ,向右D 、0.6m/s ,向左7、A 、B 两滑块放在光滑的水平面上,A 受向右的水平力F A 作用,B 受向左的水平力F B 作用而相向运动。
已知m A =2m B ,F A =2F B 。
经过相同的时间t 撤去外力F A 、F B ,以后A 、B 相碰合为一体,这时他们将A 、停止运动B 、向左运动C 、向右运动D 、无法判断8、物体A 的质量是B 的2倍,中间有一压缩的弹簧,放在光滑的水平面上,由静止同时放开后一小段时间内A 、A 的速率是B 的一半 B 、A 的动量大于B 的动量C 、A 受的力大于B 受的力D 、总动量为零9、放在光滑的水平面上的一辆小车的长度为L ,质量等于M 。
在车的一端站一个人,人的质量等于m ,开始时人和车都保持静止。
当人从车的一端走到车的另一端时,小车后退的距离为A 、mL/(m+M)B 、ML/(m+M)C 、mL/(M-m)D 、ML/(M-m)10、如图所示,A 、B 两个物体之间用轻弹簧连接,放在光滑的水平面上,物体A 紧靠竖直墙,现在用力向左推B 使弹簧压缩,然后由静止释放,则A 、弹簧第一次恢复为原长时,物体A 开始加速B 、弹簧第一次伸长为最大时,两物体的速度一定相同C 、第二次恢复为原长时,两个物体的速度方向一定反向D 、弹簧再次压缩为最短时,物体A 的速度可能为零11、如图所示,物体A 、B 并列紧靠在光滑水平面上,m A =500g ,m B =400g ,另有一个质量为100g 的物体C 以10 m/s 的水平初速度摩擦着A 、B 表面经过,在摩擦力的作用下A 、B 物体也运动,最后C 物体在B 物体上一起以1.5m/s 的速度运动,求C 物体离开A 物体时,A 、C 两物体的速度。
12、如图所示,光滑的水平台子离地面的高度为h ,质量为m 的小球以一定的速度在高台上运动,从边缘D 水平射出,落地点为A ,水平射程为s 。
如果在台子边缘D 处放一质量为M 的橡皮泥,再让小球以刚才的速度在水平高台上运动,在边缘D 处打中橡皮泥并同时落地,落地点为B 。
求AB 间的距离。