RAMS技术概述
RAMS轨道交通设备安装技术培训

RAMS轨道交通设备安装技术培训1. 引言RAMS(可靠性、可用性、维修性和安全性)是一种在轨道交通设备安装过程中广泛应用的概念。
此文档旨在为轨道交通设备的安装技术人员提供RAMS培训课程,以增强其对RAMS概念的理解和运用能力。
2. RAMS简介RAMS是指可靠性(Reliability)、可用性(Availability)、维修性(Maintainability)和安全性(Safety)这四个方面的技术要求。
可靠性要求设备在特定条件下实现特定功能的能力;可用性要求设备随时可供使用;维修性要求设备在发生故障时能够快速修复;安全性要求设备在使用过程中不对人员和环境造成危害。
3. RAMS的重要性RAMS是确保轨道交通设备安全运行的关键因素。
合理的RAMS安装技术可以提高设备的可靠性和可用性,减少维修时间,提升安全性,并降低运营成本。
4. RAMS培训内容4.1 可靠性•可靠性的定义和计算方法•设备故障率和故障模式分析•可靠性测试与验证4.2 可用性•可用性的概念和指标•可用性评估方法•提高可用性的技术手段4.3 维修性•维修性的定义和指标•维修性测试与验证•提高维修性的技术手段4.4 安全性•安全性的概念和要求•安全性评估与分析方法•风险管理和安全控制措施5. 培训方式本培训课程将采用多种教学方式,包括理论讲解、案例分析、实践操作等。
培训将由专业的RAMS工程师主讲,并提供相关学习资料。
6. 培训目标通过本培训课程,学员将能够: - 理解RAMS的概念和重要性 - 掌握RAMS的计算方法和评估技术 - 熟悉提高设备可靠性、可用性、维修性和安全性的技术手段- 能够应用RAMS技术进行轨道交通设备的安装和维护7. 结论RAMS轨道交通设备安装技术培训课程将帮助轨道交通设备安装技术人员提高其对RAMS概念的理解和运用能力。
通过学习和应用RAMS技术,能够实现轨道交通设备的高可靠性、可用性、维修性和安全性,为城市轨道交通的发展做出贡献。
《RAMS培训教程》课件

总结
RAMS培训内容回顾
总结培训课程的重点内容, 加强学习效果。
RAMS在实际工程中的 应用展望
展望RAMS在未来实际工程 中的应用前景,引发思考。
Q&A
提供问答环节,解答学员的 疑问。
RAMS基础知识
可靠性分析
了解可靠性指标和定义,学习可 靠性分析的方法。
维护性分析
掌握维护性指标和定义,探索维 护性分析的方法。
安全性分析
研究安全性指标和定义,了解安 全性分析的方法。
RAMS实践案例分析
1
航空电气系统
探讨航空电气系统的可靠性、维护性和 安全性。
铁路信号系统
深入分析铁路信号系统的可靠性、维护 性和安全性。
《RAMS培训教程》PPT课件
在这个PPT课件中,我们将深入介绍RAMS(可靠性、可维护性、可用性和安 全性)的培训教程,让您轻松学习这一重要领域的知识和应用。
课程概述
RAMS是什么?
RAMS是可靠性、可维护性、可用性和安全性的 缩写,是一种综合性的工程管理方法。
RAMS在工程领域中的应用
RAMS被广泛应用于各种工程项目,包括铁路和 航空等。
RAMS在产业化过程中的应用实践

RAMS在产业化过程中的应用实践RAMS (可靠性、可用性、可维护性和安全性) 是工业界中常用的术语,它代表了一个产品或系统的可靠性、可用性、可维护性和安全性。
在产业化过程中,RAMS 的应用实践对于确保产品品质,提高生产效率,降低成本和提高安全性都有着重要意义。
本文将从RAMS 的概念入手,介绍RAMS 在产业化过程中的应用实践,并通过案例分析来阐明其重要性。
一、RAMS 的概念RAMS 的概念在产业化过程中具有重要意义,它涵盖了产品的可靠性、可用性、可维护性和安全性,对提高产品品质,降低生产成本,提高生产效率具有重大意义。
1. 可靠性的应用实践在产业化过程中,可靠性是产品质量的重要指标。
通过对产品的可靠性进行评估和测试,在产品设计和生产过程中发现、分析和解决潜在的故障点,提高产品的可靠性。
汽车制造业中,通过对汽车零部件的可靠性进行测试和评估,能够提前发现零部件的潜在问题,并以此为基础进行设计和生产过程的改进,从而提高汽车的可靠性,减少故障率,提高产品品质。
在产业化过程中,产品的可用性直接关系到生产效率和客户满意度。
通过提高产品的可用性,能够减少停机时间,提高生产效率,降低生产成本。
在制造业中,提高机器设备的可用性,可以缩短生产周期,降低生产成本,提高产能和产品质量。
在产业化过程中,产品的可维护性对于减少维修时间、降低维护成本具有重要意义。
通过设计和生产过程中考虑产品的可维护性,能够降低产品的维修成本和维修时间,提高产品的可维护性。
在航空航天领域中,飞机的可维护性对于飞机的运行效率和安全性具有至关重要的影响,通过提高飞机的可维护性,能够降低维修成本,缩短维修时间,提高飞机的运行效率和安全性。
在产业化过程中,产品的安全性是保障人身和财产安全的重要保证。
通过提高产品的安全性,能够减少事故和损失,保障人身和财产安全。
在化工行业中,提高化工产品的安全性和防护设施的安全性,能够减少事故的发生,保障员工的安全。
RAMS概述

53
可靠性设计准则
2.制定与实施可靠性设计准则的目的和原因 1)目的 将产品的可靠性要求和规定的约束条件,转换为产 品设计应遵循的、具体而有效的可靠性技术设计细 则。供广大设计人员遵照执行,从而将可靠性设计 到产品中去。
54
可靠性设计准则
2.制定与实施可靠性设计准则的目的和原因 2)原因 ������ 仅有定量分析设计、FMEA等是不够的; ������ 准则是系统设计经验的积累,甚至有血的 代价; ������ 设计人员最易于接受; ������ 可靠性设计的重要依据; ������ 可靠性设计与功能、性能设计紧密结合; ������ 提高产品可靠性、降低费用。
武器
惯性 导航
机体
备用 罗盘 固定 增稳
起落架
28
注意事项
(3) 可靠性模型应随产品技术状态的变化而修改。 (4) 建模前应明确产品定义、故障判据。
29
可靠性分配
• 可靠性分配的目的
将系统的可靠性定量要求分配到规定的产品层 次。
• 可靠性分配的原则 • 可靠性分配方法 • 可靠性分配报告 • 注意事项
47
工程中常用的可靠性预计方法
48
可靠性预计报告
至少应包括以下内容: 1) 要求的可靠性指标及其来源(要求值或分配值) 2) 系统组成及特点; 3) 预计方法的选择; 4) 不可直接预计的产品清单及其理由; 5) 预计中“其他”项的百分比及其确定原则; 6) 任务可靠性预计时采用的任务可靠性模型; 7) 预计结果及薄弱环节分析; 8) 拟采取的改进措施及其效果分析; 9) 明确回答实现要求的可靠性指标的可能性。
3
维修性:产品在规定的条件下和规定的时间内,按规
可靠性有效性 可维护性和安全性(RAMS)

可靠性有效性可维护性和安全性(RAMS)可靠性、有效性、可维护性和安全性(rams)1目的为确保产品在使用寿命周期内的可靠性、有效性、可维护性和安全性(以下简称rams),建立执行可靠性分析的典型方法,更好地满足顾客要求,保证顾客满意,特制定本程序。
2适用范围适用于集团产品设计、开发、测试和使用全过程的rams策划和控制。
3定义rams:可靠性、有效性、可维护性和安全性。
R——可靠性:产品在规定条件下和规定时间内完成规定功能的能力。
可靠性的概率度量也被称为可靠性。
a――availability有效性:是指产品在特定条件下能够令人满意地发挥功能的概率。
m――maintainability可维护性:是指产品在规定的条件下和规定的时间内,按规定的程序和方法进行维修时,保持或恢复到规定状态的能力。
维修性的概率度量亦称维修度。
安全:指确保产品能够可靠地完成其规定的功能,并确保操作和维护人员的人身安全。
fme(c)a:failuremodeandeffect(criticality)analysis故障模式和影响(危险)分析。
MTBF平均无故障时间:指可修复产品(部件)连续故障的平均时间。
mttr平均修复时间:指检修员修理和测试机组,使之恢复到正常服务中的平均故障维修时间。
数据库:以某种组织方式存储在一起以解决特定任务的相关数据的集合。
4.责任4.1销售公司负责获取顾客rams要求并传递至相关部门;组织对顾客进行产品正确使用和维护的培训;负责产品交付后rams数据的收集和反馈。
4.2技术研究院技术职能部门负责确定rams目标,确定所用部件、材料和工艺的可靠性要求,分配和预测可靠性,建立rams数据库。
4.3工程技术部负责确定确保实现设计可靠性的过程方法。
4.4采购部负责将相关资料和外包(外协)配件的rams要求传递给供方,并督促供方实现这些要求。
4.5制造部负责严格按照产品图纸和工艺文件组织生产。
4.6动能保障部负责制定工装设备、计量测试设备的维修计划并实施,保证其处于完好状态。
RAMS模式的简单介绍

R 0 0 0 u 0 0 v 0 0 w c v 0 0 x y z
返回
格点结构:标准的C交错格点(Arakawa ),所有 的热力学变量和湿度变量定义在网格的中心,而速 1 度分量则交错定义在 1 x ,1 y , z 处
6、微物理过程控制参数:
粒子尺度分布函数:
D f D v Dn 1
v 1
D ex p Dn Dn 1
四、RAMS的运行流程
NCEP/NCAR fdgrib revu ECMWF GRAB GRIB NCARG GRADS V5D
上边界条件: 1、刚壁条件(w=0) 2、重力波辐射条件 3、Rayleigh 摩擦吸收层
返回
三种辐射参数化方案: Mahrer-Pielke方案,最简单的一种方案,忽略了大气中的液 相和冰相,只考虑水汽的作用,所以当云对辐射的衰减较重 要时,不能采用这种方案
Chen-Cotton方案,考虑了大气中的凝结过程,但是不区分 凝结物是云水、雨水还是冰晶 Harrington方案,最复杂的一种方案,考虑了水凝物的各种 形式(云水,雨水,冰晶,雪,聚合物,霰,雹),甚至考 虑了冰晶不同特性对辐射的影响
返回
RAMS(1984)
70年代早期 70年代中后期 80年代早期
一维非静力平衡云模式(Cotton) 二维海风模式(Pielke) 三维非静力平衡云模式(Cotton, Tripoli) 静力平衡版本的云模式(Tremback)
1984 1986 1988
1991 1995 1997 2000 2006
水物质混合比连续性方程: rn t u rn x v rn y w rn z r r r Kh n Kh n Kh n x x y y z z
轨道交通产品RAMS

涉及到在各种环境条件和工作条件下,在运营、维护和维修过程中发 生的所有危险;
故障是危险的主要来源,危险性故障是全部故障的子集。
Yuntong
Forever
RAMS 技术讲义
10
11.1 RAMS 基本概念
环境应力对可靠性的影响
环境越恶劣可靠性越差
RAMS是系统工程技术之一,也是世界先进轨道交通行业普遍采用的关键技 术,法国、日本、英国、德国、美国等发达国家和地区均在轨道机车车辆 方面成功地实施了RAMS工程,其中以欧洲国家为代表,不仅建立了RAMS 系列标准,使RAMS工程实现了系统化的发展,还在很大程度上推广了 RAMS工程,使轨道交通的可靠性、维修性和安全性等指标得到了显著的提 高。
11 RAMS 技术基础
RAMS 基本概念
R eliability - 可靠性 A vailability - 可用性 M aintainability - 维修性 S afety - 安全性
“五性”=可靠性+维修性+保障性+测试性+安全性
Yuntong
Forever
RAMS 技术讲义
3
11.1 RAMS 基本概念
常州轨道车辆牵引传动工程技术研究中心
北京运通恒达科技有限公司
轨道交通产品
RAMS 工程技术
陈晓彤 首席咨询师 2021年4月
1
内容安排
1
RAMS 技术基础
2
RAMS 技术要求
3
RAMS 体系框架
4
RAMS 关键技术
RAMS 基本概念 RAMS 工程意义 RAMS 标准体系
25
21.1 RAMS 指标要求
RAMS技术概述

RAMS技术概述RAMS(可靠性、可用性、维修性和安全性)是一种综合性的工程管理方法,用于评估和优化产品、系统或设备的可靠性、可用性、维修性和安全性。
RAMS覆盖了产品或系统的全生命周期,从设计和开发阶段,到生产、操作和维护阶段。
可靠性(Reliability)是指产品或系统在给定环境条件下按照要求正常工作的能力。
可靠性评估包括故障率分析、失效模式和失效影响分析、可靠性增长等。
通过识别潜在故障模式、改进设计和制造过程,可以提高产品或系统的可靠性。
可用性(Availability)是指产品或系统在给定时间内提供预期功能的能力。
可用性评估包括故障修复时间、系统备份和容错设计等。
通过优化维护策略、改进备件管理和故障诊断,可以提高产品或系统的可用性。
维修性(Maintainability)是指产品或系统进行维修、检修、更换和调整的能力。
维修性评估包括维修时间、维修人员技能要求和维修支持等。
通过改进产品或系统的可拆卸性、易维修性和可调整性,可以提高维修性能。
安全性(Safety)是指产品或系统使用期间,保障人员、财产和环境免受伤害的能力。
安全性评估包括风险评估、安全设计和安全应急措施等。
通过执行安全标准、识别潜在风险并采取适当的风险控制措施,可以提高产品或系统的安全性。
RAMS方法包括以下步骤:1.进行可靠性和可用性评估:通过对产品或系统进行失效模式和失效影响分析,识别潜在故障模式和可能的失效影响。
使用可靠性增长方法,预测产品或系统的可靠性和可用性。
2.进行维修性评估:评估产品或系统进行维修和维护的难度和时间。
确定维修任务的技能要求和故障排除方法。
3.进行安全性评估:通过风险评估和安全性规定,识别潜在的健康和安全风险。
确定必要的安全标准,设计和应急措施。
4.优化设计和制造过程:根据RAMS评估的结果,进行产品或系统设计和制造过程的改进。
优化设计和部件选择,改进制造过程和质量控制,以提高产品或系统的RAMS性能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2010年08月 2010年08月
1
什么是RAMS? 什么是RAMS? RAMS
可靠性、可用性、维修性及安全性(RAMS) 可靠性、可用性、维修性及安全性(RAMS)工 程包括: 程包括:
eliability) 可靠性(Reliability); vailability); 可用性 (Availability); 维修性 (Maintainability)含测试性 (Testability) upportability); 保障性 (Supportability); afety); 安全性 (Safety); RAMS”。 我们称之为 “RAMS 。
49
注意事项
1)应及早进行可靠性预计和分配; 2)应按基本可靠性和任务可靠性分别进行 分配和预计; 3)应按目标值或规定值(成熟期)并留有 适当余量进行分配。分配中要包括“其它” 项。 4)对于采用的货架产品,在预计和分配时 应在总指标中予以扣除;
50
注意事项
5)进行可靠性预计时,应考虑部分产品在使用过 程中的不工作状态(GJB/Z 108); 6)预计工作应反映当前产品的技术状态; 7)应说明预计中所用数据的来源; 8)应明确产品定义及故障判据; 9)预计工作应规范化;应对预计结果进行分析并 提出改进措施,以提高产品的固有可靠性。
2
基本概念
可靠性:产品在规定的条件下和规定的时间内, 可靠性:产品在规定的条件下和规定的时间内,
完成规定功能的能力。 完成规定功能的能力。可靠性的概率度量亦称可靠 度。
可用性:产品在任一随机时刻需要和开始执行任 可用性:
务时,处于可工作或可使用状态的程度。 务时,处于可工作或可使用状态的程度。可用性的 概率度量亦称可用度。 概率度量亦称可用度。
5
基本概念(续) 基本概念(
RAMS是提高产品竞争力的必由之路; RAMS不是表面文章,每项RAMS工作必须落实到设 计、工艺、制造、使用、管理的改进中去,才能 见效; 必须建立RAMS工作系统并延伸到供应商。 RAMS工 作系统应当是企业的管理决策系统的组成部分, 而不能游离在外; 领导是关键。各级领导干部的培训。各级新任领 导履新前的培训。 三分技术、七分管理;总体单位的RAMS工作,要 花60-70%的精力抓供应商的管理。
31可靠性分Biblioteka 方法1)比例分配法32
可靠性分配方法
2) 评分分配法
33
34
可靠性分配方法
3) 重要度复杂度分配法
35
36
可靠性分配方法
工程综合法 1、分层次的可靠性分配 2、货架产品的处理 3、运行比的确定 4、机械部件的处理 5、预留分配余量 6、采用综合法对基本可靠性进行试分配
37
注意事项
7
可靠性工程的发展
1957年6月美国发表了《军用电子设备可靠 性报告》。 60年代—可靠性工程全面发展 70年代—可靠性工程进行成熟期,得到深入 发展 80年代—可靠性工程更受重视和成熟 2003年,国内城轨地铁开始推行RAMS
8
RAMS的主要工作
1)可靠性、维修性(含测试性)设计; 2)安全性、可靠性、维修性(含测试性)分析; 3)全寿命周期费用(LCC)分析; 4)制造装配可靠性; 5)可靠性试验和维修性演示; 6)可靠性、维修性增长; 7) 可靠性、维修性评估; 8)RAMS管理; 9)产品全寿命周期各职能部门RAMS工作综述
47
工程中常用的可靠性预计方法
48
可靠性预计报告
至少应包括以下内容: 1) 要求的可靠性指标及其来源(要求值或分配值) 2) 系统组成及特点; 3) 预计方法的选择; 4) 不可直接预计的产品清单及其理由; 5) 预计中“其他”项的百分比及其确定原则; 6) 任务可靠性预计时采用的任务可靠性模型; 7) 预计结果及薄弱环节分析; 8) 拟采取的改进措施及其效果分析; 9) 明确回答实现要求的可靠性指标的可能性。
4
基本概念( 基本概念(续)
贯穿产品生命周期的全过程; RAMS 贯穿产品生命周期的全过程; 工作包括设计、分析、 RAMS 工作包括设计、分析、试验和管理四个 方面,缺一不可; 方面,缺一不可; 工作需要全体工程技术人员来贯彻实施; RAMS 工作需要全体工程技术人员来贯彻实施; 工作应当与产品研发各阶段同步进行; RAMS 工作应当与产品研发各阶段同步进行; 工作要落实到产品的设计、工艺、 RAMS 工作要落实到产品的设计、工艺、制造 和使用维护中去。 和使用维护中去。
2 3 (a)
表决器
等效于
1
3
2
3
(b) 2/3( G ) 系统可靠性框图
21
几种典型的可靠性模型
22
2
发电机A 发电机
~ E
发电机C 发电机
设备B 设备
单向开关
1
E
4
~
(a)功能框图 功能框图
设备D 设备
(b)可靠性框图 可靠性框图
桥联系统示例
3
23
1 2 3 6
1
, 4
3 , 2
,
2/3(G)
51
采取的改进措施
1.提高元器件的质量等级,关键元器件进口 2.热设计 3.简化电路设计 4.改进工艺措施 5.进行有效的防震设计 6.进行降额设计
维修性:产品在规定的条件下和规定的时间内, 维修性:产品在规定的条件下和规定的时间内,
按规定的程序和方法进行维修时, 按规定的程序和方法进行维修时,保持或恢复到规 定状态的能力。维修性的概率度量亦称维修度。 定状态的能力。维修性的概率度量亦称维修度。
3
基本概念( 基本概念(续)
测试性: 测试性:产品能及时并准确地确定其状态 可工作、不可工作或性能下降) (可工作、不可工作或性能下降),并隔 离其内部故障的一种设计特性。 离其内部故障的一种设计特性。 安全性:系统不发生事故的能力; 安全性:系统不发生事故的能力; 保障性: 保障性:系统的设计特性和计划的保障资 源能满足产品使用要求的能力。 源能满足产品使用要求的能力。
43
工程中常用的可靠性预计方法
44
工程中常用的可靠性预计方法
45
工程中常用的可靠性预计方法
46
故障率计算模型 λp =λbKD 式中: λp—工作故障率; λb—基本故障率; K—环境因子; D—降额因子 K和D取值由工作经验确定。K可参考电子设备可靠 性预计手册GJB/Z 299C-2006中所列各种环境系 数。
26
发动 机1 液压 泵2 左发 动机
发动 机2 液压飞 控系统 电力分 配网
燃油系 统 备用手 动系统 环境控 制系统
应急燃 油系统 通用液 压系统 应急电 力系统
液压 泵1 右发 电机 超高频 通信
甚高频 通信 惯性 导航
雷达
武器控 制系统 大气数 据系统
武器
塔康 系统
备用 罗盘 自检
固定 增稳
11
其它可靠性设计分析方法
余度设计与容错技术 软件可靠性 健壮设计
12
可靠性的建模、分配、预计
可靠性模型的建立 可靠性的分配 可靠性的预计 可靠性设计准则
13
两个基本的概念
1)可靠性模型 可靠性框图及其数学模型 2)可靠性框图 对于复杂产品的一个或一个以上的功能模式, 用方框表示的各组成部分的故障或它们的组 合如何导致产品故障的逻辑图。
机体
起落架
27
发动 机1
燃油 系统 应急燃 油系统
液压 泵1
液压飞 控系统
发动 机2
通用 液压 系统
液压 泵2
备用手 动系统
右发 电机 左发 电机
电力分 配网 应急电 力系统 塔康 系统
环境控 制系统
超高频 通信 雷达 甚高频 通信
武器控 制系统
大气数 据系统 机体 备用 罗盘 固定 增稳 起落架
39
可靠性预计
可靠性预计的目的 可靠性预计和分配的关系 可靠性预计的程序 可靠性预计的方法 可靠性预计报告 注意事项
40
可靠性预计的目的
(1) (2) (3) (4) 对不同的设计方案进行比较; 发现设计中的薄弱环节; 为可靠性试验方案设计提供信息; 为可靠性分配、维护使用提供信息。
5 8 7
某系统任务可靠性框图
1’ 6
2’ 8 7
简化后的某系统任务可靠性框图
24
建立可靠性模型的步骤
1)产品定义 确定任务与任务剖面 系统功能分析 确定故障判据 确定任务时间及其基准 (占空因子d=单元工作时间/系统工作时间) 2)建立可靠性框图 3)建立相应的数学模型
25
注意事项
(1)正确区分产品的原理图和可靠性框图
41
可靠性预计和分配的关系
42
可靠性预计的程序
1) 明确系统定义:包括说明系统功能、系统任务和系 统各组成单元的接口; 2) 明确系统的故障判据; 3) 明确系统的工作条件; 4) 绘制系统的可靠性框图,可靠性框图绘制到最低一 级功能层次; 5) 建立系统可靠性数学模型; 6) 预计各单元设备的可靠性; 7) 根据系统可靠性模型预计其基本可靠性或任务可靠 性; 8) 将可靠性预计值与规定值进行比较,发现薄弱环节, 为改进设计提供依据。
38
注意事项
5) 应留有适当的分配余量,以尽可能减少对可靠性分 应留有适当的分配余量, 配指标的全局性更改,保证设计工作的顺利进行。 配指标的全局性更改,保证设计工作的顺利进行。 6) 电缆等接口部件及某些故障率很低的非电子产品, 电缆等接口部件及某些故障率很低的非电子产品, 可以不直接参加可靠性指标分配,可归并在“其他” 可以不直接参加可靠性指标分配,可归并在“其他” 项中一并考虑。 其他”项应占10-20%的比例,具 的比例, 项中一并考虑。“其他”项应占 的比例 体数值依实际情况确定。 体数值依实际情况确定。 7) 进行基本可靠性和任务可靠性指标分配时,应保证 进行基本可靠性和任务可靠性指标分配时, 基本可靠性指标分配值与任务可靠性指标分配值的协 调,使系统基本可靠性和任务可靠性指标同时得到满 足; 8) 应根据产品特点,选定适当分配方法进行分配。 应根据产品特点,选定适当分配方法进行分配。