七年级数学线段计算练习题

合集下载

人教版七年级数学上册《6.2.2线段的比较与运算》 同步练习题及答案

人教版七年级数学上册《6.2.2线段的比较与运算》 同步练习题及答案

人教版七年级数学上册《6.2.2线段的比较与运算》 同步练习题及答案一、单选题1.借助圆规,可得图中最长的线段是( )A .BAB .CAC .DAD .EA2.“把弯曲的公路改直”能缩短路程,解释这个现象的数学依据是( ) A .经过两点,有且仅有一条直线 B .经过一点有无数条直线 C .两点之间,线段最短D .垂线段最短3.若点C 在线段AB 上,线段5cm AB =,3cm BC =则线段AC 的长是( ) A .4cmB .8cmC .2cmD .1cm4.如图所示,点C 是线段AB 的中点,点D 在线段CB 上,且6AD BD -=,若18AB =,则CD 的长( )A .3B .4C .5D .65.如图,一只蚂蚁从“A ”处爬到“B ”处(只能向上、向右爬行),爬行路线共有( )A .3条B .4条C .5条D .6条6.台湾的省会为台北市,在地图上如果把城市看作一点,下列城市与台北市之间的距离最大的是( ) A .吉林市B .西安市C .海口市D .福州市7.如图,线段18cm AB =,点C 在线段AB 上,P ,Q 是线段AC 的三等分点,M ,N 是线段BC 的三等分点,则线段PN 的长为( )A .6B .9C .12D .158.B 是线段AD 上一动点,沿A 至D 的方向以2cm/s 的速度运动.C 是线段BD 的中点10cm AD =.在运动过程中,若线段AB 的中点为E .则EC 的长是( ) A .2cmB .5cmC .2cm 或5cmD .不能确定二、填空题9.已知点C 在线段AB 上6,2AB BC ==,则AC = .10.线段10cm AB =,点C 在线段AB 上,点M 、N 分别是线段AC BC 、的中点,则MN = . 11.P 为线段AB 上一点,且25AP AB =,M 是AB 的中点,若3cm PM =,则AB = . 12.已知点C 在线段AB 上20AC =,30BC =点M 是AC 的中点且点N 是BC 的三等分点,则线段MN 的长度为 .13.已知点M 是线段AB 上一点,若14AM AB =,点N 是直线AB 上的一动点,且AN BN MN -=,则MNAB= .三、解答题14.如图,已知线a 、b ,求作一条线段c ,使2c a b =-. 要求:不写画法,保留必要的作图痕迹.15.如图,A 、B 、C 、D 四点在一条直线上,根据图形填空:(1)图中共有线段_______条;(2)若C 是BD 的中点16cm AD =,2AB BC =求线段AC 的长.16.如图所示,A 、B 、C 是一条公路上的三个村庄,A ,B 间的路程为100km ,A ,C 间的路程为40km ,现欲在C ,B 之间建一个车站P ,设P ,C 之间的路程为km x .(1)若P 为线段BC 的中点,求AP 的长;(2)用含x 的代数式表示车站P 到三个村庄的路程之和;(3)若车站P 到三个村庄的路程之和为102km ,则车站应建在何处?(4)若要使车站P 到三个村庄的路程总和最小,问车站应建在何处?最短路程是多少?参考答案题号 1 2 3 4 5 6 7 8 答案 CCCAA ACB1.C【分析】用圆规量出四条线段,再进行比较即可.此题考查了比较线段的长短,会用圆规度量各线段是本题的关键. 【详解】通过用圆规比较图中的四条线段,其中最长的DA故选:C . 2.C【分析】本题主要考查了线段的性质,熟记两点之间,线段最短是解题的关键.根据“两点之间,线段最短”进行判断即可.【详解】解:“把弯曲的公路改直”能缩短路程,解释这个现象的数学依据是“两点之间,线段最短”. 故选:C . 3.C【分析】本题考查线段的加减,根据AC BC AB +=求解即可. 【详解】∵点C 在线段AB 上 ∵AC BC AB += ∵5cm AB = 3cm BC = ∵532cm AC AB BC =-=-= 故选:C . 4.A【分析】本题考查了与线段中点有关的计算,根据图示正确找到线段之间的和差关系是解题关键.根据192AC BC AB === 9,9AD AC CD CD BD BC CD CD =+=+=-=-即可求解. 【详解】解:∵点C 是线段AB 的中点18AB = ∵192AC BC AB === ∵9,9AD AC CD CD BD BC CD CD =+=+=-=- ∵6AD BD -=∵()9926CD CD CD +--== ∵3CD =故选:A 5.A【分析】只能向上或向右走,就是最短的路线,可以用列举的方法进行求解. 【详解】解:如图,根据规则可得:,,,A C D B A E D B A E F B →→→→→→→→→ 一共有3种不同的走法. 故选:A .【点睛】本题考查了线段问题,利用求最短路线的方法:清晰的分类是解题的关键. 6.A【分析】本题考查了点与点之间的距离,根据点与点之间的距离并结合生活常识即可得出答案. 【详解】解:在地图上如果把城市看作一点,与台北市之间的距离最大的是吉林市 故选:A . 7.C【分析】本题考查了两点间的距离,n 等分点的定义,数形结合是解题的关键.由三等分点的定义得23PC AC =23CN BC =然后由两点间的距离求解即可.【详解】解:∵P ,Q 是线段AC 的三等分点,M ,N 是线段BC 的三等分点 ∵23PC AC =23CN BC =∵22221812cm 3333PN PC CN AC BC AB =+=+==⨯=. 故选C . 8.B【分析】根据线段中点的性质,做出线段AD ,按要求标出各点大致位置,列出EB ,BC 的表达式,即可求出线段EC .【详解】设运动时间为t则AB=2t ,BD=10-2t∵C 是线段BD 的中点,E 为线段AB 的中点 ∵EB=2AB =t ,BC=2BD=5-t ∵EC=EB+BC=t+5-t=5cm 故选:B .【点睛】此题考查对线段中点的的理解和运用,涉及到关于动点的线段的表示方法,难度一般,理解题意是关键. 9.4【分析】本题主要考查了线段的和差计算,根据线段的和差关系列式求解即可. 【详解】解;∵点C 在线段AB 上 6,2AB BC == ∵624AC AB BC =-=-= 故答案为:4. 10.5cm /5厘米【分析】本题考查与线段中点有关的运算,根据线段中点得到12MC AC =,12NC BC = 结合MN MC NC=+求解即可. 【详解】解:如图∵点C 在线段AB 上,点M 、N 分别是线段AC BC 、的中点 ∵12MC AC =12NC BC =∵线段10cm AB = ∵()115cm 22MN MC NC AC BC AB =+=+== 故答案为:5cm . 11.30cm /30厘米【分析】本题考查线段的和差,线段的中点,根据线段中点的定义得到12AM AB =,从而根据线段的和差得到110PM AM AP AB =-=,即10AB PM =,即可解答. 【详解】解:如图∵点M 是AB 的中点2∵25AP AB =∵1212510PM AM AP AB AB AB =-=-=∵()1010330cm AB PM ==⨯=. 故答案为:30cm 12.30或20/20或30【分析】本题主要考查了线段中点的相关计算,线段的和差计算,解题的关键是数形结合,先求出1102AM MC AC ===,分两种情况:当点N 是靠近B 点的三等份点时,当点N 是靠近C 点的三等份点时,分别画出图形,求出结果即可.【详解】解:∵20AC =,点M 是AC 的中点 ∵1102AM MC AC === 当点N 是靠近B 点的三等份点时,如图所示:∵21030303MN CM CN =+=+⨯=; 当点N 是靠近C 点的三等份点时,如图所示:∵11030203MN CM CN =+=+⨯=综上分析可知,线段MN 的长是30或20. 故答案为:30或20.13.1或12【分析】分两种情况:当点N 在线段AB 上,当点N 在线段AB 的延长线上,然后分别进行计算即可解答. 【详解】解:分两种情况:当点N 在线段AB 上,如图:AN BN MN -= AN AM MN -=BN AM ∴=414BN AB 12MN AB AM BNAB 12MN AB; 当点N 在线段AB 的延长线上,如图:AN BN MN -= AN BN AB -=AB MN ∴=1MNAB∴= 综上所述:MNAB的值为1或12故答案为:1或12.【点睛】本题考查了两点间的距离,分两种情况进行计算是解题的关键. 14.作图见详解【分析】画射线AM ,用尺规在射线AM 上取AB a ,取BC a =,再以C 点为起点,向反方向取CD b =,则AD 即为所求线段c .【详解】解:如图如下AB a ,BC a = 以C 点为起点,向反方向,即CB 方向取CD b = ∵2AD c a b ==-.【点睛】本题主要考查线段的加减,掌握尺规作图的方法是解题的关键. 15.(1)6; (2)12cm .【分析】本题考查线段的和差和中点有关的计算,熟练掌握线段和差倍分的计算是解题的关键. (1)根据线段定义数出线段即可;(2)根据图形,由线段和差和线段中点求解即可.【详解】(1)解:图中线段有AB AC AD BC BD CD 、、、、、,共6条线段故答案为:6;(2)解:∵C 是BD 中点 ∵12BC CD BD == ∵2AB BC =又∵AD AB BC CD =++ 16cm AD = ∵162BC BC BC =++ ∵4cm BC =∵4cm CD = 28cm AB BC == ∵12cm AC AB BC =+=. 16.(1)70km (2)()100km x +(3)车站应建在村庄C 的右侧2km 处(4)车站建在村庄C 处,路程和最小,最短路程是100km【分析】本题考查了线段长的计算、代数式的应用、一元一次方程的应用等知识,根据题意画出图形分类讨论是解题关键.(1)根据AC BC AB +=计算出BC ,再根据P 为线段BC 的中点,即可解答; (2)由题意列出车站P 到三个村庄的路程,再求和即可; (3)由题意得100102x +=解方程即可得到答案;(4)由题意得车站到三个村庄的总路程为()100100x +=,根据代数式的特点求出最小值,找到车站位置即可.【详解】(1)解:100km,40km,AB AC AC BC AB ==+=∵()1004060km BC AB AC =-=-=. 又∵P 为线段BC 的中点 ∵()30km PB BC ==∵()1003070km AP AB PB =-=-=; (2)解:车站P 到三个村庄的路程之和为()()()4010040100km PA PB PC x x x x ⎡⎤++=++-++=+⎣⎦;(3)解:若车站P 到三个村庄的路程之和为102km ,则100102x += 故2x =即车站应建在村庄C 的右侧2km 处;(4)解:要使车站P 到三个村庄的路程总和最小,即100x +最小,故取0x = 这时车站建在村庄C 处,路程和最小,最短路程是100km .。

人教版数学七年级上册第四章几何图形初步—线段的计算热点归纳【含答案】

人教版数学七年级上册第四章几何图形初步—线段的计算热点归纳【含答案】

线段的计算热点题型归纳一、直接计算例 如图,AB=40,点C 为AB 的中点,点D 为CB 上的一点,点E 是BD 的中点,且EB=5,求CD 的长。

解:因为AB=10.点C 为AB 的中点,所以CB=AB=×40=20.1212因为点E 为BD 的中点,EB=5,所以BD=2EB=10,所以CD=CB-BD=20-10=10巩固练习:1.如图,P 是线段AB 上一点,点M 、N 分别为AB 、AP 的中点,若AB=16,BP=6,求线段MN 的长2.如图,已知线段AD=6cm,线段AC=BD=4cm,E 、F 分别是线段AB 、CD 的中点,求线段EF 的长。

二、方程思想例.如图,线段AB 上有两点M 、将AB 分成2:3两部分,点N 将AB分成4:1两部分,且线段MN=8cm,则AM 、NB 的长各为多少?解:依题意,设AM=2X,那么BM=3X,AB=5X.由AN:NB=4:1,得AN=AB=4X,BN=AB=x,4515即有4x-2x=8,解得x=4,所以AM=2x=2×4=8(cm),则AM 、BN 的长分别为8cm 、4cm.变式练习:如图,线段AB 上有两点M,N,AM:MB=5:11,AN:NB=5:7,MN=1.5,求AB 的长。

巩固练习:1.如图,线段AB 被点C 、D 分成了3:4:5三部分,且AC 的中点M 和DB 的中点N 之间的距离是40cm,求AB 的长。

2.如图,已知线段AB 上有两点C 、D,AD=35,BC=44,AC=,求23BD 线段AB 的长。

三、分类讨论的思想例 已知线段AB=14cm,在直线AB 上有一点C,且BC=4cm,,M 是线段AC 的中点,求线段AM 的长。

解:(1)当点C 在线段AB 上时因为M 是线段AC 的中点,所以AM=AC,又因为C=AB-12BC,AB=14cm,BC=4cm,所以AM=(AB-AC)= (14-4)=5cm.1212(2)当点C 在线段AB 的延长线上时,如图因为M 是线段AC 的中点,所以AM=AC,又因为12AC=AB+C,AB=14cm,BC=4cm,所以AM=(AB+C)= (14+4)=9cm.1212变式练习已知线段AB 、BC 在同一直线上,AB=5,BC=2,求AC 的长。

七年级数学上册《第四章-几何图形初步》有关线段的计算问题练习题(含知识点)

七年级数学上册《第四章-几何图形初步》有关线段的计算问题练习题(含知识点)

2021-2022学年度 秋季 七年级上学期 人教版数学 《第四章 几何图形初步》有关线段的计算问题练习题(新版)新人教版1. 如图,4AB cm =,3BC cm =,如果O 是线段AC 的中点,求线段OA 、OB 的长度.2. 如图,已知C 、D 是线段AB 上的两点,36AB cm =,且D 为AB 的中点,14CD cm =,求线段BC 和AD 的长3. 如图所示,已知线段80AB cm =,M 为AB 的中点,P 在MB 上,N 为PB 的中点,且14NB cm =,求PA 的长.4. (1)如图所示,点C 在线段A B 上,线段6AC cm =,4BC cm =,点M 和N 分别是AC 和BC 的中点,求线段MN 的长度. (2)根据(1)的计算过程和结果,设AB a =,C 是线段AB 上一点,点M 和N 分别是AC 和B C 的中点,你能猜出MN 的长度吗?请用一句简洁的话表述你发现的规律.5. 已知P 为线段AB 上的一点,且25AP AB =,M 是AB 的中点,若2PM cm =,求AB 的长.人教版数学七年级上册 6. 如图,C 、D 是线段AB 上的两点,已知14BC AB =,13AD AB =,12AB cm =,求CD 、BD 的长.7. 在一条直线上顺次取A 、B 、C 三点,已知8.9. 人教版七年级数学上册必须要记、背的知识点1.有理数: (1)凡能写成)0p q ,p (p q ≠为整数且形式的数,都是有理数,整数和分数统称有理数. 注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数⇔ 0和正整数; a >0 ⇔ a 是正数; a <0 ⇔ a 是负数;a ≥0 ⇔ a 是正数或0 ⇔ a 是非负数; a ≤ 0 ⇔ a 是负数或0 ⇔ a 是非正数.2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; (2)注意: a-b+c 的相反数是-a+b-c ;a-b 的相反数是b-a ;a+b 的相反数是-a-b ; (3)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数. (4)相反数的商为-1.(5)相反数的绝对值相等4.绝对值:(1)正数的绝对值等于它本身,0的绝对值是0,负数的绝对值等于它的相反数; 注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或 ⎩⎨⎧≤-≥=)0()0(a a a a a ;(3)0a 1a a>⇔= ; 0a 1a a <⇔-=;(4) |a|是重要的非负数,即|a|≥0;5.有理数比大小: (1)正数永远比0大,负数永远比0小;(2)正数大于一切负数;(3)两个负数比较,绝对值大的反而小;(4)数轴上的两个数,右边的数总比左边的数大;(5)-1,-2,+1,+4,-0.5,以上数据表示与标准质量的差, 绝对值越小,越接近标准。

七年级数学人教版(上册)小专题(十四)线段的计算

七年级数学人教版(上册)小专题(十四)线段的计算

(3)若点 C 为线段 AB 上任意一点,且 AB=n cm,其他条件不变, 你能猜想 MN 的长度吗?并用一句简洁的话描述你发现的结论.
1n 解:猜想:MN=2AB=2 cm. 结论:若点 C 为线段 AB 上一点,且点 M,N 分别是 AC,BC
1 的中点,则 MN=2AB.
【变式 1】 若 MN=k cm,求线段 AB 的长.
(1)若 AB=10 cm,2 cm<AM<4 cm,当点 C,D 运动了 2 s 时, 求 AC+MD 的值.
解:(1)当点 C,D 运动了 2 s 时,CM=2 cm,BD=6 cm, 因为 AB=10 cm, 所以 AC+MD=AB-CM-BD=10-2-6=2(cm).
1 (2)若点 C,D 运动时,总有 MD=3AC,则 AM= 4 AB.
n 解:MN=2 cm 成立.理由如下: 当点 C 在线段 AB 的延长线上时,如图.
因为点 M,N 分别是 AC,BC 的中点,
1
1
所以 MC=2AC,CN=2BC.
又因为 MN=MC-CN,
1
1n
所以 MN=2(AC-BC)=2AB=2 cm.
如图,如果点 C 在线段 AB 所在的直线上,点 M,N 分别是 AC, 1
(1)当 0<t<5 时,用含 t 的式子填空: BP= 5-t ,AQ= 10-2t .
(2)当 t=2 时,求 PQ 的值. 解:(2)当 t=2 时,AP=1×2=2<5,点 P 在线段 AB 上;OQ=2×2 =4<10,点 Q 在线段 OA 上,如图所示:
此时 PQ=OP-OQ=(OA+AP)-OQ=(10+2)-4=8.
第四章 几何图形初步
小专题(十四) 线段的计算

部编数学七年级上册专题29和数轴上册的线段有关的计算(解析版)含答案

部编数学七年级上册专题29和数轴上册的线段有关的计算(解析版)含答案

专题29 和数轴上的线段有关的计算1.已知:在一条东西向的双轨铁路上迎面驶来一快一慢两列火车,快车长2AB =(单位长度).慢车长4CD =(单位长度),设正在行驶途中的某一时刻,如图,以两车之间的某点O 为原点,取向右方向为正方向画数轴,此时快车头A 在数轴上表示的数是a ,慢车头C 在数轴上表示的数是b ,若快车AB 以6个单位长度/秒的速度向右匀速继续行驶,同时慢车CD 以4个单位长度/秒的速度向左匀速继续行驶,且|6|a +与2(18)b -互为相反数.(1)求此时刻快车头A 与慢车头C 之间相距多少单位长度?(2)从此时刻开始算起,问再行驶多少秒两列火车行驶到车头A 、C 相距8个单位长度?(3)此时在快车AB 上有一位爱动脑筋的七年级学生乘客P ,他发现行驶中有一段时间,他的位置P 到两列火车头A 、C 的距离和加上到两列火车尾B 、D 的距离和是一个不变的值(即PA PC PB PD +++为定值),你认为学生P 发现的这一结论是否正确?若正确,求出定值及所持续的时间;若不正确,请说明理由.【解答】解:(1)|6|a +Q 与2(18)b -互为相反数,2|6|(18)0a b \++-=,60a \+=,180b -=,解得6a =-,18b =,\此时刻快车头A 与慢车头C 之间相距18(6)24--=单位长度;(2)(248)(64)1610 1.6-¸+=¸=(秒),或(248)(64)3210 3.2+¸+=¸=(秒),答:再行驶1.6秒钟或3.2秒钟两列火车行驶到车头AC 相距8个单位长度;(3)2PA PB AB +==Q ,当P 在CD 之间时,PC PD +是定值4,4(64)4100.4t =¸+=¸=(秒),此时()()246PA PC PB PD PA PB PC PD +++=+++=+=(单位长度),故这个时间是0.4秒,定值是6单位长度.2.如图,点A 、B 和线段CD 都在数轴上,点A 、C 、D 、B 起始位置所表示的数分别为2-、0、3、12;线段CD 沿数轴的正方向以每秒1个单位的速度移动,移动时间为t 秒.(1)当0t =秒时,AC 的长为 2 ,当2t =秒时,AC 的长为 .(2)用含有t 的代数式表示AC 的长为 .(3)当t = 秒时5AC BD -=,当t = 秒时15AC BD +=.(4)若点A 与线段CD 同时出发沿数轴的正方向移动,点A 的速度为每秒2个单位,在移动过程中,是否存在某一时刻使得2AC BD =,若存在,请求出t 的值;若不存在,请说明理由.【解答】解:(1)当0t =秒时,|20||2|2AC =--=-=;当2t =秒时,移动后C 表示的数为2,|22|4AC \=--=.故答案为:2;4.(2)点A 表示的数为2-,点C 表示的数为t ;|2|2AC t t \=--=+.故答案为2t +.(3)t Q 秒后点C 运动的距离为t 个单位长度,点D 运动的距离为t 个单位长度,C \表示的数是t ,D 表示的数是3t +,2AC t \=+,|12(3)|BD t =-+,5AC BD -=Q ,2|12(3)|5t t \+--+=.解得:6t =.\当6t =秒时5AC BD -=;15AC BD +=Q ,2|12(3)|15t t \++-+=,11t =;当11t =秒时15AC BD +=,故答案为6,11;(4)假设能相等,则点A 表示的数为22t -,C 表示的数为t ,D 表示的数为3t +,B 表示的数为12,|22||2|AC t t t \=--=-,|312||9|BD t t =+-=-,2AC BD =Q ,|2|2|9|t t \-=-,解得:116t =,2203t =.故在运动的过程中使得2AC BD =,此时运动的时间为16秒和203秒.3.如图,数轴上点A ,B 表示的有理数分别为6-,3,点P 是射线AB 上一个动点(不与点A ,B 重合).M 是线段AP 靠近点A 的三等分点,N 是线段BP 靠近点B 的三等分点.(1)若点P 表示的有理数是0,那么MN 的长为 6 ;若点P 表示的有理数是6,那么MN 的长为 .(2)点P 在射线AB 上运动(不与点A ,B 重合)的过程中,MN 的长是否发生改变?若不改变,请写出求MN 的长的过程;若改变,请说明理由.【解答】解:(1)若点P 表示的有理数是0(如图1),则6AP =,3BP =.M Q 是线段AP 靠近点A 的三等分点,N 是线段BP 靠近点B 的三等分点.243MP AP \==,223NP BP ==,6MN MP NP \=+=;若点P 表示的有理数是6(如图2),则12AP =,3BP =.M Q 是线段AP 靠近点A 的三等分点,N 是线段BP 靠近点B 的三等分点.283MP AP \==,223NP BP ==,6MN MP NP \=-=.故答案为:6;6.(2)MN 的长不会发生改变,理由如下:设点P 表示的有理数是(6a a >-且3)a ¹.当63a -<<时(如图1),6AP a =+,3BP a =-.M Q 是线段AP 靠近点A 的三等分点,N 是线段BP 靠近点B 的三等分点.22(6)33MP AP a \==+,22(3)33NP BP a ==-,6MN MP NP \=+=;当3a >时(如图2),6AP a =+,3BP a =-.M Q 是线段AP 靠近点A 的三等分点,N 是线段BP 靠近点B 的三等分点.22(6)33MP AP a \==+,22(3)33NP BP a ==-,6MN MP NP \=-=.综上所述:点P 在射线AB 上运动(不与点A ,B 重合)的过程中,MN 的长为定值6.4.已知数轴上三点A ,O ,B 表示的数分别为6,0,4-,动点P 从A 出发,以每秒6个单位的速度沿数轴向左匀速运动.(1)当点P 到点A 的距离与点P 到点B 的距离相等时,点P 在数轴上表示的数是 1 ;(2)另一动点R 从B 出发,以每秒4个单位的速度沿数轴向左匀速运动,若点P 、R 同时出发,问点P 运动多少时间追上点R ?(3)若M 为AP 的中点,N 为PB 的中点,点P 在运动过程中,线段MN 的长度是否发生变化?若发生变化,请你说明理由;若不变,请你画出图形,并求出线段MN 的长度.【解答】解:(1)A Q ,B 表示的数分别为6,4-,10AB \=,PA PB =Q ,\点P 表示的数是1,故答案为:1;(2)设点P 运动x 秒时,在点C 处追上点R ,则:6AC x = 4BC x =,10AB =,AC BC AB -=Q ,6410x x \-=,解得,5x =,\点P 运动5秒时,追上点R ;(3)线段MN 的长度不发生变化,理由如下分两种情况:①当点P 在A 、B 之间运动时(如图①1111):()52222MN MP NP AP BP AP BP AB =+=+=+==.②当点P 运动到点B 左侧时(如图②),1111()52222MN PM PN AP BP AP BP AB =-=-=-==;综上所述,线段MN 的长度不发生变化,其长度为5.5.如图,数轴上A ,B 两点对应的有理数分别为10-和20,点P 从点O 出发,以每秒1个单位长度的速度沿数轴正方向匀速运动,点Q 同时从点A 出发,以每秒2个单位长度的速度沿数轴正方向匀速运动,设运动时间为t 秒.(1)分别求当2t =及12t =时,对应的线段PQ 的长度;(2)当5PQ =时,求所有符合条件的t 的值,并求出此时点Q 所对应的数;(3)若点P 一直沿数轴的正方向运动,点Q 运动到点B 时,立即改变运动方向,沿数轴的负方向运动,到达点A 时,随即停止运动,在点Q 的整个运动过程中,是否存在合适的t 值,使得8PQ =?若存在,求出所有符合条件的t 值,若不存在,请说明理由.【解答】解:(1)当运动时间为t 秒时,点P 对应的数为t ,点Q 对应的数为210t -,|(210)||10|PQ t t t \=--=-.当2t =时,|210|8PQ =-=;当12t =时,|1210|2PQ =-=.答:当2t =时,线段PQ 的长度为8;当12t =时,线段PQ 的长度为2.(2)根据题意得:|10|5t -=,解得:5t =或15t =,当5t =时,点Q 对应的数为2100t -=;当15t =时,点Q 对应的数为21020t -=.答:当5PQ =时,t 的值为5或15,此时点Q 所对应的数为0或20.(3)当运动时间为t 秒时,点P 对应的数为t ,点Q 对应的数为210(015)202(15)(1530)t t t t -<ìí--<î…….当015t <…时,|(210)||10|PQ t t t =--=-,|10|8t -=,解得:12t =,218t =(舍去);当1530t <…时,|[202(15)]||350|PQ t t t =---=-,|350|8t -=,解得:3583t =,414t =(舍去).综上所述:在点Q 的整个运动过程中,存在合适的t 值,使得8PQ =,此时t 的值为2或583.6.在数轴上点A 表示的数是8,B 是数轴上一点,且12AB =,动点P 从点A 出发,以每秒6个单位长度的速度沿数轴向左运动,设运动时间为(0)t t >秒.(1)①写出数轴上点B 表示的数,②写出点P 表示的数(用含t 的代数式表示)(2)动点Q 从点B 出发,以每秒4个单位长度的速度沿数轴向左匀速前进,若点P ,Q 同时出发,问点P 运动多少秒时追上点Q ?(3)在(2)的情况下,若M 为AP 的中点,N 为PB 的中点,点P 在运动的过程中,线段MN 的长度是否发生变化?若变化,请说明理由,若不变,请画出图形,并求出线段MN 的长.【解答】解:(1)①8124-=-,81220==,\数轴上点B 表示的数4-或20,②动点P 从点A 出发,以每秒6个单位长度的速度沿数轴向左运动,则点P 表示的数86t -;(2)分两种情况:当点B 在点A 的左侧时,点P 运动追上点Q ,即8644t t -=--,解得6t =;当点B 在点A 的右侧时,点P 运动追上点Q ,即86204t t -=-,解得6t =-(舍去),\点P 运动6秒追上点Q ;(3)分两种情况:①若点P 在AB 之间运动,则M Q 为AP 的中点,N 为PB 的中点,12PM AP \=,12PN BP =,11()622MN PM PN AP BP AB \=+=+==;②若点P 在AB 的延长线上运动,则M Q 为AP 的中点,N 为PB 的中点,12PM AP \=,12PN BP =,11()622MN PM PN AP BP AB \=-=-==;综上所述,点P 在运动的过程中,MN 的长度不会发生变化.7.A ,B 两点在数轴上的位置如图所示,其中点A 对应的有理数为4-,且10AB =.动点P 从点A 出发,以每秒2个单位长度的速度沿数轴正方向运动,设运动时间为t 秒(0)t >.(1)当1t =时,AP 的长为 2 ,点P 表示的有理数为 ;(2)当2PB =时,求t 的值;(3)M 为线段AP 的中点,N 为线段PB 的中点.在点P 运动的过程中,线段MN 的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN 的长.【解答】解:(1)设运动时间为t 秒,则2AP t =,点P 表示的有理数为42t -+,当1t =时,2AP =,点P 表示的有理数为422-+=-,故答案为:2,2-;(2)当点P 在点B 左侧时,10AB =Q ,2AP t =,102PB t \=-,由题意得:1022t -=,解得:4t =;当点P 在点B 右侧时,由题意可得2102t -=,解得:6t =;综上,4t =或6.(3)如图1,当点P 在线段AB 上时,1111()52222MN MP PN AP PB AP PB AB =+=+=+==;如图2,当点P 在AB 延长线上时,1111()52222MN MP BP AP PB AP PB AB =-=-=-==;综上所述,线段MN 的长度不发生变化,其值为5.8.如图,有两段线段2AB =(单位长度),1CD =(单位长度)在数轴上运动.点A 在数轴上表示的数是12-,点D 在数轴上表示的数是15.(1)点B 在数轴上表示的数是 10- ,点C 在数轴上表示的数是 ,线段BC = (2)若线段AB 以1个单位长度/秒的速度向右匀速运动,同时线段CD 以2个单位长度/秒的速度向左匀速运动.设运动时间为t 秒,若6BC =(单位长度),求t 的值(3)若线段AB 以1个单位长度/秒的速度向左匀速运动,同时线段CD 以2个单位长度/秒的速度也向左运动.设运动时间为t 秒,当024t <<时,设M 为AC 中点,N 为BD 中点,则线段MN 的长为 .【解答】解:(1)2AB =Q ,点A 在数轴上表示的数是12-,\点B 在数轴上表示的数是10-;1CD =Q ,点D 在数轴上表示的数是15,\点C 在数轴上表示的数是14.14(10)24BC \=--=.故答案为:10-;14;24.(2)当运动时间为t 秒时,点B 在数轴上表示的数为10t -,点C 在数轴上表示的数为142t -,|10(142)||324|BC t t t \=---=-.6BC =Q ,|324|6t \-=,解得:16t =,210t =.答:当6BC =(单位长度)时,t 的值为6或10.(3)当运动时间为t 秒时,点A 在数轴上表示的数为12t --,点B 在数轴上表示的数为10t --,点C 在数轴上表示的数为142t -,点D 在数轴上表示的数为152t -,024t <<Q ,\点C 一直在点B 的右侧.M Q 为AC 中点,N 为BD 中点,\点M 在数轴上表示的数为232t -,点N 在数轴上表示的数为532t -,53233222t t MN --\=-=.故答案为:32.9.如图,A ,B 两点在数轴上,点A 表示的数为10-,4OB OA =,点M 以每秒2个单位长度的速度从点A 开始向左运动,点N 以每秒3个单位长度的速度从点B 开始向左运动(点M 和点N 同时出发)(1)数轴上点B 对应的数是 40 线段AB 的中点C 对应的数是 (2)经过几秒,点M ,点N 到原点的距离相等(3)当M 运动到什么位置时,点M 与点N 相距20个单位长度?【解答】解:(1)Q 点A 表示的数为10-,10OA \=,4OB OA =Q ,40OB \=,\数轴上点B 对应的数是40,线段AB 的中点C 对应的数是15;故答案为:40,15;(2)设经过x 秒,点M 、点N 分别到原点O 的距离相等①点M 、点N 在点O 两侧,则102403x x +=-,解得6x =;②点M 、点N 重合,则340102x x -=+,解得50x =.所以经过6秒或50秒,点M 、点N 分别到原点O 的距离相等;(3)设经过t 秒,点M 与点N 相距20个单位长度,①502320t t +-=,解得30t =.此时M 点在70-处,②3(502)20t t -+=,解得70t =.此时M 点在150-处,\当M 运动到70-或150-的位置时,点M 与点N 相距20个单位长度.10.如图,已知数轴上有A 、B 、C 三个点,它们表示的数分别是18,8,10-.(1)填空:AB = 10 ,BC = ;(2)若点A 以每秒1个单位长度的速度向右运动,同时,点B 和点C 分别以每秒2个单位长度和5个单位长度的速度向左运动.试探索:BC AB -的值是否随着时间t 的变化而改变?请说明理由;(3)现有动点P 、Q 都从A 点出发,点P 以每秒1个单位长度的速度向终点C 移动;当点P 移动到B 点时,点Q 才从A 点出发,并以每秒3个单位长度的速度向左移动,且当点P 到达C 点时,点Q 就停止移动.设点P 移动的时间为t 秒,试用含t 的代数式表示P 、Q 两点间的距离.【解答】解:(1)18810AB =-=,8(10)18BC =--=,故答案为:10;18;(2)不变,由题意得,102103AB t t t =++=+,1825183BC t t t =-+=+,8BC AB -=,故BC AB -的值不随着时间t 的变化而改变;(3)当010t <…时,PQ t =,当1015t <…时,3(10)302PQ t t t =--=-,当1528t <…时,3(10)230PQ t t t =--=-,故P 、Q 两点间的距离为t 或302t -或230t -.11.课题研究:如图所示,一个点从数轴上的原点开始,先向右移动3个单位长度,再向左移动5个单位长度,可以看到终点表示的数是2-,已知点A ,B 是数轴上的点,请参照下图并思考.(1)如果点A 表示数3-,将点A 向右移动7个单位长度,那么终点B 表示的数是 4 ,A ,B 两点间的距离是 .(2)如果点A 表示数3,将A 点向左移动7个单位长度,再向右移动5个单位长度,那么终点B 表示的数是 ,A ,B 两点间的距离为 .(3)如果点A 表示数4-,将A 点向右移动2008个单位长度,再向左移动2009个单位长度,那么终点B 表示的数是 ,A ,B 两点间的距离是 .【解答】解:(1)Q 点A 表示数3-,\点A 向右移动7个单位长度,终点B 表示的数是374-+=,A ,B 两点间的距离是|34|7--=;故答案为:4,7;(2)Q 点A 表示数3,\将A 点向左移动7个单位长度,再向右移动5个单位长度,那么终点表示的数是3751-+=,A ,B 两点间的距离为312-=;故答案为:1,2;(3)Q 点A 表示数4-,\将A 点向右移动2008个单位长度,再向左移动2009个单位长度,那么终点B 表示的数是4200820095-+-=-,A 、B 两点间的距离是|45|1-+=;故答案为:5-,1.12.已知数轴上有A 、B 、C 三个点对应的数分别是a 、b 、c ,且满足2|24||10|(10)0a b c ++++-=;动点P 从A 出发,以每秒1个单位的速度向终点C 移动,设移动时间为t 秒.(1)求a 、b 、c 的值;(2)若点P 到A 点距离是到B 点距离的2倍,求点P 的对应的数;(3)当点P 运动到B 点时,点Q 从A 点出发,以每秒3个单位的速度向C 点运动,Q 点到达C 点后,再立即以同样的速度返回,运动到终点A .在点Q 开始运动后第几秒时,P 、Q 两点之间的距离为4?请说明理由.【解答】解:(1)2|24||10|(10)0a b c ++++-=Q ,240a \+=,100b +=,100c -=,解得:24a =-,10b =-,10c =;(2)10(24)14---=,①点P 在AB 之间,22814213AP =´=+,28442433-+=-,点P 的对应的数是443-;②点P 在AB 的延长线上,14228AP =´=,24284-+=,点P 的对应的数是4;(3)当P 点在Q 点的右侧,且Q 点还没追上P 点时,3414t t +=+,解得5t =;当P 在Q 点左侧时,且Q 点追上P 点后,3414t t -=+,解得9t =;当Q 点到达C 点后,当P 点在Q 点左侧时,14433434t t +++-=,12.5t =;当Q 点到达C 点后,当P 点在Q 点右侧时,14433434t t +-+-=,解得14.5t =,综上所述:当Q 点开始运动后第5、9、12.5、14.5秒时,P 、Q 两点之间的距离为4.13.【背景知识】数轴是初中数学的一个重要工具,利用数轴可以将数与形完美地结合.研究数轴我们发现了许多重要的规律:若数轴上点A 、点B 表示的数分别为a 、b ,则A ,B 两点之间的距离||AB a b =-,线段AB 的中点表示的数为2a b +.【问题情境】如图,数轴上点A 表示的数为2-,点B 表示的数为8,点P 从点A 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,同时点Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t 秒(0)t >.【综合运用】(1)填空:①A 、B 两点间的距离AB = 10 ,线段AB 的中点表示的数为 ;②用含t 的代数式表示:t 秒后,点P 表示的数为 ;点Q 表示的数为 .(2)求当t 为何值时,P 、Q 两点相遇,并写出相遇点所表示的数;(3)求当t 为何值时,12PQ AB =;(4)若点M 为PA 的中点,点N 为PB 的中点,点P 在运动过程中,线段MN 的长度是否发生变化?若变化,请说明理由;若不变,请求出线段MN 的长.【解答】解:(1)①10,3;②23t -+,82t -;(2)Q 当P 、Q 两点相遇时,P 、Q 表示的数相等2382t t \-+=-,解得:2t =,\当2t =时,P 、Q 相遇,此时,232324t -+=-+´=,\相遇点表示的数为4;(3)t Q 秒后,点P 表示的数23t -+,点Q 表示的数为82t -,|(23)(82)||510|PQ t t t \=-+--=-,又1110522PQ AB ==´=,|510|5t \-=,解得:1t =或3,\当:1t =或3时,12PQ AB =;(4)Q 点M 表示的数为2(23)3222t t -+-+=-,点N 表示的数为8(23)3322t t +-+=+,3333|(2)(3)||23|52222t t t t MN \=--+=---=.14.如图,数轴上的点O 和A 分别表示0和10,点P 是线段OA 上一动点,沿O A O ®®以每秒2个单位的速度往返运动1次,B 是线段OA 的中点,设点P 运动时间为t 秒(010)t …….(1)线段BA 的长度为 5 ;(2)当3t =时,点P 所表示的数是 ;(3)求动点P 所表示的数(用含t 的代数式表示);(4)在运动过程中,若OP 中点为Q ,则QB 的长度是否发生变化?若不变,请求出它的值;若变化,请直接用含t 的代数式QB 的长度.【解答】解:(1)B Q 是线段OA 的中点,152BA OA \==;故答案为:5;(2)当3t =时,点P 所表示的数是236´=,故答案为:6;(3)当05t ……时,动点P 所表示的数是2t ,当510t ……时,动点P 所表示的数是202t -;(4)QB 的长度发生变化,当05t ……时,5QB t =-,当510t ……时,15(202)52QB t t =--=-.15.已知数轴上有三点A 、B 、C ,其位置如图1所示,数轴上点B 表示的数为40-,120AB =,2AC AB=(1)图1中点C 在数轴上对应的数是 160- (2)如图2,动点P 、Q 两点同时从C 、A 出发向右运动,同时动点R 从点A 向左运动,已知点P 的速度是点R 的速度的3倍,点Q 的速度是点R 的速度2倍少5个单位长度/秒,点P 在点Q 左侧运动时,经过5秒,点P 、Q 之间的距离与点Q 、R 之间的距离相等,求动点Q 的速度(3)如图3,若T 点是A 点右侧一点,点T 在数轴上所表示的数为n ,TB 的中点为M ,N 为TA 的4等分点且靠近于T 点,若2TM AN =,求n 的值.【解答】解:(1)120AB =Q ,点B 表示的数为40-,\点A 表示的数为80.2AC AB =Q ,\点C 表示的数为801202160-´=-.故答案为:160-.(2)设点R 的速度为x 个单位长度/秒,则点P 的速度为3x 个单位长度/秒,点Q 的速度为(25)x -个单位长度/秒,当点P 在点Q 左边时,P 、R 相遇时QP QR =,5(3)240x x AC +==,解得12x =,2524519x -=-=,\点Q 的速度为19个单位长度/秒,(3)设AT y =,TB Q 的中点为M ,111(120)60222TM TB y y \==+=+,N Q 为TA 的4等分点且靠近于T 点,34AN y \=,2TM AN =Q ,136022y y \+=,解得60y =,8060140n \=+=.16.如图,数轴上线段2AB =(单位长度),4CD =(单位长度),点A 在数轴上表示的数是10-,点C 在数轴上表示的数是16.若线段AB 以6个单位长度/秒的速度向右匀速运动,同时线段CD 以2个单位长度/秒的速度向左匀速运动.(1)问运动多少时8BC =(单位长度)?(2)当运动到8BC =(单位长度)时,点B 在数轴上表示的数是 4或16 ;(3)P 是线段AB 上一点,当B 点运动到线段CD 上时,是否存在关系式3BD AP PC-=,若存在,求线段PD 的长;若不存在,请说明理由.【解答】解:(1)设运动t 秒时,8BC =单位长度,①当点B 在点C 的左边时,由题意得:68224t t ++=解得:2t =;②当点B 在点C 的右边时,由题意得:68224t t -+=解得:4t =.(2)当运动2秒时,点B 在数轴上表示的数是4;当运动4秒时,点B 在数轴上表示的数是16.(3)方法一:存在关系式3BD AP PC-=.设运动时间为t 秒,1)当3t =时,点B 和点C 重合,点P 在线段AB 上,02PC <…,且4BD CD ==,3222AP PC AB PC PC +=+=+,当1PC =时,3BD AP PC =+,即3BD AP PC-=;2)当1334t <<时,点C 在点A 和点B 之间,02PC <<,①点P 在线段AC 上时,4BD CD BC BC =-=-,32222AP PC AC PC AB BC PC BC PC +=+=-+=-+,当1PC =时,有3BD AP PC =+,即3BD AP PC -=;点P 在线段BC 上时,4BD CD BC BC =-=-,34424AP PC AC PC AB BC PC BC PC +=+=-+=-+,当12PC =时,有3BD AP PC =+,即3BD AP PC-=;3)当134t =时,点A 与点C 重合,02PC <…,2BD CD AB =-=,34AP PC PC +=,当12PC =时,有3BD AP PC =+,即3BD AP PC-=;4)当13742t <<时,04PC <<,4BD CD BC BC =-=-,3424AP PC AB BC PC BC PC +=-+=-+,12PC =时,有3BD AP PC =+,即3BD AP PC-=.P Q 在C 点左侧或右侧,PD \的长有2种可能,即5或3.5.方法二:设线段AB 未运动时点P 所表示的数为x ,B 点运动时间为t ,则此时C 点表示的数为162t -,D 点表示的数为202t -,A 点表示的数为106t -+,B 点表示的数为86t -+,P 点表示的数为6x t +,202(86)288BD t t t \=---+=-,6(106)10AP x t t x =+--+=+,|162(6)||168|PC t x t t x =--+=--,202(6)20820(8)PD t x t t x t x =--+=--=-+,Q 3BD AP PC-=,3BD AP PC \-=,288(10)3|168|t x t x \--+=--,即:1883|168|t x t x --=--,①当C 点在P 点右侧时,1883(168)48243t x t x t x --=--=--,815x t \+=,20(8)20155PD t x \=-+=-=;②当C 点在P 点左侧时,1883(168)48243t x t x t x --=---=-++,3382x t \+=,3320(8)20 3.52PD t x \=-+=-=;PD \的长有2种可能,即5或3.5.17.已知A 、B 两点在数轴上表示的数为a 和b ,M 、N 均为数轴上的点,且OA OB <.(1)若A 、B 的位置如图所示,试化简:||||||||a b a b a b -+++-.(2)如图,若||||8.9a b +=,3MN =,求图中以A 、N 、O 、M 、B 这5个点为端点的所有线段长度的和;(3)如图,M 为AB 中点,N 为OA 中点,且215MN AB =-,3a =-,若点P 为数轴上一点,且23PA AB =,试求点P 所对应的数为多少?【解答】解:(1)由已知有:0a <,0b >OA OB<Q ||||a b \<0a b \+>,0a b -<||||||||a b a b a b a b a b b a b a \-+++-=--+++-=-(3分)(2)||||8.9a b +=Q 8.9AB \=(4分)又3MN =AN AO AM AB NO NM NB OM OB MB \+++++++++(6分)()()()()AN NB AO OB AM MB AB NO OM NM=+++++++++AB AB AB AB NM NM=+++++4248.92341.6AB NM =+=´+´=答:所有线段长度的和为41.6(8分)(3)3a =-Q 3OA \=M Q 为AB 的中点,N 为OA 的中点12AM AB \=,12AN OA =MN AM AN\=-1122AB OA =-1322AB =-(9分)又215MN AB =-1321522AB AB \-=-解得:9AB =263PA AB \==(10分)若点P 在点A 的左边时,点P 在原点的左边(图略)9OP =故点P 所对应的数为9-(11分)若点P 在点A 的右边时,点P 在原点的右边(图略)3OP =故点P 所对应的数为3答:P 所对应的数为9-或3.(12分)18.对于数轴上的点M ,线段AB ,给出如下定义:P 为线段AB 上任意一点,我们把M 、P 两点间距离的最小值称为点M 关于线段AB 的“靠近距离”,记作1d (点M ,线段)AB ;把M 、P 两点间的距离的最大值称为点M 关于线段AB 的“远离距离”,记作2d (点M ,线段)AB .特别的,若点M 与点P 重合,则M ,P 两点间的距离为0.已知点A 表示的数为5-,点B 表示的数为2.如图,若点C 表示的数为3,则1d (点C ,线段)1AB =,2d (点C ,线段)8AB =.(1)若点D 表示的数为7-,则1d (点D ,线段)AB = 2 ,2d (点D ,线段)AB = ;(2)若点M 表示的数为m ,1d (点M ,线段)3AB =,则m 的值为 ;若点N 表示的数为n ,2d (点N ,线段)12AB =,则n 的值为 .(3)若点E 表示的数为x ,点F 表示的数为2x +,2d (点F ,线段)AB 是1d (点E ,线段)AB 的3倍.求x 的值.【解答】解:(1)Q 点D 表示的数为7-,1d \(点D ,线段)5(7)2AB DA ==---=,2d (点D ,线段)2(7)9AB DB ==--=,故答案为:2,9.(2)①当点M 在点A 的左侧:有3AM =,8m \=-;当点M 在点B 的右侧:有3BM =,5m \=,m \的值为8-或5.②当点N 在点A 的左侧:有12BN =,10n \=-;当点N 在点B 的右侧:有12AN =,7n \=,n \的值为10-或7.(3)分两种情况:当点E 在点A 的左侧,2d (点F ,线段)2(2)AB BF x x ==-+=-,1d (点E ,线段)5AB AE x ==--,2d Q (点F ,线段)AB 是1d (点E ,线段)AB 的3倍,3(5)x x \-=--,7.5x \=-,当点E 在点B 的右侧,2d (点F ,线段)2(5)7AB AF x x ==+--=+,1d (点E ,线段)2AB EB x ==-,2d Q (点F ,线段)AB 是1d (点E ,线段)AB 的3倍,73(2)x x \+=-,6.5x \=,综上所述:x 的值为:7.5-或6.5.19.如图:在数轴上A 点表示数a ,B 点示数b ,C 点表示数c ,b 是最小的正整数,且a 、c 满足2|2|(7)0a c ++-=.(1)a = 2- ,b = ,c = ;(2)若将数轴折叠,使得A 点与C 点重合,则点B 与数 表示的点重合;(3)点A 、B 、C 开始在数轴上运动,若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t 秒钟过后,若点A 与点B 之间的距离表示为AB ,点A 与点C 之间的距离表示为AC ,点B 与点C 之间的距离表示为BC .则AB = ,AC = ,BC = .(用含t 的代数式表示).(4)直接写出点B 为AC 中点时的t 的值.【解答】解:(1)2|2|(7)0a c ++-=Q ,20a \+=,70c -=,解得2a =-,7c =,b Q 是最小的正整数,1b \=,故答案为:2-,1,7.(2)由题意得,(72)2 4.5+¸=,对称点为7 4.5 2.5-=,2.5(2.51)4+-=,故答案为:4.(3)由题意,得,2333AB t t t =++=+,4959AC t t t =++=+,42626BC t t t =-+=+,故答案为,33t +,59t +,26t +.(4)点B 为AC 的中点,故有AB BC =得,3326t t +=+,得3t =.20.已知数轴上有A 、B 两个点.(1)如图1,若AB a =,M 是AB 的中点,C 为线段AB 上的一点,且34AC CB =,则AC ,CB = ,MC = (用含a 的代数式表示);(2)如图2,若A 、B 、C 三点对应的数分别为40-,10-,20.①当A 、C 两点同时向左运动,同时B 点向右运动,已知点A 、B 、C 的速度分别为8个单位长度/秒、4个单位长度/秒、2个单位长度/秒,点M 为线段AB 的中点,点N 为线段BC 的中点,在B 、C 相遇前,在运动多少秒时恰好满足:3MB BN =.②现有动点P 、Q 都从C 点出发,点P 以每秒1个单位长度的速度向终点A 移动;当点P 移动到B 点时,点Q 才从C 点出发,并以每秒3个单位长度的速度向左移动,且当点P 到达A 点时,点Q 也停止移动(若设点P 的运动时间为)t .当PQ 两点间的距离恰为18个单位时,求满足条件的时间t 值.【解答】解:(1)AB a =Q ,C 为线段AB 上的一点,且34AC CB =,33347AC AB a \==+,44347CB AB a ==+,M Q 是AB 的中点,1312714MC AB AB a \=-=,故答案为:37a ,47a ,114a ;(2)①Q 若A 、B 、C 三点对应的数分别为40-,10-,20,30AB BC \==,设x 秒时,C 在B 右边时,恰好满足3MB BN =,1(8430)2BM x x =++Q ,1(3042)2BN x x =--,\当3MB BN =时,11(8430)3(3042)22x x x x ++=´--,解得:2x =,2\秒时恰好满足3MB BN =;②点P 表示的数为20t -,点Q 表示的数为203(30)t --,Ⅰ、当点P 移动18秒时,点Q 没动,此时,PQ 两点间的距离恰为18个单位;Ⅱ、点Q 在点P 的右侧,203(30)(20)18t t \----=,解得:36t =,Ⅲ、当点Q 在点P 的左侧,20[203(30)]18t t \----=,解得:54t =;综上所述:当t 为18秒、36秒和54秒时,P 、Q 两点相距18个单位长度.。

七年级数学上成比例线段练习题

七年级数学上成比例线段练习题

七年级数学上成比例线段练习题
题目1
已知线段AB = 3cm,CD = 4cm,且AB与CD成比例,求线段AB的比例系数。

解题思路1
由题可知,线段AB与CD成比例,设比例系数为k,则有AB = k * CD,代入AB和CD的长度,得到3 = k * 4,解得k = 0.75,所以线段AB的比例系数为0.75。

题目2
在平面直角坐标系中,已知A(-3,4)、B(x,2),若线段AB与x 轴正半轴成比例,求x的值。

解题思路2
由题可知,线段AB与x轴正半轴成比例,所以线段AB的比例系数等于x轴正半轴上的点到点B的距离与点A到点B的距离之比。

设线段AB的比例系数为k,则有AB = kx,AE = kx,DE = 2 - kx,由勾股定理可得:$AB^2$ = $AE^2$ + $DE^2$,即
($kx$)$^2$ = ($kx$)$^2$ + (2 - $kx$)$^2$,简化得到3$kx^2$ - 4kx + 4 = 0,解得x = 2/3或2,由于点B在第二象限,所以x = 2/3。

题目3
已知线段AB = 6cm,DE = 15cm,且线段AB与DE成比例,求线段DE的长度。

解题思路3
由题可知,线段AB与DE成比例,设比例系数为k,则有AB = k * DE,代入AB和DE的长度,得到6 = k * 15,解得k = 0.4,所以线段DE的长度为15 * 0.4 = 6cm。

七年级数学上册 第四章 线段和差计算习题练习 试题

七年级数学上册 第四章 线段和差计算习题练习 试题

欠风丹州匀乌凤市新城学校线段的和差计算知识要求:1会从图形中找出线段的和差关系2会利用中点的定义3会书写简单的推理过程一例题1. 在直线l 上取 A ,B 两点,使AB=10厘米,再在l 上取一点C ,使AC=2厘米,M ,N 分别是AB ,AC 中点.求MN 的长度。

2.线段AD=6cm ,线段AC=BD=4cm ,E 、F 分别是线段AB 、CD 中点,求EF 。

3.如图,线段AB 和CD 的公共局部BD=31AB=41CD,线段AB 、CD 的中点E 、F 之间距离是10cm ,求AB ,CD 的长 二稳固1.如下列图,AB=12厘米,25AM AB =,13BN BM =,求MN 的长. 2.如图,C 点为线段AB 的中点,D 点为BC 的中点,AB =10cm ,求AD 的长度。

3.如图,AB=20cm,C 是AB 上一点,且AC=12cm,D 是AC 的中点,E 是BC 的中点,求线段DE 的长.4.如图,AB=8cm,O 为线段AB 上的任意一点, C 为AO 的中点,D 为OB 的中点,你能求出线段CD 的长吗?并说明理由。

5. 线段AB ,反向延长AB 至C ,使AC =13BC ,点D 为AC 的中点,假设CD =3cm ,求AB 的长. 6. 线段AB =12cm ,直线AB 上有一点C ,且BC =6cm ,M 是线段AC 的中点,求线段AM 的长.7.如图,点C 在线段AB 上,AC = 8 cm ,CB = 6 cm ,点M 、N 分别是AC 、BC 的中点。

〔1〕求线段MN 的长;〔2〕假设C 为线段AB 上任一点,满足acm =+BC AC ,其它条件不变,你能猜想MN 的长度吗?并说明理由。

〔3〕假设C 在线段AB 的延长线上,且满足AC CB bcm -=,M 、N 分别为AC 、BC 的中点,你能猜想MN 的长度吗?请画出图形,写出你的结论,并说明理由。

北师大版七年级 数学上第4章基本平面图形 -- 线段计算题(含答案)

 北师大版七年级 数学上第4章基本平面图形 -- 线段计算题(含答案)

北师大版七年级数学上第4章基本平面图形 -- 线段计算题(含答案)AB=6C AB D AC BD1. 已知:线段厘米,点是的中点,点在的中点,求线段的长.AB=6AB C BC=2AB D AC2. 如图,已知线段,延长线段到,使,点是的中点.求:AC(1)的长;BD(2)的长.B C AD2:3:4M AD CD=8MC3. 如图、两点把线段分成三部分,是的中点,,求的长.C ABD BC AD=7BD=5CD4. 已知:为线段的中点,在线段上,且,,求:线段的长度.AB=20cm C AB D AC E BC DE 5. 如图,,是上任意一点,是的中点,是的中点,求线段的长.AC=6cm BC=15cm M AC CB N6. 如图,线段,线段,点是的中点,在上取一点,使得CN:NB=1:2MN,求的长.7. 如图,,两点把线段分成三部分,其比为,是的中点,B C MN MB:BC:CN =2:3:4P MN ,求的长.PC =2cm MN8. 已知,如图,点在线段上,且,,点、分别是、的中C AB AC =6cm BC =14cm M N AC BC 点.(1)求线段的长度;MN(2)在(1)中,如果,,其它条件不变,你能猜测出的长度吗?AC =acm BC =bcm MN 请说出你发现的结论,并说明理由.9. 已知、两点在数轴上表示的数为和,、均为数轴上的点,且. A B a b M N OA <OB (1)若、的位置如图所示,试化简:.A B |a|−|b|+|a +b|+|a−b|(2)如图,若,,求图中以、、、、这个点为端点的所|a|+|b|=8.9MN =3A N O M B 5有线段长度的和;(3)如图,为中点,为中点,且,,若点为数轴上一点,M AB N OA MN =2AB−15a =−3P 且,试求点所对应的数为多少?PA =23ABP10. 阅读材料:我们知道:点、在数轴上分别表示有理数、,、两点之间的距A B a b A B 离表示为,在数轴上、两点之间的距离.所以式子的几何意义是AB A B AB =|a−b||x−3|数轴上表示有理数的点与表示有理数的点之间的距离.3x 根据上述材料,解答下列问题:(1)若,则________;|x−3|=|x +1|x =(2)式子的最小值为________;|x−3|+|x +1|(3)若,求的值.|x−3|+|x +1|=7x11. 如图,是定长线段上一点,、两点分别从、出发以、的速度沿P AB C D P B 1cm/s 2cm/s 直线向左运动(在线段上,在线段上)AB C AP D BP (1)若、运动到任一时刻时,总有,请说明点在线段上的位置:C D PD =2AC P AB(2)在(1)的条件下,是直线上一点,且,求的值.Q AB AQ−BQ =PQ PQAB(3)在(1)的条件下,若、运动秒后,恰好有,此时点停止运动,点C D 5CD =12ABC D 继续运动(点在线段上),、分别是、的中点,下列结论:①的值D PB M N CD PD PM−PN 不变;②的值不变,可以说明,只有一个结论是正确的,请你找出正确的结论并求MNAB 值.12. 如图,、是线段上两点,已知,、分别为、的中点,C D AB AC:CD:DB =1:2:3M N AC DB且,求线段的长.AB =18cm MN13. (应用题)如图所示,,,是一条公路上的三个村庄,,间路程为,A B C A B 100km ,间路程为,现在,之间建一个车站,设,之间的路程为. A C 40km A B P P C xkm (1)用含的代数式表示车站到三个村庄的路程之和;x(2)若路程之和为,则车站应设在何处?102km(3)若要使车站到三个村庄的路程总和最小,问车站应设在何处?最小值是多少?14. 已知线段,,线段在直线上运动(在左侧,在左侧). AB =12CD =6CD AB A B C D (1)、分别是线段、的中点,若,求;M N AC BD BC =4MN(2)当运动到点与点重合时,是线段延长线上一点,下列两个结论:①CD D B P AB 是定值;②是定值,请作出正确的选择,并求出其定值.PA +PB PCPA−PBPC15. 如图甲,点是线段上一点,、两点分别从、同时出发,以、的O AB C D O B 2cm/s 4cm/s 速度在直线上运动,点在线段之间,点在线段之间.AB C OA D OB(1)设、两点同时沿直线向左运动秒时,,求的值;C D AB t AC:OD =1:2OAOB(2)在(1)的条件下,若、运动秒后都停止运动,此时恰有,求C D 52OD−AC =12BD的长;CD (3)在(2)的条件下,将线段在线段上左右滑动如图乙(点在之间,点在CD AB C OA D 之间),若、分别为、的中点,试说明线段的长度总不发生变化.OB M N AC BD MN16. 线段,点是线段中点,点是线段上一点,且,是线段AB =12cm O AB C AB AC =12BCP 的中点.AC(1)求线段的长.(如图所示)OP(2)若将题目中:点是线段上一点,改为点是直线上一点,线段还可以是C AB C AB OP 多长?(画出示意图)17. 已知:如图,是定长线段上一定点,、两点分别从、出发以、1M AB C D M B 1cm/s 的速度沿直线向左运动,运动方向如箭头所示(在线段上,在线段上)3cm/s BA C AM D BM(1)若,当点、运动了,求的值.AB =10cm C D 2s AC +MD(2)若点、运动时,总有,直接填空:________.C D MD =3AC AM =AB(3)在(2)的条件下,是直线上一点,且,求的值.N AB AN−BN =MN MNAB参考答案与试题解析北师大版七上线段计算题一、 解答题 (本题共计 17 小题 ,每题 10 分 ,共计170分 ) 1.【答案】解:∵ 厘米,是的中点,AB =6C AB ∴ 厘米,AC =3∵ 点在的中点,D AC ∴ 厘米,DC =1.5∴ 厘米.BD =BC +CD =4.52.【答案】、.1833.【答案】解:设,,,AB =2x BC =3x CD =4x ∴ ,,AD =9x MD =92x则,,CD =4x =8x =2.MC =MD−CD =92x−4x =12x =12×2=14.【答案】解:∵ ,AD =7BD =5∴ AB =AD +BD =12∵ 是的中点C AB ∴AC =12AB =6∴ .CD =AD−AC =7−6=15.【答案】.10cm6.【答案】解:∵ 是的中点,M AC ∴,MC =AM =12AC =12×6=3cm又∵ CN:NB =1:2∴,CN =13BC =13×15=5cm∴ .MN =MC +NC =3cm +5cm =8cm 7.【答案】.MN =36cm 8.【答案】解:(1)∵ ,,AC =6cm BC =14cm 点、分别是、的中点,M N AC BC ∴ ,,MC =3cm NC =7cm ∴ ;MN =MC +NC =10cm(2).理由是:MN =12(a +b)cm∵ ,,AC =acm BC =bcm 点、分别是、的中点,M N AC BC ∴ ,,MC =12acmNC =12bcm ∴ .MN =MC +NC =12(a +b)cm9.【答案】所有线段长度的和为41.6(3)∵ a =−3∴ OA =3∵ 为的中点,为的中点M AB N OA ∴ ,AM =12ABAN =12OA∴ MN =AM−AN =12AB−12OA =12AB−32又MN =2AB−15∴2AB−15=12AB−32解得:AB =9∴PA =23AB =6若点在点的左边时,点在原点的左边(图略)P A P OP =9故点所对应的数为P −9若点在点的右边时,点在原点的右边(图略)P A P OP =3故点所对应的数为P 3答:所对应的数为或.P −9310.【答案】,,或.14x =92x =−5211.【答案】解:(1)根据、的运动速度知:C D BD =2PC ∵ ,PD =2AC ∴ ,即,BD +PD =2(PC +AC)PB =2AP ∴ 点在线段上的处;P AB 13(2)如图:∵ ,AQ−BQ =PQ ∴ ;AQ =PQ +BQ 又,AQ =AP +PQ ∴ ,AP =BQ ∴ ,PQ =13AB∴ .PQAB =13当点在的延长线上时Q ′AB AQ ′−AP =PQ′所以AQ ′−B Q ′=PQ =AB所以;PQAB=1(3)②.MNAB 的值不变理由:当时,点停止运动,此时,CD =12ABC CP =5AB =30①如图,当,在点的同侧时M N PMN =PN−PM =12PD−(PD−MD)=MD−12PD =12CD−12PD =12(CD−PD)=12CP =52②如图,当,在点的异侧时M N PMN =PM +PN =MD−PD +12PD =MD−12PD =12CD−12PD =12(CD−PD)=12CP =52∴ MNAB=5230=112当点停止运动,点继续运动时,的值不变,所以,.C D MN MNAB =11212.【答案】的长为.MN 12cm13.【答案】解:(1)路程之和为;PA +PC +PB =40+x +100−(40+x)+x =(100+x)km (2),,车站在两侧处;100+x =102x =2C 2km (3)当时,,车站建在处路程和最小,路程和为.x =0x +100=100C 100km 14.【答案】解:(1)如图,∵ 、分别为线段、的中点,1M N AC BD ∴,AM =12AC =12(AB +BC)=8,DN =12BD =12(CD +BC)=5∴ ;MN =AD−AM−DN =9如图,∵ 、分别为线段、的中点,2M N AC BD ∴,AM =12AC =12(AB−BC)=4,DN =12BD =12(CD−BC)=1∴ ;MN =AD−AM−DN =12+6−4−4−1=9(2)①正确.证明:.PA +PBPC=2∵,PA +PBPC=(PC +AC)+(PC−CB)PC=2PC PC=2∴ ①是定值.PA +PBPC215.【答案】解:(1)设,则,AC =x OD =2x 又∵ ,OC =2t DB =4t ∴ ,,OA =x +2t OB =2x +4t∴ ;OA OB =12(2)设,,又,,由,得AC =x OD =2x OC =52×2=5(cm)BD =52×4=10(cm)OD−AC =12BD ,,2x−x =12×10x =5,OD =2x =2×5=10(cm);CD =OD +OC =10+5=15(cm)(3)在(2)中有,,,,AC =5(cm)BD =10(cm)CD =15AB =AC +BD +CD =30(cm)设,,AM =CM =x BN =DN =y ∵ ,,2x +15+2y =30x +y =7.5∴ .MN =CM +CD +DN =x +15+y =22.516.【答案】解:(1)OP =AO−AP =12AB−AP=12AB−12AC =12AB−12×13AB.=13AB =4(2)如下图所示:此时,.OP =AO +AP =12AB +AP =12AB +12AC =12AB +12AB =AB =1217.【答案】解:(1)当点、运动了时,,C D 2s CM =2cm BD =6cm∵ ,,AB =10cm CM =2cm BD =6cm∴ AC +MD =AB−CM−BD =10−2−6=2cm(2)14(3)当点在线段上时,如图N AB∵ ,又∵ AN−BN =MN AN−AM =MN ∴ ,∴ ,即.BN =AM =14AB MN =12AB MN AB =12当点在线段的延长线上时,如图N AB∵ ,又∵ AN−BN =MN AN−BN =AB ∴ ,即.综上所述MN =AB MN AB =1MN AB =12或1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

六年级数学线段的计算练习题
例1 如图,已知AB= 40,点C 是线段AB 的中点,点D 为线段CB 上的一点,点E 为线段DB 的中点,EB=6,求线段CD 的长。

A B C D E
例2 如图,AE=21EB ,点F 是线段BC 的中点,BF=5
1AC=1.5,求线段EF 的长。

A B C E
F
例3 如图4-2-8,将线段AB 延长至C ,使BC=2AB ,AB 的中点为D ,E 、F 是BC 上的点,且BE :EF=1:2,EF :FC=2:5,AC=60cm ,求DE 、DF 的长.
A B C D E F
1、如图,把线段AB 延长到点C ,使BC=2AB ,再延长BA 到点D ,使AD=3AB ,则
① DC=_____AB=_____BC ② DB=_____CD=_____BC
2、如图,点M 为线段AC 的中点,点N 为线段BC 的中点
① 若AC=2cm ,BC=3cm ,则MN=_____cm ② 若AB=6cm ,则MN=_____cm
③ 若AM=1cm ,BC=3cm ,则AB=_____cm ④ 若AB=5cm ,MC=1cm ,则NB=_____cm
A B C M
N
3、根据下列语句画图并计算
(1)作线段AB ,在线段AB 的延长线上取点C ,使BC=2AB ,M 是线段BC 的中点,若AB=30cm ,求线段BM 的长
(2)作线段AB ,在线段AB 的延长线上取点C ,使BC=2AB ,M 是线段AC 的中点,若AB=30cm ,求线段BM 的长
7、已知点C 是线段AB 的中点,现有三个表达式:
① AC=BC ② AB=2AC=2BC ③ AC=CB=2
1AB 其中正确的个数是( ) A. 0 B. 1 C.2 D. 3
8、如图,C 、B 在线段AD 上,且AB=CD ,则AC 与BD 的大小关系是( )
A C
B D
A. AC>BD
B. AC=BD
C. AC<BD
D. 不能确定
9、点A 、B 是平面上两点,AB=10cm ,点P 为平面上一点,若PA+PB=20cm ,则P 点( )
A. 只能在直线AB 外
B. 只能在直线AB 上
C. 不能在直线AB 上
D. 不能在线段AB 上
10、已知线段AB=5.4,AB 的中点C ,AB 的三等分点为D ,则C 、D 两点间距离为( )
A. 1.2
B. 0.9
C.1.4
D. 0.7
11、如图,在已知直线MN 的两侧各有一点A 和B ,在MN 上找出一点C ,使C 点到A 、B 的距离之和最短,画出图形,并说明为什么最短?
A
B M N
12、知B 、C 是线段AD 上的两点,若AD=18cm ,BC=5cm ,且M 、N 分别为AB 、CD 的中点,(1)求AB+CD 的长度;(2)求M 、N 的距离。

相关文档
最新文档