计算机图形学各类算法

合集下载

计算机图形学中的曲面细分算法与实现

计算机图形学中的曲面细分算法与实现

计算机图形学中的曲面细分算法与实现曲面细分算法是计算机图形学中的重要主题,它主要用于生成光滑的曲面模型,通常用于生成真实感的3D模型。

曲面细分算法可以分为两种主要类型:细分曲面和插值曲面。

细分曲面是通过逐步细分原始控制网格来生成光滑曲面,而插值曲面是通过对原始几何形状进行插值来生成光滑曲面。

本文将介绍曲面细分算法的基本概念、常见的曲面细分算法以及其实现。

一、基本概念曲面细分算法是计算机图形学中的一种重要技术,它通过细分原始几何形状来生成光滑曲面。

曲面细分算法通常可以分为两种类型:细分曲面和插值曲面。

细分曲面是通过逐步细分原始控制网格来生成光滑曲面,而插值曲面是通过对原始几何形状进行插值来生成光滑曲面。

曲面细分算法通常可以用来生成真实感的3D模型,因此在计算机图形学中应用广泛。

曲面细分算法的基本原理是将原始几何形状逐步细分,从而生成光滑曲面。

在这个过程中,通常会根据一些控制点或节点来确定曲面的形状。

曲面细分算法的关键在于如何选择合适的控制点或节点,以及如何决定细分的次数。

通常来说,曲面细分算法的实现可以分为多种方法,例如递归细分、均匀细分、自适应细分等。

二、常见的曲面细分算法1.递归细分算法递归细分算法是一种常见的曲面细分算法,它通过递归的方式来细分原始几何形状,从而生成光滑曲面。

在递归细分算法中,通常会将原始几何形状逐步细分成更小的子几何形状,直到达到指定的细分次数为止。

递归细分算法通常是一种简单而有效的方法,它可以用来生成各种光滑曲面,例如贝塞尔曲面、B样条曲面等。

2.均匀细分算法均匀细分算法是另一种常见的曲面细分算法,它通过均匀地细分原始几何形状来生成光滑曲面。

在均匀细分算法中,通常会将原始控制网格分成均匀的子网格,然后逐步细分每个子网格,从而生成光滑曲面。

均匀细分算法通常是一种简单而高效的方法,它可以用来生成各种曲面模型,例如球面、圆柱面等。

3.自适应细分算法自适应细分算法是一种更加复杂的曲面细分算法,它通过根据曲面的曲率或其他属性来自适应地细分原始几何形状,从而生成光滑曲面。

计算机图形学第3章 基本图形生成算法

计算机图形学第3章 基本图形生成算法
基函数(基本样条) 在局部参数区域分布 (支撑区间),因此 影响范围有限。
例题:有点P0(4,3);P1(6,5);P2(10,
6 );P3(12,4),用以上4点构造2次B样条曲线。
2.1.7 非均匀有理B样条
非均匀有理B样条NURBS(Non Uniform Rational BSpline);
3.2.2
Bresenham画圆法
该算法是最有效的算法之一。
不失一般性,假设圆心(xc,yc) ,圆上的点(x′,y′),则:
x' x xc
y ' y yc
圆心为原点,半径为R的位于第一象限1/8圆弧的画法,即(0, R)~( R , R )。
2 2
yi ), 思想:每一步都选择一个距离理想圆周最近的点P( xi , 使其误差项最小。
画其他曲线。
3.3
自由曲线的生成
正弦函数曲线
指数函数曲线
多项式函数曲线
自 由 曲 线
概率分布曲线及样条函数曲线
3.3.1 曲线的基本理论
基本概念
2.1.4
规则曲线:可用数学方程式表示出来的,如抛物 线等。
自由曲线:很难用一个数学方程式描述的,如高
速公路等。可通过曲线拟合(插值、逼近)的方法来
例题: 利用Bresenham算法生成P (0,0)到Q(6,5)的直 线所经过的像素点。要求先 列出计算式算出各点的坐标 值,然后在方格中标出各点。
(1,1)
3.1.5 双步画线法 原理
模式1:当右像素位于右下角时,中间像素位于底线 模式4:当右边像素位右上角时,中间像素位于中线 模式2和模式3:当右像素位于中线时,中间像素可能位于底线 上,也可能位于中线上,分别对应于模式2和模式3,需进一步 判断。 当0≤k≤1/2时,模式4不可能出现,当1/2≤k≤1时,模式1不 可能出现。

计算机图形学二、多边形的扫描转换算法

计算机图形学二、多边形的扫描转换算法

2
做一个
E
2
A
C C
2
D
B
2
局部极大或局部极小点, 交点看做是二个
非局部极值点,交点看
2
做一个
E
非局部极值点将这些相
邻边分割开来
2
A
如何计算扫描线与多边形边界线的所有交点?
若扫描线yi与多边形边界线交点的x坐标是xi, 则对下一条扫描线yi+l,它与那条边界线的交点的x 坐标xi+1,可如下求出:
m
yi1 yi xi1 xi
, yi1
yi
1
xi 1
xi
1 m
扫描线与多边形边的交点计算 C
B
yk 1 yk
x AC k 1
xkAC
1 mAC
x BC k 1
xkBC
1 mBC
A
活跃(活性)边:与当前扫描线相交的边 活跃(活性)边表AET:存贮当前扫描线相交的各边的表。
ymax x 1/m next

扫描线5 扫描线6
e2 92 0
e2 92 0
e6 5 13 6/4 λ
e5 11 13 0 λ
9∧
8∧
e3
e4
7
9 7 -5/2
11 7 6/4 λ
e5
6
11 13 0 λ
5∧
e2
e3
4
9 2 0λ
3∧
e2
2∧
e1
e6
1
3 7 -5/2
5 7 6/4 λ
e1
0∧
ymax xmin 1/m
e4 e5
e6 5 111/2 6/4 λ
9∧

计算机图形学——圆的扫描转换(基本光栅图形算法)

计算机图形学——圆的扫描转换(基本光栅图形算法)

计算机图形学——圆的扫描转换(基本光栅图形算法)与直线的⽣成类似,圆弧⽣成算法的好坏直接影响到绘图的效率。

本篇博客将讨论圆弧⽣成的3个主要算法,正负法、Bresenham 法和圆的多边形迫近法,在介绍算法时,只考虑圆⼼在原点,半径为R的情况。

⼀、正负法1、基本原理假设已选取Pi-1为第i-1个像素,则如果Pi-1在圆内,就要向圆外⽅向⾛⼀步;若已在圆外就要向圆内⾛⼀步。

总之,尽量贴近圆的轮廓线。

2、正负法的具体实现1)圆的表⽰:设圆的圆⼼为(0,0),半径为R,则圆的⽅程为:F(x,y)=x2+y2–R2=0当点(x,y)在圆内时,F(x,y)<0。

当点(x,y)在圆外时,F(x,y)>0。

2)实现步骤第1步:x0=0,y0=R第2步:求得Pi(x i,y i)后找点P i+1的原则为:当P i在圆内时(F(xi,yi)≤0),要向右⾛⼀步得P i+1,这是向圆外⽅向⾛去。

取x i+1= x i+1, y i+1= y i当P i在圆外时(F(xi,yi)>0),要向下⾛⼀步得P i+1,这是向圆内⽅向⾛去,取x i+1= x i, y i+1= y i-1⽤来表⽰圆弧的点均在圆弧附近且 F(xi, yi)时正时负假设已经得到点(x i, y i),则容易算出F(x i, y i),即确定了下⼀个点(x i+1, y i+1),则如何计算F(x i+1, y i+1),以确定下下个点(x i+2, y i+2)?分为两种情况:右⾛⼀步后:x i+1=x i+1,y i+1=y i,此时:F(x i+1, y i+1)=x i+12+y i2-R2=x i2+y i2-R2+2x i+1 = F(x i, y i)+2x i+1下⾛⼀步后:x i+1=x i,y i+1=y i-1, 此时:F(x i+1, y i+1)=x i2+(y i-1)2-R2= F(x i, y i)-2y i+1由此可得:确定了F(xi+1, yi+1)之后,即可决定下⼀个点(xi+2, yi+2),选择道理同上。

计算机图形学的基本概念与算法

计算机图形学的基本概念与算法

计算机图形学的基本概念与算法计算机图形学是研究如何利用计算机生成、处理和显示图像的学科。

它在许多领域中都有广泛应用,例如电影制作、游戏开发、医学成像等。

本文将介绍计算机图形学的基本概念和算法,并分步详细列出相关内容。

一、基本概念1. 图像表示:计算机图形学中,图像通常使用像素(Pixel)来表示。

每个像素包含了图像上一个特定位置的颜色或灰度值。

2. 坐标系统:计算机图形学使用不同的坐标系统来表示图像的位置。

常见的坐标系统有笛卡尔坐标系、屏幕坐标系等。

3. 颜色模型:计算机图形学中常用的颜色模型有RGB模型(红、绿、蓝)和CMYK模型(青、品红、黄、黑)等。

RGB模型将颜色表示为三个分量的组合,而CMYK模型用于打印颜色。

4. 变换:变换是计算机图形学中常用的操作,包括平移、旋转、缩放和剪切等。

通过变换,可以改变图像的位置、大小和方向。

5. 插值:在计算机图形学中,插值是指通过已知的数据点来推测未知位置的值。

常见的插值方法有双线性插值和双三次插值等。

二、基本算法1. 线段生成算法:线段生成是图形学中最基本的操作之一。

常见的线段生成算法有DDA算法(Digital Differential Analyzer)和Bresenham算法。

DDA算法通过计算线段的斜率来生成线段上的像素,而Bresenham算法通过绘制画板上的一个像素来逐渐描绘出整条直线。

2. 多边形填充算法:多边形填充是将一个多边形内的区域用颜色填充的过程。

常见的多边形填充算法有扫描线算法和边界填充算法。

扫描线算法通过扫描多边形的每一条水平线,不断更新当前扫描线下方的活动边并进行填充。

边界填充算法从某点开始,向四个方向延伸,逐渐填充整个多边形。

3. 圆弧生成算法:生成圆弧是计算机图形学中常见的操作之一,常用于绘制圆形和曲线。

常见的圆弧生成算法有中点圆生成算法和Bresenham圆弧生成算法。

中点圆生成算法通过计算圆弧中的每个点与圆心的关系来生成圆弧上的像素,而Bresenham圆弧生成算法通过在八个特定的扫描区域内绘制圆弧上的像素。

计算机图形学的基本算法

计算机图形学的基本算法

计算机图形学的基本算法计算机图形学是研究如何利用计算机生成、处理和显示图像的学科。

图形学的基本算法涵盖了多个方面,包括图像绘制、几何变换、光照和渲染等。

以下将详细介绍计算机图形学的基本算法及其步骤。

1. 图像绘制算法:- 像素绘制算法:基于像素的图形绘制算法包括点绘制、线段绘制和曲线绘制。

例如,Bresenham线段算法可用于绘制直线。

- 多边形填充算法:多边形填充算法用于绘制封闭曲线图形的内部区域。

常见的算法包括扫描线填充算法和种子填充算法。

2. 几何变换算法:- 平移变换:平移变换算法用于将图像在平面上进行上下左右的平移操作。

- 旋转变换:旋转变换算法用于将图像按照一定的角度进行旋转。

- 缩放变换:缩放变换算法用于按照一定的比例对图像进行放大或缩小操作。

- 剪切变换:剪切变换算法用于按照一定的裁剪方式对图像进行剪切操作。

3. 光照和渲染算法:- 光照模型:光照模型用于模拟物体与光源之间的相互作用。

常见的光照模型有Lambert模型和Phong模型等。

- 阴影生成算法:阴影生成算法用于在渲染过程中生成逼真的阴影效果。

例如,阴影贴图和阴影体积等算法。

- 光线追踪算法:光线追踪算法通过模拟光线的路径和相互作用,实现逼真的光影效果。

常见的光线追踪算法包括递归光线追踪和路径追踪等。

4. 图像变换和滤波算法:- 傅里叶变换算法:傅里叶变换算法用于将图像从时域转换到频域进行分析和处理。

- 图像滤波算法:图像滤波算法用于对图像进行平滑、锐化、边缘检测等操作。

常见的滤波算法包括均值滤波、高斯滤波和Sobel算子等。

5. 空间曲线和曲面生成算法:- Bézier曲线和曲面算法:Bézier算法可用于生成平滑的曲线和曲面,包括一阶、二阶和三阶Bézier曲线算法。

- B样条曲线和曲面算法:B样条算法可用于生成具有更高自由度和弯曲度的曲线和曲面。

以上列举的是计算机图形学中的一些基本算法及其应用。

2024年考研高等数学三计算机图形学中的数学算法历年真题

2024年考研高等数学三计算机图形学中的数学算法历年真题

2024年考研高等数学三计算机图形学中的数学算法历年真题数学算法作为计算机图形学的重要组成部分,其在图像处理、三维建模、动画制作等领域具有广泛应用。

下面回顾历年考研高等数学三计算机图形学中涉及到的数学算法真题,以加深对该领域知识的理解。

一、二维图形的表示和处理1. 2015年真题题目描述:给定一个二维平面上的点集P,设计一个算法,统计该点集中在指定矩形内部的点的数量。

解析:该问题可采用扫描线算法来解决。

将矩形按横坐标分割成多个行,并从上至下依次统计每行内的点数量。

具体算法步骤为:先对点集P按照横坐标排序,然后逐行扫描,记录在每一行内x坐标落在矩形范围内的点的数量。

二、三维图形的表示和处理2. 2018年真题题目描述:给定一个三维空间中的点云数据集P,设计一个算法,确定该数据集中所有点的最大距离。

解析:该问题可使用蛮力法(brute-force)来解决。

遍历所有点对的组合,计算它们之间的距离,并在遍历过程中保存最大距离。

具体算法步骤为:对点云数据集P中的每一对点(A, B),计算其欧氏距离dist(A,B),并保留最大的距离值。

三、曲线和曲面的生成及处理3. 2019年真题题目描述:已知一个平面上的曲线关于X轴的转动,设计一个算法,在三维空间内生成该曲线的旋转曲面。

解析:该问题可使用参数方程法来解决。

考虑平面上的曲线由参数方程x=f(t),y=g(t)给出,其中t为参数。

要生成其旋转曲面,首先选择一个旋转轴,假设为Z轴,然后将x和y分别替换为t的函数,可得旋转曲面的参数方程x=f(t)cosθ,y=f(t)sinθ,z=g(t),其中θ为旋转的角度。

通过不同的θ取值,可生成曲线的多个旋转曲面。

四、三维变换4. 2020年真题题目描述:给定一个三维对象的初始位置和一个变换矩阵,设计一个算法,计算该对象在变换后的位置。

解析:该问题可使用齐次坐标和矩阵乘法来解决。

将三维对象的初始坐标表示为齐次坐标[x, y, z, 1],并将变换矩阵表示为4×4的矩阵T。

计算机图形学——区域填充算法(基本光栅图形算法)

计算机图形学——区域填充算法(基本光栅图形算法)

计算机图形学——区域填充算法(基本光栅图形算法)⼀、区域填充概念区域:指已经表⽰成点阵形式的填充图形,是象素的集合。

区域填充:将区域内的⼀点(常称【种⼦点】)赋予给定颜⾊,然后将这种颜⾊扩展到整个区域内的过程。

区域填充算法要求区域是连通的,因为只有在连通区域中,才可能将种⼦点的颜⾊扩展到区域内的其它点。

1、区域有两种表⽰形式1)内点表⽰:枚举出区域内部的所有象素,内部所有象素着同⼀个颜⾊,边界像素着与内部象素不同的颜⾊。

2)边界表⽰:枚举出区域外部的所有象素,边界上的所有象素着同⼀个颜⾊,内部像素着与边界象素不同的颜⾊。

21)四向连通区域:从区域上⼀点出发可通过【上、下、左、右】四个⽅向移动的组合,在不越出区域的前提下,到达区域内的任意象素。

2)⼋向连通区域:从区域上⼀点出发可通过【上、下、左、右、左上、右上、左下、右下】⼋个⽅向移动的组合,在不越出区域的前提下,到达区域内的任意象素。

⼆、简单种⼦填充算法给定区域G⼀种⼦点(x, y),⾸先判断该点是否是区域内的⼀点,如果是,则将该点填充为新的颜⾊,然后将该点周围的四个点(四连通)或⼋个点(⼋连通)作为新的种⼦点进⾏同样的处理,通过这种扩散完成对整个区域的填充。

这⾥给出⼀个四连通的种⼦填充算法(区域填充递归算法),使⽤【栈结构】来实现原理算法原理如下:种⼦像素⼊栈,当【栈⾮空】时重复如下三步:这⾥给出⼋连通的种⼦填充算法的代码:void flood_fill_8(int[] pixels, int x, int y, int old_color, int new_color){if(x<w&&x>0&&y<h&&y>0){if (pixels[y*w+x]==old_color){pixels[y*w+x]== new_color);flood_fill_8(pixels, x,y+1,old_color,new_color);flood_fill_8(pixels, x,y-1,old_color,new_color);flood_fill_8(pixels, x-1,y,old_color,new_color);flood_fill_8(pixels, x+1,y,old_color,new_color);flood_fill_8(pixels, x+1,y+1,old_color,new_color);flood_fill_8(pixels, x+1,y-1,old_color,new_color);flood_fill_8(pixels, x-1,y+1,old_color,new_color);flood_fill_8(pixels, x-1,y-1,old_color,new_color);}}}简单种⼦填充算法的不⾜a)有些像素会多次⼊栈,降低算法效率,栈结构占空间b)递归执⾏,算法简单,但效率不⾼,区域内每⼀像素都要进/出栈,费时费内存c)改进算法,减少递归次数,提⾼效率三、扫描线种⼦填充算法基本思想从给定的种⼦点开始,填充当前扫描线上种⼦点所在的⼀区段,然后确定与这⼀段相邻的上下两条扫描线上位于区域内的区段(需要填充的区间),从这些区间上各取⼀个种⼦点依次把它们存起来,作为下次填充的种⼦点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
p p
现需确定下一个点亮的象素。
中点画线法
当M在Q的下方-> P2离直线更近更近->取P2 。 M在Q的上方-> P1离直线更近更近->取P1 M与Q重合, P1、P2任取一点。
P2 Q
P=(xp,yp) P1
问题:如何判断M与Q点的关系?
中点画线法
假设直线方程为:ax+by+c=0 其中a=y0-y1, b=x1-x0, c=x0y1-x1y0 由常识知:
第三章 直线、圆、椭圆生成算法
图形的扫描转换(光栅化):确定一个像素集合,用 于显示一个图形的过程。步骤如下: 1、确定有关像素 2、用图形的颜色或其它属性,对像素进行写操作。 对一维图形,不考虑线宽,则用一个像素宽的直线来 显示图形。二维图形的光栅化,即区域的填充:确定 像素集,填色或图案。 任何图形的光栅化,必须显示在一个窗口内,否则不 予显示。即确定一个图形的哪些部分在窗口内,哪些 在窗口外,即裁剪。
在直线生成的算法中Bresenham算法是最有 效的算法之一。令 k=Δy/Δx,就 0≤k≤1的情况来说明Bresenham算法。 由DDA算法可知: yi+1=yi+k (1) 由于k不一定是整数,由此式求出的yi也 不一定是整数,因此要用坐标为(xi,yir) 的象素来表示直线上的点,其中yir表示 最靠近yi的整数。
中点画线法
例:用中点画线法P0(0,0) P1(5,2)
a=y0-y1=-2 b=x1-x0=5 d0=2a+b=1 d1=2a=-4 d2=2(a+b)=6
i 1 2 3 4
xi 0 1 2 3
yi 0 0 1 1 2
d 1 -3 3 -1 5
3 2 1 0 1 2 3 4 5
5 4
Bresenham画线算法
P2 Q P1
中点画线法
若d≥0->M在直线上方->取P1; 此时再下一个象素的判别式为 d1=F(xp+2, yp+0.5)=a(xp+2)+b(yp+0.5)+c = a(xp +1)+b(yp +0.5)+c +a =d+a; 增量为a
P2 Q
P=(xp,yp) P1
中点画线法
若d<0->M在直线下方->取P2; 此时再下一个象素的判别式为 d2= F(xp+2, yp+1.5)=a(xp+2)+b(yp+1.5)+c = a(xp +1)+b(yp +0.5)+c +a +b =d+a+b ; 增量为a+b
中点画圆法
利用圆的对称性,只须讨论1/8圆。第二个8分圆
P(Xp ,Yp ) P1 M P2
P为当前点亮象素,那么,下一个点亮的象素可 能是P1(Xp+1,Yp)或P2(Xp +1,Yp +1)。
中点画圆法
构造函数:F(X,Y)=X + Y - R ;则 F(X,Y)= 0 (X,Y)在圆上; F(X,Y)< 0 (X,Y)在圆内; F(X,Y)> 0 (X,Y)在圆外。 设M为P1、P2间的中点,M=(Xp+1,Yp-0.5)
数值微分(DDA)法
增量算法:在一个迭代算法中,如果每一 步的x、y值是用前一步的值加上一个增量 来获得,则称为增量算法。 DDA算法就是一个增量算法。
数值微分(DDA)法
void DDALine(int x0,int y0,int x1,int y1,int color) { int x; float dx, dy, y, k; dx, = x1-x0, dy=y1-y0; k=dy/dx, y=y0; for (x=x0; x≤x1, x++) { drawpixel (x, int(y+0.5), color); y=y+k; } }
P2 Q
P=(xp,yp) P1
中点画线法
画线从(x0, y0)开始,d的初值 d0=F(x0+1, y0+0.5)= a(x0 +1)+b(y0 +0.5)+c = F(x0, y0)+a+0.5b = a+0.5b 由于只用d 的符号作判断,为了只包含整数运算, 可以用2d代替d来摆脱小数,提高效率。

栅格交点表示象素点位置
(X i+1 ,Yi + k)

(X i , Int(Yi +0.5))
数值微分(DDA)法
基本思想
已知过端点P0 (x0, y0), P1(x1, y1)的直线段L y=kx+b 直线斜率为 y − y0 1
k =
x − x0 1
令x = x0 → x1 ; x = x + stepx ∴ ( x, round ( y ) )
中点画线法
void Midpoint Line (int x0,int y0,int x1, int y1,int color) { int a, b, d1, d2, d, x, y; a=y0-y1, b=x1-x0, d=2*a+b; d1=2*a, d2=2* (a+b); x=x0, y=y0; drawpixel(x, y, color); while (x<x1) { if (d<0) {x++; y++; d+=d2; } else {x++; d+=d1;} drawpixel (x, y, color); } /* while */ } /* mid PointLine */
数值微分(DDA)法
缺点: 在此算法中,y、k必须是float,且每一 步都必须对y进行舍入取整,不利于硬件实现。
中点画线法
原理:
P2 Q
P=(xp,yp) P1
假定直线斜率0<K<1,且已 确定点亮象素点P(X ,Y ), 则下一个与直线最接近的像 素只能是P1点或P2点。设M 为中点,Q为交点
若d<0, 则P1 为下一个象素,那么再下一个象素 的判别式为:
d
P1
-R
2
M P2
中点画圆法
若d>=0, 则P2 为下一个象素,那么再下一个象 素的判别式为: d1 = F(xp + 2, yp - 1.5) 2 2 2 = (xp + 2) + (yp - 1.5) - R = d + (2xp + 3)+(-2 yp + 2x 3 + -2 2) P1 即d 的增量为 2 (xp - yp) +5. d的初值: M d0 = F(1, R0.5) P2 2 = 1 + (R-0.5) 2 -R = 1.25 - R
程序如下: BresenhamLine(x0,y0,x1,y1,color) int x0,y0,x1,y1,color; { int x,y,dx,dy; float k,e; int e; dx = x1-x0; dy = y1-y0; k = dy/dx; e = -0.5; x=x0; y=y0; e = -dx; for( i=0; i<=dx; i++){ drawpixel(x,y,color); x++; e=e+k; e1=e-0.5; e=e+2*dy; e1= e-dx; if(e1 > 0) e = e - 1; e = e - 2*dx; if(e >=0) y++; } }
2 2 2
y
缺点:浮点运算,开方, 取整,不均匀。
x
角度DDA法
x = x0 + Rcosθ y = y0 + Rsinθ dx =- Rsinθdθ dy = Rcosθdθ xn+1 =x n + dx y n+1 =y n + dy xn+1 = x n + dx = x n - Rsinθdθ =x n - (y n - y 0 )dθ y n+1 = y n + dy = y n + Rcosθdθ =y n + (x n - x 0 )dθ 显然,确定x,y的初值及dθ值后,即可以增量方 式获得圆周上的坐标,然后取整可得象素坐标。 但要采用浮点运算、乘法运算、取整运算。
这种方法直观,但效率太低,因为每一步需要一次浮点乘法 和一次舍பைடு நூலகம்运算。
y = kx + b
数值微分(DDA)法
计算yi+1= kxi+1+b = kxi+b+k∆x = yi+k∆x 当∆x =1; yi+1 = yi+k
即:当x每递增1,y递增k(即直线斜率); 注意上述分析的算法仅适用于|k| ≤1的情形。 在这种情况下,x每增加1,y最多增加1。 当 |k| >1时,必须把x,y地位互换
Bresenham画线算法
圆的扫描转换算法
下面仅以圆心在原点、半径R为整数的圆 为例,讨论圆的生成算法。 假设圆的方程为: 2 2 2 X + Y = R
圆弧扫描算法
X + Y = R 2 2 Y = ±Sqrt(R - X ) 在一定范围内,每给定一 X值,可得一Y值。 当X取整数时,Y须取整。
Bresenham画线算法
由式(2)和式(3)可得到 ε(xi+2)=yi+2 - yi+1,r - 0.5 =yi+1 + k - yi+1,r - 0.5 (4) yi+1 - yir -0.5 + k - 1,当ε(xi+1)≥0 yi+1 - yir -0.5 + k, 当ε(xi+1)≤0 ε(xi+2)= ε(xi+1) + k -1 ,当ε(xi+1)≥0 ε(xi+2)= ε(xi+1) + k , 当ε(xi+1)≤0 由式(1)和式(2)可得到 ε(x2)= k - 0.5 (5)
相关文档
最新文档