近代物理知识点

合集下载

物理高三近代史知识点总结

物理高三近代史知识点总结

物理高三近代史知识点总结近代史是物理学中一门重要的学科,它涵盖了众多的知识点,为了方便高三学生对这些知识点有一个全面的了解,下面将对物理高三近代史知识点进行总结。

1. 物理学的发展历程近代史起源于17世纪,当时以伽利略、牛顿等人的研究为基础,逐渐形成了经典力学和光学理论。

18世纪末,电学和磁学开始崛起,进一步推动了物理学的发展。

20世纪初,相对论和量子力学的提出彻底改变了物理学的格局,开创了量子物理学和现代物理学的新纪元。

2. 热力学和热学热力学研究热量和功的转化关系,以及物质在温度变化下的行为。

热学是研究热力学基本理论和热学性质的学科。

近代物理学中的热力学概念包括内能、热力学第一定律、熵等。

以及热传导、热辐射和热扩散等方面的知识点。

3. 光学光学是研究光的传播规律和光与物质相互作用的学科。

近代物理学的光学理论包括几何光学、物理光学、光的波粒二象性等。

其中的知识点涉及到光的偏振、光的干涉、光的衍射、光的折射等。

4. 电学和电磁学近代物理学中的电学是以库仑定律为基础,研究电荷、电场和电势等电性质的学科。

电磁学是研究电磁场和电磁波的学科。

电学和电磁学的知识点包括电场与电势、电容、电流与电阻、电磁感应、电磁波等。

5. 相对论和量子力学相对论是爱因斯坦于1905年提出的一种基本物理理论,研究光速不变的原理和质量能量关系等。

量子力学是研究微观世界中微观粒子的运动和相互作用的学科。

相对论和量子力学的知识点包括相对论的相对性原理、量子纠缠、波粒二象性、不确定性原理等。

6. 核物理学和粒子物理学核物理学是研究原子核及其内部结构、核变换、核能源等的学科。

粒子物理学是研究基本粒子、宇宙射线、强、弱、电磁相互作用等的学科。

核物理学和粒子物理学的知识点包括放射性衰变、核反应、粒子加速器等。

总结:物理高三近代史知识点的总结包括物理学的发展历程、热力学和热学、光学、电学和电磁学、相对论和量子力学、核物理学和粒子物理学等知识点。

高考物理近代史知识点总结

高考物理近代史知识点总结

高考物理近代史知识点总结近代物理史是研究物理学在近代发展中的历史和演变过程的一门学科。

它包括了自牛顿力学的诞生开始,到相对论和量子力学的奠基,直至现代物理学的形成。

了解近代物理史对于高考物理考试是非常重要的,因为它能够帮助我们理解现代物理学的基本原理和发展脉络。

本文将为大家总结一些高考物理考试中常见的近代史知识点。

1. 牛顿力学的诞生牛顿力学是近代最早也是最重要的物理学分支之一。

1642年,牛顿出生在英国的一个农村家庭中。

他在1667年发表了《自然哲学的数学原理》,奠定了现代力学的基础。

牛顿的三大定律成为了力学研究的基础:惯性定律、加速度定律和作用力与反作用力定律。

2. 法拉第电磁感应定律迈克尔·法拉第是19世纪初英国的一位物理学家。

他在1831年提出了电磁感应定律,即当导体在磁场中运动或磁场变化时,会产生感应电流。

法拉第电磁感应定律是电磁学的基本定律之一,也是电磁感应现象的核心。

它的发现对于电磁能量的转换和利用具有重要的意义。

3. 波尔的量子理论尼尔斯·波尔是20世纪初丹麦的一位物理学家。

他在1913年提出了量子理论,揭示了原子结构和原子光谱的奥秘。

波尔的量子理论对于解释电子能级、光谱线和电子跃迁具有重要的作用,为量子力学的发展奠定了基础。

4. 狭义相对论爱因斯坦的狭义相对论是20世纪物理学的一大突破。

1905年,爱因斯坦发表了相对论的论文,提出了相对论的基本原理。

狭义相对论包括了两个重要的原理:相对性原理和光速不变原理。

它解决了牛顿力学无法解释的时空结构、光速不变等问题,对于粒子高速运动和重力场的研究具有重要意义。

5. 普朗克的量子假设马克斯·普朗克是20世纪早期的一位德国物理学家。

他在1900年提出了普朗克的量子假设,揭示了黑体辐射的规律。

根据普朗克的假设,辐射的能量是离散的,而不是连续的。

这一假设对于量子力学和能量的量子化有着重要的影响。

以上只是近代物理史中的一部分知识点,每一个知识点都有其独特的价值和意义。

大学物理近代物理学知识点

大学物理近代物理学知识点

大学物理近代物理学知识点近代物理学是物理学中重要的分支之一,大学物理中也占有重要地位。

在本文中,我们将介绍大学物理中的一些近代物理学知识点。

1. 相对论相对论是一种物理学理论,被广泛应用于高能物理学、天体物理学和宏观物理学。

相对论中的重要理论是狭义相对论和广义相对论,它们主要是研究物质和能量之间的关系。

其中,狭义相对论主要是研究高速运动物体的行为,而广义相对论主要研究引力和引力对时空的影响。

2. 量子力学量子力学是物理学家研究物质与能量交换时发现的新的规律性。

该学科研究微观领域中的粒子行为,如原子核、电子等。

它是现代物理学的基础之一,也被广泛应用于各种领域,如化学、材料科学和电子工程。

3. 基本粒子基本粒子是物理学家研究微观世界时发现的最小的物质组成部分。

它们包括质子、中子、电子等。

近年来,在高能物理研究中,新的基本粒子不断被发现和探测。

这些发现对于人类对物质构成的认识产生了重大的影响。

4. 大爆炸大爆炸理论是现代宇宙学的基石之一,它描述了宇宙的起源和演化。

大爆炸理论认为,宇宙的起源是由于一次巨大的爆炸而形成的。

从此时起,宇宙开始膨胀并不断演化。

5. 暗物质暗物质是一种物质,它对于宇宙的形成和演化有着重要的作用。

虽然暗物质无法直接观测到,但是通过对星系和宇宙大尺度的结构进行观测,科学家们已经确认它的存在。

暗物质对于我们理解宇宙的形成和演化过程,以及对于寻找基本粒子和探索宇宙物理学的深度理解都具有重要意义。

6. 熵熵是物理学的一个基本概念,它是热力学中对于系统无序性的度量。

由于熵是系统的状态函数,因此它在物理学的许多领域都有广泛的应用。

例如,在统计物理学中,熵被用来表示系统的混乱程度。

在信息理论中,熵则被用来表示信息的多少。

7. 超导超导是一种物理现象,它指的是某些材料在低温下的导电特性。

这些材料在特定的温度下,可以形成一个电流稳定状态,这个状态被称为超导态。

超导材料被广泛应用于各种领域,如磁共振成像、电力输送、制冷技术和计算机芯片等。

近代物理知识点归纳总结

近代物理知识点归纳总结

近代物理知识点归纳总结近代物理学是20世纪以来发展起来的一门新兴学科,其研究领域广泛,涉及到微观领域的粒子物理,宏观领域的相对论和引力理论,以及光与电磁场的研究。

本文将针对近代物理学中的一些重要知识点进行归纳总结,包括相对论、量子力学、粒子物理、电磁场等方面的内容。

相对论相对论是20世纪初由爱因斯坦提出的一种新的物理学理论,它颠覆了牛顿力学的经典观念。

相对论包括狭义相对论和广义相对论两个部分,狭义相对论主要是关于相对运动的物理规律,广义相对论则是对引力现象的解释。

以下是相对论的一些重要知识点:1. 相对性原理相对性原理是相对论的基础,它包括两个部分:运动相对性原理和物理定律相对性原理。

运动相对性原理指出,一切物理规律在任意惯性系中都具有相同的形式;物理定律相对性原理指出,在惯性系中观测到的物理现象与在任何其他相对此做匀速直线运动的惯性系中观测到的现象相同。

2. 等效原理等效原理是广义相对论的基础,它指出惯性质量和引力质量是等效的,也就是说质量在产生引力和受到引力的情况下是一样的。

3. 时空结构相对论将时空看做一个整体,时间和空间不再是独立的,而是统一在一个四维时空中。

在相对论中,时间也变得相对,即观察者的时间会因为他们的相对运动状态而发生变化。

4. 光速不变原理相对论中的一个重要结论是光速在任何惯性系中都是恒定不变的。

这意味着光速是一个绝对不变的常数,而不受光源相对于观察者的运动状态的影响。

量子力学量子力学是20世纪初由普朗克、爱因斯坦等科学家提出的一种描述微观领域的物理学理论。

量子力学颠覆了经典力学的观念,提出了波粒二象性和不确定性原理等新概念。

以下是量子力学的一些重要知识点:1. 波粒二象性在量子力学中,粒子被描述为具有波动特性的粒子,即波粒二象性。

这意味着微观粒子既可以呈现粒子的特性,也可以呈现波动的特性,具有双重性质。

2. 不确定性原理不确定性原理是量子力学的基础之一,它由海森堡提出。

不确定性原理指出,在测量某个粒子的位置和动量时,我们无法同时确定它们的精确数值,只能确定它们的概率分布。

高三近代物理的知识点

高三近代物理的知识点

高三近代物理的知识点近代物理是高中物理课程中的重要内容,也是高三物理学习的重点之一。

本文将从多个方面介绍高三近代物理的知识点,包括光的波动性和粒子性、相对论、量子物理等。

一、光的波动性和粒子性1. 光的波动性:根据波动理论,光是一种电磁波,具有衍射、干涉和折射等特性。

波动理论能够很好地解释光的传播规律和现象。

2. 光的粒子性:根据光的粒子性理论,光也可以看作是由光子组成的粒子,具有能量和动量。

例如,光电效应和康普顿散射实验证实了光的粒子性。

二、相对论1. 狭义相对论:狭义相对论是由爱因斯坦提出的一种物理学理论,描述了高速运动物体间的时空变换规律。

狭义相对论包括了洛伦兹变换、时间膨胀、长度收缩等概念。

2. 广义相对论:广义相对论是爱因斯坦在狭义相对论的基础上发展而来的理论,主要研究引力现象。

广义相对论将引力解释为时空弯曲造成的。

著名的黑洞和引力波都是广义相对论的重要应用。

三、量子物理1. 波粒二象性:根据量子理论,微观粒子既具有粒子性又具有波动性。

例如,电子具有波动性表现为电子的波函数,同时也具有粒子性如电子的位置和动量等。

2. 不确定性原理:量子物理提出了不确定性原理,即无法同时准确测量微观粒子的位置和动量。

这一原理揭示了微观世界的固有规律,也限制了我们对微观粒子的观测精度。

3. 量子力学:量子力学是描述微观粒子行为的理论。

它包括了薛定谔方程、量子力学算符以及量子态等概念。

量子力学为解释微观世界的现象提供了有效的数学工具。

四、其他知识点1. 原子核物理:高三物理中还包括了原子核物理的内容,如放射性衰变、核反应等。

了解原子核物理的基本原理对理解核能的应用和核辐射的防护具有重要意义。

2. 等离子体物理:等离子体是由电离的气体粒子组成的状态,具有独特的物理性质。

了解等离子体物理对于理解太阳、闪电等现象以及等离子体技术应用具有重要意义。

总结:高三近代物理涵盖了光的波动性和粒子性、相对论、量子物理等多个知识点。

近代物理知识点

近代物理知识点

近代物理知识点近代物理是物理学的一个重要分支,它从经典物理的基础上发展而来,对我们理解自然界的本质和规律产生了深远的影响。

以下将为您介绍一些关键的近代物理知识点。

一、相对论相对论由爱因斯坦提出,包括狭义相对论和广义相对论。

狭义相对论主要基于两个基本原理:相对性原理和光速不变原理。

相对性原理指出物理规律在所有惯性参考系中都是相同的;光速不变原理则表明真空中的光速在任何惯性参考系中都是恒定的。

狭义相对论带来了一系列奇特的结论,比如时间膨胀和长度收缩。

时间膨胀意味着运动的时钟会变慢,而长度收缩则是指运动的物体在其运动方向上的长度会缩短。

广义相对论则进一步探讨了引力现象。

它将引力描述为时空的弯曲。

物质和能量会导致时空弯曲,而物体在弯曲的时空中沿着测地线运动,这就表现为引力的作用。

二、量子力学量子力学是研究微观世界粒子行为的理论。

其中一个重要概念是波粒二象性。

光和微观粒子既具有粒子的特性,又具有波动的特性。

例如电子在某些实验中表现出粒子的特性,如碰撞;而在另一些实验中则表现出波动的特性,如衍射。

不确定性原理也是量子力学的核心之一。

它表明我们无法同时精确地知道一个粒子的位置和动量,或者能量和时间。

量子力学中的薛定谔方程用于描述微观粒子的状态随时间的演化。

通过求解这个方程,可以得到粒子的各种可能状态及其概率。

三、原子结构在近代物理中,对原子结构的认识有了重大突破。

卢瑟福的α粒子散射实验推翻了之前的“枣糕模型”,提出了原子的核式结构模型。

原子中心有一个很小但质量很大的原子核,电子在核外绕核运动。

玻尔提出了玻尔模型,认为电子只能在特定的轨道上运动,并且在这些轨道上电子的能量是量子化的。

随着量子力学的发展,对原子结构的理解更加深入和精确。

四、原子核物理原子核物理研究原子核的性质和变化。

原子核由质子和中子组成,它们之间存在强相互作用。

放射性衰变是原子核自发地发生变化,放出α、β、γ射线。

α衰变是原子核放出α粒子,β衰变包括β⁻衰变和β⁺衰变,分别放出电子和正电子,γ衰变则不改变原子核的组成,只是放出高能光子。

近代物理知识点

近代物理知识点

近代物理知识点近代物理是物理学发展的一个重要阶段,它颠覆了传统的物理观念,为我们打开了认识世界的新视角。

下面让我们一起走进近代物理的世界,了解一些关键的知识点。

首先要提到的是量子力学。

在经典物理学中,我们通常认为物理量是连续变化的,但量子力学告诉我们,在微观世界里,很多物理量是离散的、不连续的。

比如能量,原子中的电子只能处于特定的能级,而不能处于两个能级之间的任意值。

这种量子化的现象是微观世界的基本特征之一。

光的波粒二象性是近代物理中的一个重要概念。

过去,人们认为光要么是波,要么是粒子。

但近代物理的研究表明,光既有波动性,又有粒子性。

在某些实验中,光表现出波动性,如干涉和衍射现象;而在另一些实验中,如光电效应,光则表现出粒子性。

这一发现让我们对光的本质有了全新的认识。

相对论也是近代物理的重要组成部分。

狭义相对论指出,时间和空间不是绝对的,而是相对的,它们会随着物体的运动状态而改变。

比如时间膨胀和长度收缩现象。

当物体的运动速度接近光速时,时间会变慢,长度会缩短。

而广义相对论则进一步探讨了引力的本质,认为引力是由于时空的弯曲造成的。

原子结构的研究也是近代物理的重要内容。

卢瑟福通过α粒子散射实验,提出了原子的核式结构模型,即原子中心有一个很小的原子核,电子在核外绕核运动。

后来,玻尔结合量子力学的概念,对原子结构进行了更深入的解释,提出了玻尔模型。

量子隧穿效应是一个有趣的现象。

在经典力学中,一个粒子如果能量不足,是无法越过一个势垒的。

但在量子力学中,粒子有一定的概率能够穿越势垒,即使它的能量低于势垒的高度。

这一现象在半导体器件等领域有着重要的应用。

薛定谔方程是量子力学中的基本方程,它描述了微观粒子的状态随时间的变化。

通过求解薛定谔方程,我们可以得到粒子的各种可能的状态和相应的概率。

海森堡的不确定性原理也是量子力学中的一个关键概念。

它表明,我们不能同时精确地测量一个粒子的位置和动量,或者能量和时间。

当我们对其中一个量测量得越精确,对另一个量的测量就越不精确。

高考近代物理常考知识点

高考近代物理常考知识点

高考近代物理常考知识点近代物理是高考中的一门重要科目,对于理科考生来说尤为重要。

近代物理作为物理学的一个重要分支,探讨了物质的微观结构和运动规律,涉及到了各个领域的应用。

在高考中,有一些常考的近代物理知识点,掌握了这些知识点,考生就能更好地应对考试。

本文将介绍一些常考的近代物理知识点。

首先,我们来了解一下相对论。

相对论是物理学中最重要的理论之一,它是由爱因斯坦提出的。

相对论分为狭义相对论和广义相对论。

狭义相对论主要探讨了高速运动物体的时空结构和相互作用规律。

经典力学认为时间和空间是绝对的,而狭义相对论则认为时间和空间是相对的,而且物体的运动状态与观察者的参考系有关。

广义相对论在狭义相对论的基础上提出了引力的描述,其核心思想是物质和几何的相互关联。

相对论的应用领域广泛,如导航系统、卫星定位等都离不开相对论的原理。

其次,我们来看一下原子核和放射性。

原子核是物质的基本构成单位,由质子和中子组成。

质子和中子是由夸克组成的。

质子带正电,中子是中性的。

原子核稳定与否与中子和质子的比例有关。

放射性是指原子核发生自发的衰变,放出放射线的现象。

放射线分为α射线、β射线和γ射线。

α射线是迅速移动的氦离子,由2个质子和2个中子组成。

β射线是电子或正电子的快速运动。

γ射线是电磁波,具有很强的穿透性。

接下来,我们来探讨一下光的本质和光的衍射。

光既可以被看作粒子也可以被看作波动,这是光的双重性理论。

光的粒子性表现为光子,而光的波动性则表现为光的干涉和衍射现象。

光的干涉是指两束或多束光相遇时发生的互相干涉现象。

光的衍射是指光通过一个小孔或绕过一个小障碍物时发生的传播和弯曲现象。

光的干涉和衍射是实验证明光的波动性的重要依据。

最后,我们来看一下量子力学。

量子力学是描述微观粒子运动行为的理论,是现代物理学的重要组成部分。

量子力学的核心思想是微观粒子的波粒二象性和不确定性原理。

波粒二象性指微观粒子既具有粒子的性质,也具有波动的性质。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

光电效应、量子理论,原子及原子核物理一、光的粒子性1、光电效应(1)光电效应:在光(包括不可见光)的照射下,从物体发射出电子的现象称为光电效应。

(2)光电效应的实验规律:装置:①任何一种金属都有一个极限频率,入射光的频率必须大于这个极限频率才能发生光电效应,低于极限频率的光不能发生光电效应。

②光电子的最大初动能与入射光的强度无关,光随入射光频率的增大而增大。

③大于极限频率的光照射金属时,光电流强度(反映单位时间发射出的光电子数的多少),与入射光强度成正比。

④金属受到光照,光电子的发射一般不超过10-9秒。

2、波动说在光电效应上遇到的困难波动说认为:光的能量即光的强度是由光波的振幅决定的与光的频率无关。

所以波动说对解释上述实验规律中的①②④条都遇到困难3、光子说(1)量子论:1900年德国物理学家普郎克提出:电磁波的发射和吸收是不连续的,而是一份一份的,每一份电磁波的能量E=hv(2)光子论:1905年受因斯坦提出:空间传播的光也是不连续的,而是一份一份的,每一份称为一个光子,光子具有的能量与光的频率成正比。

即:E=hv ,其中h为普郎克恒量h=6.63×10-34J·s(3)光电效应方程 E k=hv-W4、光子论对光电效应的解释金属中的自由电子,获得光子后其动能增大,当功能大于脱出功时,电子即可脱离金属表面,入射光的频率越大,光子能量越大,电子获得的能量才能越大,飞出时最大初功能也越大。

二、波粒二象性1、光的干涉和衍射现象,说明光具有波动性,光电效应,说明光具有粒子性,所以光具有波粒二象性。

2、个别粒子显示出粒子性,大量光子显示出波动性,频率越低波动性越显著,频率越高粒子性越显著3、光的波动性和粒子性与经典波和经典粒子的概念不同(1)光波是几率波,明条纹是光子到达几率较大,暗条纹是光子达几率较小,这与经典波的振动叠加原理有所不同(2)光的粒了性是指光的能量不连续性,能量是一份一份的光子,没有一定的形状,也不占有一定空间,这与经典粒子概念有所不同原子和原子核一、原子结构:1、电子的发现和汤姆生的原子模型:(1)电子的发现:1897年英国物理学家汤姆生,对阴极射线进行了一系列的研究,从而发现了电子。

电子的发现表明:原子存在精细结构,还可以再分,从而打破了原子不可再分的观念。

(2)汤姆生的原子模型:1903年汤姆生设想原子是一个带电小球,它的正电荷均匀分布在整个球体内,而带负电的电子镶嵌在正电荷中。

2、α粒子散射实验和原子核结构模型(1)α粒子散射实验:1909年,卢瑟福及助手盖革托马斯顿完成.①装置:②现象:a. 绝大多数α粒子穿过金箔后,仍沿原来方向运动,不发生偏转。

b. 有少数α粒子发生较大角度的偏转c. 有极少数α粒子的偏转角超过了90度,有的几乎达到180度,即被反向弹回。

(2)原子的核式结构模型:由于α粒子的质量是电子质量的七千多倍,所以电子不会使α粒子运动方向发生明显的改变,只有原子中的正电荷才有可能对α粒子的运动产生明显的影响。

如果正电荷在原子中的分布,像汤姆生模型那模均匀分布,穿过金箔的α粒了所受正电荷的作用力在各方向平衡,α粒了运动将不发生明显改变。

散射实验现象证明,原子中正电荷不是均匀分布在原子中的。

1911年,卢瑟福通过对α粒子散射实验的分析计算提出原子核式结构模型:在原子中心存在一个很小的核,称为原子核,原子核集中了原子所有正电荷和几乎全部的质量,带负电荷的电子在核外空间绕核旋转。

原子核半径小于10-14m,原子轨道半径约10-10m。

3、玻尔的原子模型(1)原子核式结构模型与经典电磁理论的矛盾(两方面)a. 电子绕核作圆周运动是加速运动,按照经典理论,加速运动的电荷,要不断地向周围发射电磁波,电子的能量就要不断减少,最后电子要落到原子核上,这与原子通常是稳定的事实相矛盾。

b. 电子绕核旋转时辐射电磁波的频率应等于电子绕核旋转的频率,随着旋转轨道的连续变小,电子辐射的电磁波的频率也应是连续变化,因此按照这种推理原子光谱应是连续光谱,这种原子光谱是线状光谱事实相矛盾。

(2)玻尔理论上述两个矛盾说明,经典电磁理论已不适用原子系统,玻尔从光谱学成就得到启发,利用普朗克的能量量了化的概念,提了三个假设:①定态假设:原子只能处于一系列不连续的能量状态中,在这些状态中原子是稳定的,电子虽然做加速运动,但并不向外在辐射能量,这些状态叫定态。

②跃迁假设:原子从一个定态(设能量为E2)跃迁到另一定态(设能量为E1)时,它辐射成吸收一定频率的光子,光子的能量由这两个定态的能量差决定,即hv=E2-E1③轨道量子化假设,原子的不同能量状态,跟电子不同的运行轨道相对应。

原子的能量不连续因而电子可能轨道的分布也是不连续的。

即轨道半径跟电子动量mv的乘积等于h/2π的整数倍,即:轨道半径跟电了动量mv的乘积等于h/2π的整数倍,即mvr n hn==2123π、、……n为正整数,称量数数(3)玻尔的氢子模型:①氢原子的能级公式和轨道半径公式:玻尔在三条假设基础上,利用经典电磁理论和牛顿力学,计算出氢原子核外电子的各条可能轨道的半径,以及电子在各条轨道上运行时原子的能量,(包括电子的动能和原子的热能。

)氢原子中电子在第几条可能轨道上运动时,氢原子的能量E n,和电子轨道半径r n分别为:E E nr n r nn n ==⎫⎬⎪⎭⎪=121123、、……其中E1、r1为离核最近的第一条轨道(即n=1)的氢原子能量和轨道半径。

即:E1=-13.6ev, r1=0.53×10-10m(以电子距原子核无穷远时电势能为零计算)②氢原子的能级图:氢原子的各个定态的能量值,叫氢原子的能级。

按能量的大小用图开像的表示出来即能级图。

其中n=1的定态称为基态。

n=2以上的定态,称为激发态。

二、原子核1、天然放射现象(1)天然放射现象的发现:1896年法国物理学,贝克勒耳发现铀或铀矿石能放射出某种人眼看不见的射线。

这种射线可穿透黑纸而使照相底片感光。

放射性:物质能发射出上述射线的性质称放射性放射性元素:具有放射性的元素称放射性元素天然放射现象:某种元素白发地放射射线的现象,叫天然放射现象天然放射现象:表明原子核存在精细结构,是可以再分的(2)放射线的成份和性质:用电场和磁场来研究放射性元素射出的射线,在电场中轨迹,如图(1):性质成份组成电离作用贯穿能力α射线氦核组成的粒子流 0.1c 很强很弱β射线高速电子流 0.99c 较强较强γ射线高频光子 c 很弱很强2、原子核的衰变:(1)衰变:原子核由于放出某种粒子而转变成新核的变化称为衰变在原子核的衰变过程中,电荷数和质量数守恒类型衰变方程规律α衰变新核电荷数减少质量数减少24⎧⎨⎩β衰变新核电荷数增加质量数不变1⎧⎨⎩γ射线是伴随αβ、衰变放射出来的高频光子流,是衰变产生的新原子核处于较高能级发生跃迁而产生的。

在β衰变中新核质子数多一个,而质量数不变是由于反应中有一个中子分裂变为一个质子和一个电子,即:,(2)半衰期:放射性元素的原子核的半数发生衰变所需要的时间,称该元素的半衰期。

一放射性元素,测得质量为m,半衰期为T,经时间t后,剩余未衰变的放射性元素的质量为mmmt To=2/半衰期无法改变,而且是大量原子核衰变的统计规律,对于少数原子核没有半衰期概念。

3、原子核的人工转变:原子核的人工转变是指用人工的方法(例如用高速粒子轰击原子核)使原子核发生转变。

(1)质子的发现:1919年,卢瑟福用α粒子轰击氦原子核发现了质子。

7142481711N He O H +→+(2)中子的发现:1932年,查德威克用α粒子轰击铍核,发现中子。

4、原子核的组成和放射性同位素(1)原子核的组成:原子核是由质子和中子组成,质子和中子统称为核子 在原子核中: 质子数等于电荷数核子数等于质量数 中子数等于质量数减电荷数(2)放射性同位素:具有相同的质子和不同中子数的原子互称同位素,放射性同位素:具有放射性的同位素叫放射性同位素。

正电子的发现:用α粒子轰击铝时,发生核反应。

发生+β衰变,放出正电子三、核能:1、核能:核子结合成的子核或将原子核分解为核子时,都要放出或吸收能量,称为核能。

例如:2、质能方程:爱因斯坦提出物体的质量和能量的关系: Emc =2——质能方程3、核能的计算:在核反应中,及应后的总质量,少于反应前的总质量即出现质量亏损,这样的反就是放能反应,若反应后的总质量大于反应前的总质量,这样的反应是吸能反应。

吸收或放出的能量,与质量变化的关系为:∆∆Emc =24、释放核能的途径——裂变和聚变(1)裂变反应—原子弹,可控核反应堆①裂变:重核在一定条件下转变成两个中等质量的核的反应,叫做原子核的裂变反应。

例如:②链式反应:在裂变反应用产生的中子,再被其他铀核浮获使反应继续下去。

链式反应的条件:a b ))裂变物质的体积,超过临界体积有中子进入裂变物质⎧⎨⎩③裂变时平均每个核子放能约1Mev 能量1kg全部裂变放出的能量相当于2500吨优质煤完全燃烧放出能量(2)聚变反应---太阳内部,氢弹①聚变反应:轻的原子核聚合成较重的原子核的反应,称为聚变反应,也称为热核反应 例如:12132401176H H He n Mev +→++. ②平均每个核子放出3Mev 的能量③聚变反应的条件;几百万摄氏度的高温。

相关文档
最新文档