数形结合解决一元二次方程根的分布问题
数形结合巧运用,零点分布妙化解--浅谈对二次函数零点分布问题解题教学的研究

解题探索数形结合巧运用,零点分布妙化解一浅谈对二次函数零点分布问题解题教学的研究张程燕(山东省济南中学,250001)一元二次函数是中学数学中最基本、最重要的 函数之一,也是高考考查的重要内容之一,是高考的 高频考点.高中数学教学中一元二次函数的零点分 布问题即初中数学教学中一元二次方程根的分布问 题,是二次函数部分的重点知识与内容,既是学生学 习的重点,也是学习的难点,因此对二次函数零点分 布问题的解题教学研究十分必要.目前,高中生对二 次函数零点分布问题的解题方法偏重于借助对二次 方程根的判别式和韦达定理的运用,能够解决的零 点分布问题有限且易出错,解题方法尚不够系统和 完善,针对这一学情,结合高中所学的零点存在定理 以及数形结合这一重要的数学思想方法,笔者将系 统地分析一元二次函数的零点分布问题,力求将解 题方法系统化、模式化、巧妙化,从而提高数学解题 教学的效率和质量,优化学生的思维品质,发展学生 的数学核心素养.1熟悉知识背景,理解方法本质学生对同一类数学题的解答与掌握,需要的不 仅仅是理解并掌握这类题目的解题方法与技巧,更 需要知晓题目所涉及的知识背景.从知识背景出发, 联系解题所需要的数学知识和方法,将知识与方法 有机融合在一起,构建起数学解题模型,既加深了学 生对数学知识的熟悉程度,也有助于学生理解数学 方法的本质,从而达到学以致用、举一反三的学习效 果,这也是数学解题教学的期望所在.本文所涉及的 数学知识与方法如下所述:1.函数零点存在定理:如果函数y =/(%)在区 间[a ,]上的图像是一^条连续不断的曲线,且有/ (a )/() <0,那么函数y =/()在区间(a ,)内至少 有一个零点,即存在c e (a ,),使得/(C) = 0,这个c 也就是方程/() =0的解[1].特别地,对于一次函数y = h +&(�)和二次 函数y = a / +心+c (a #0)而言,若/(幻在区间(a , 6)上满足零点存在定理,则在(a ,)上有且仅有一个零点.2.数形结合的思想方法——从四个方面将二次函数图像与代数不等式之间建立联系:①开口方向, ②对称轴,③判别式4,④特殊点函数值的符号.2探究典型例题,把握解题方法数学解题教学是数学教师根据教学需要选择合 适的试题,以学生的学情为起点,以自身的解题经 历、经验和研究为基础,通过师生间对话交互,促进 学生深度思考,优化学生思维品质的教学活动[2].本文选取四道典型例题,从思路分析、解答过程和 方法指导三个方面对二次函数零点分布问题进行解题 教学探究,全方位、多角度的对例题进行剖析,帮助学 生理解问题本质、建立解题模型以及掌握解题方法.例1如果方程尤2 + (^i -1)) +爪2 -2=0的两个 实根一个小于1,另一个大于1,求实数m 的取值范围.思路分析:(1)方程尤2 + (爪-1)尤+爪2-2=0根的分布问题0函数/(%) =%2 + (m - 1)% +m 2 -2的零点分布问题,完成方程的根与函数零点的转化;(2) 函数/() =% + (m -1)%+m 2 - 2 开口上,其与%轴的交点一个在1的左侧、一个在1的右 侧,易画出草图,熟悉题设,理清思路;(3)利用数形结合的思想方法,从四个方面二次函数图像与代数不等式之间建立联系:开口向 上是确定的;对称轴可以在1的左侧、右侧或者对称 轴为1;判别式4 = ( m - 1)2 - 4 ( m - 2 ) > 0;特殊 点函数值/(1) <0.解题过程1法一:数形结合由已知可列方程组:• 62•r 4 = (m -1)2 - A i m 1 - 2 ) >0, |/( 1) =1 + m — 1 + m 2 —2 <0.r 3m 2 + 2m -9 <0, m 2 + m - 2 <0.1 +2 槡 -1 +2 槡----;---< m <---------,33-2 < m < 1.%,^2满足0<% < 1<%2 <6,求实数a 的取值范围.思路分析:(1)函数开口向上,过定点(0,4),其 与X 轴有两个交点%,2满足0<%<1<% <6,易 画出草图,熟悉题设,理清思路;(2)利用数形结合的思想方法,从四个方面将 二次函数图像与代数不等式之间建立联系.解题过程:-2 < m < 1. m e ( - ,1)方法指导:因为/(X )开口向上,所以X —± ^ 时,/(X )— + (即/( -) >0,/( + ) >0),再有/(1) <0,则在区间(-^ ,1)和(1,+1)上都满足 零点存在定理,所以在两个区间都各有一个零点,从而满足题意.因此,判别式4 = (m -1)2 - 4(m 2 - 2 ) >0可省略不解,解答过程十分简单.解题过程1 :法一(简化):数形结合 由已知得:/(1) <0....1 + m - 1 + m 2 - 2 < 0. ... m 2 + m - 2 < 0..-2 < m < 1. .m e (-2,1).我们再来看一下第二种解题方法/昔助对二次 方程根的判别式和韦达定理的运用,来解决二次函 数零点分布问题.解题过程2:法二:韦达定理4 = (m -1)2 - 4(m 2 - 2 ) >0,xt - 1 )(%2 - 1) <0.4 = (m -1)2 - 4(m 2 - 2 ) >0,%1%2 _ (xt +X 2 ) +1 <0.4 = (m -1)2 - 4(m 2 - 2 ) >0,一2) -(1 一 m ) +1 <0.由已知,得{.{.{3m 2 + 2m -9<0,m 2 + m - <01 +2 槡 -1+2 槡...|-^^<m < ^3^,-2 < m < 1..- 2 < m < 1. .m e (-2,1).方法指导:韦达定理使用的前提是一元二次方 程的两根存在,即判别式4^0.因此在利用判别式 和韦达定理解决二次函数的零点分布问题时,判别 式4 = (m -1)2 - 4(m 2 - 2 ) >0不可以省略,必须 要求解.显然,在解决二次函数零点分布问题时,利 用韦达定理解题比利用数形结合解题计算量要大. 也就是说,数形结合方法解决零点分布问题更简易、 更巧妙、更通用.例2已知函数/(X ) =X 2 -2ax +4有两个零点由已知可列方程组:,/(0) =4>0, |/(1)=5-2a <0,...1/(6) =40 -12a >0.a >10a < —5 10 5 10.T <a <T .a E (T ’y ).方法指导:因为/(X )开口向上,且由图像可得, /(0) >0,(1) <0,(6) >0,则在区间(0,1)和(1,6)上 都满足零点存在定理,所以在区间(0,1 )和(1,)上各 有一个零点,满足题意“/(X )两个零点X i ,2且0 <X 1 < 1 <X 2 <6”,故而有关对称轴0 <a <6和判别式4 = (-2a )2 -4 x 1 x 4的不等式可省略.例3已知函数/(X ) =X 2 - 2aX +4有两个零点,且都大于1,求实数a 的取值范围.思路分析:(1)函数开口向上,过定点(0,4 ),且 两个零点X 1,2都大于1,易画出草图,熟悉题设,理 清思路;()利用数形结合的思想方法,从四个方面将 二次函数图像与代数不等式之间建立联系解题过程:• 63•由已知可列方程组:/(1) =5 -2a >0, a >1,轴=—2a2x 1=a > 1a <52,,4 =4a 2 - 16 >0. La >2 或 a <-2.2 < a <52a g5)•方法指导:因为/()开口向上,所以/( - 〇〇) > 0,/( + 〇〇 ) > 0,且由图像可得/(1) > 0,但仅仅凭借 特殊点函数值/(1) >0并不能满足零点存在定理, 这就需要其它三个方面加以限制,即开口方向、对称轴-冬>1和4>0.La例4函数/(*) =a *2 -*-1在区间(0,1)内恰有一个零点,求实数a 的取值范围.思路分析:(1)函数开口方向不确定,过定点 (0,_1);()首项系数含参且在(0,1)内恰有一个零点, 满足条件的草图有很多,因此需要分类讨论,而分类 讨论的依据可以是首项系数的符号.亦或者,我们可 以利用前面的解题思路,按照端点函数值/(0)/( 1) 的符号来讨论;(3)利用数形结合的思想方法,从四个方面将 二次函数图像与代数不等式之间建立联系.解题过程:分类讨论法一:按首项系数分类讨论(1) 若a =0,则/() = -*-1为一次函数,令/(*) =0,得 *= -1.此时/(*)只有*=-1这一个零点,在区间(0, 1)内无零点.(2)若 a >0,则/(*) = a *2 - * - 1 为一兀二次函数,开口向上,过定点(0, -1).由已知可列方程组:f (0) = ―1:0, .a >2.[/(1) =a - 2 >0.(3)若 a <0,则/(*) =a *2-*-1 为一兀二次 函数,开口向下,过定点(0, -1).由已知可列方程组:a <0,1 a <0,0 <^<1, ,、2a 或{ A =1 + 4a >0,4=1 +4a =0, |/(1) =a 一 2>0./(1) =a -2<0a <0,、a <2a <0,或a >a >2••.均无解.综上所述:的取值范围为(2,+ ^ )•方法指导:与例1例2、例3 —样,需要画出函 数草图,从开口方向、对称轴、判别式A 和特殊点函 数值的符号四个方面建立起函数图像与不等式之间 的关系.但由于函数首项系数含参,具有不确定性, 因此依据首项系数的符号进行分类讨论,进而求解 参数的范围.需要说明的是:在情形(2)中,二次函 数/(*) =a *2 -* - 1区间(0,1)上满足零点存在定 理,则在(0,1 )上有且仅有一个零点.法二:按特殊点函数值符号分类讨论:()当/(0)/(1) <0,由/(0) = -1,得/(1) =a-2 >0,即 a >2 时;此时满足零点存在定理,二次函数/(*) =a *2 -* -1在区间(0,)内必恰有一-零点.(2)当/(0)/(1) >0,由/(0) = -1,得/(1) =a-2 <0,即 a <2 时;由图可列方程组得:• 64•a<0,0 <2a<1,A-4a+1=0,/(0) = -1 <0,/(1) =a-2<0.a<0,a无解.、a<2.()当/(0)/() =0,由/(0) = -1,得/(1) -a -2=0,即a=2 时;v/(x) =ax2-x-1=22-x-1= (2+1) (-1),...令/(x) =(2x+1)(x- 1) =0.得 X1 =-+送(0,1),2 =1 送(0,1).■■■/(x) =ax2-X-1在区间(0,1)内没有零点..a=2不符合题意,舍去.综上所述:的取值范围为(2,+ 1X1 ).方法指导:1)当/(0)/() <0时,满足函数零 点存在定理,则对于二次函数而言在区间(0,1)有 且只有一个零点,满足题意;⑵当/(0)/(1) >0时,函数/(X)端点值同号,不满足零点存在定理,所以结合图像,还得添加其它 三个条件:开口方向、对称轴、判别式A;(3)当/(0)/(1)=0时,可直接求得a=2,此时 函数解析式确定,直接求出零点的值,再判断零点是 否在区间(0,1)内即可.通过对比按首项系数分类讨论和按特殊点函数 值符号(即是否满足零点存在定理)分类讨论两种 方法,我们发现:虽同为利用数形结合与分类讨论的 数学思想方法解题,但显然方法二比方法一简单许 多,再次验证了函数零点存在定理在零点分布问题 求解中的优势所在.3研究零点分布,归纳解题结论通过对典型例题的深度探究,我们发现:二次函 数的零点分布问题,可以从开口方向、对称轴、判别 式和特殊点函数值符号四个方面找寻二次函数图像 与代数不等式之间的关系,从而建立起数学解题模型.我们还发现,当特殊点的函数值符号异号时,即在某区间上函数满足零点存在定理时,那就只需要 列特殊点函数值符号的不等式即可,其它三个不等 式不用列也无需解;当不满足零点存在定理时,就需 要其它三个方面的不等式加以限制,此时不能省略.因此,从四个方面将二次函数图像与代数不等式之 间建立联系,利用数形结合解决二次函数的零点分 布问题时,要注意四个方面研究的顺序性,优先考虑 特殊点函数值的符号情况,若满足零点存在定理,则可简化解题步骤,巧妙解决二次函数的零点分布问 题.此外,对于需要分类讨论的二次函数零点存在问 题,以/( a)/( 6 )的符号为切入点展开分类讨论,显然思路比较清晰,便于求解.数形结合巧运用,零点分布妙化解.利用一个简单的数学知识——零点存在定理和一个常用的数学 思想方法——数形结合,把二次函数零点分布问题 的解题方法系统化、直观化和形象化,在题目的诸多变化中找到了数学解题的“不变性”,达到“以不变 应万变”的解题教学效果,从而能够促进学生的深 度思考,提升学生的解题能力,优化学生的数学思维 品质,发展学生的数学核心素养.(说明:本文中出现的函数图像,都是在假设存 在的前提下依据题意画出的草图,并不代表此函数 图像一定存在.尤其在涉及分类讨论求参数范围时,满足条件的函数图像是否真实存在取决于解题的结果是否有解.)参考文献:[1] 中学数学课程教材研究开发中心.普通中教科书数学必修第一册(2019年A版)[M].北 京:人民教育出版社,2019.[2] 安学保.讲在学生需要处,讲在思维深处——例谈高中数学解题教学中的问题驱动[J].中学数学教学参考,2019,(22) :54 -57.[3] 江春莲,胡玲.基于APOS理论和R M I原的二次函数图象平移教学实验研究[J].数学教育学报,2020,29(6) :2 -39.[4] 葛丽婷,旆梦媛,于国文.基于UbD理论单元教学设计——以平面解析几何为例[J].数学 教育学报,2020,29(5) :5 -31.• 65•。
数形结合解决一元二次方程根的分布问题

【下载本文档,可以自由复制内容或自由编辑修改内容,更多精彩文章,期待你的好评和关注,我将一如既往为您服务】用数形结合的方法解决有关一元二次(函数)方程根(零点)的分布问题一元二次方程根的分布是二次函数中的重要内容。
这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用。
利用函数与方程思想:若y =()f x 与x 轴有交点0x ⇔f (0x )=0。
下面我们将主要结合二次函数图象的性质,分两种情况系统地介绍一元二次方程实根分布的充要条件及其运用。
所谓一元二次方程根的零分布,指的是方程的根相对于零的关系。
比如二次方程有一正根,有一负根,其实就是指这个二次方程一个根比零大,一个根比零小,或者说,这两个根分布在零的两侧。
设一元二次方程02=++c bx ax (0≠a )的两个实根为1x ,2x ,且21x x ≤。
【定理1】:01>x ,02>x ⇔⎪⎪⎩⎪⎪⎨⎧<>=>≥-=∆00)0(0042b c f a ac b 或⎪⎪⎩⎪⎪⎨⎧><=<≥-=∆00)0(042b c f a ac b 上述推论结合二次函数图象不难得到。
【定理2】:01<x ,02<x ⇔⎪⎪⎩⎪⎪⎨⎧>>=>≥-=∆00)0(0042b c f a ac b 或⎪⎪⎩⎪⎪⎨⎧<<=<≥-=∆00)0(0042b c f a ac b 由二次函数图象易知它的正确性。
c【定理4】 ○101=x ,02>x ⇔0=c 且0<ab; ○201<x ,02=x ⇔0=c 且0>ab。
二.一元二次方程的非零分布——k 分布设一元二次方程02=++c bx ax (0≠a )的两实根为1x ,2x ,且21x x ≤。
k 为常数。
则一元二次方程根的k 分布(即1x ,2x 相对于k 的位置)有以下若干定理。
探究一元二次方程根的分布

三 、两 根 都 在 区 间(m,,1)内
2 +6—0有 两 个 不 同根 ,且 只 有 一 根 在 区 问 (一 3,O)内 ,求 实数 m 的 取 值 范 围 .
黎褫 方程x2—4mx+2 +6—0有
侈4 3 已 知 关 于 z 的 方 程 + 2 z+ 两 个不 同根 ,且 只有 一 根 在 区 间 (一3,O)内 ,
3)内 ,求 实 数 的取 值 范 围.
z2,且 z1< k< x2铮 口,(忌)< 0.
令 厂(z)一z + 2mx-+-m-k1,若
结论 4 方程 厂(z)一0有 两 个根都 在 区
方程 X。+2rex+m-4-1—0有一 根 在 (一1,0)
f△> 1 o, 1
,
内 ,另一 根在 (2 3)内 ,则 函数 ,(z)的 图象 与 间( , )内甘m<一麦< ,
瓣 将方程与函数相结合,借助于
定方 程 中参 数 的取值 范 围是 一 类 常见 问题 , 函数 的性 质 与 图 象 ,运 用 数 形 结 合 的 思 想 .
本文 将 主要 结 合 二 次 函 数 图 象 的性 质 系 统 思 维过 程 简 洁 明 了 ,运 算 的 过 程 也 很 简 单 ,
解得 一3< < 一 15
.
厂(O)> O,
② 若 f(O)一0,则 : 一3.当 7 : 一 3
从而解得 实数 m 的取值 范围为 一去< 时 ,由 5C +12x=O,z1—0,z2= 一12,不 符合
m≤1一厄 (想一想 :缺条件(*)行不行?) 题 意 .
1
③ 若 -厂(一3)一 O,则 :一 14.当 :
l , ( 2)、 > 0
周末培优8 第八周 一元二次方程根的分布

第八周 一元二次方程根的分布重点知识梳理设f (x )=ax 2+bx +c ,则1.二次方程ax 2+bx +c =0的根从几何意义上来说就是抛物线y =ax 2+bx +c 与x 轴交点的横坐标,所以研究方程ax 2+bx +c =0的实根的情况,可从y =ax 2+bx +c 的图象上进行研究.若在(-∞,+∞)内研究方程ax 2+bx +c =0的实根情况,只需考察函数y =ax 2+bx +c 与x 轴交点个数及交点横坐标的符号,根据判别式以及根与系数的关系,由y =ax 2+bx +c 的系数可判断出Δ,x 1+x 2,x 1x 2的符号,从而判断出实根的情况.若在区间(m ,n )内研究二次方程ax 2+bx +c =0,则需由二次函数图象与区间关系来确定.2.若m ,n 都不是方程ax 2+bx +c =0(a ≠0)的根,则f (x )=0有且只有一个实根属于(m ,n )的充要条件是f (m )f (n )<0.3.方程ax 2+bx +c =0(a ≠0)的两个实根都属于区间(m ,n )的充要条件是:⎩⎨⎧ b 2-4ac ≥0af (m )>0af (n )>0m <-b 2a <n .4.二次方程ax 2+bx +c =0的两个实根分别在区间(m ,n )的两侧(一根小于m ,另一根大于n )的充要条件是:⎩⎨⎧af (m )<0af (n )<0. 5.二次方程ax 2+bx +c =0的两个实根都在(m ,n )的右侧(两根都大于n )的充要条件是: ⎩⎪⎨⎪⎧b 2-4ac ≥0af (n )>0-b 2a >n , 二次方程ax 2+bx +c =0的两个实根都在(m ,n )的左侧(两根都小于m )的充要条件是:⎩⎪⎨⎪⎧ b 2-4ac ≥0af (m )>0-b 2a <m .6.求解一元二次方程根的分布问题时,可借助函数图象,数形结合来写出相应结论.典型例题剖析例1 已知二次方程(2m +1)x 2-2mx +(m -1)=0有一正根和一负根,求实数m 的取值范围.【解析】∵二次方程有一正根一负根,∴(2m +1)·f (0)<0,即(2m +1)(m -1)<0,解得-12<m <1, ∴m 的取值范围为(-12,1). 变式训练 已知二次函数y =(m +2)x 2-(2m +4)x +(3m +3)与x 轴有两个交点,一个大于1,一个小于1,求实数m 的取值范围.【解析】∵对应二次方程(m +2)x 2-(2m +4)x +(3m +3)=0的一根大于1,一根小于1, ∴(m +2)·f (1)<0,即(m +2)·(2m +1)<0,解得-2<m <-12, ∴m 的取值范围为(-2,-12). 【小结】一元二次方程ax 2+bx +c =0的一根大于m ,一根小于m ,若a >0,则只需f (m )<0;若a <0,则只需f (m )>0 .二者综合起来,即一元二次方程ax 2+bx +c =0的一根大于m ,一根小于m ,则只需af (m )<0.例2 已知关于x 的二次方程x 2+2mx +2m +1=0.(1) 若方程有两根,其中一根在区间(-1,0)内,另一根在区间(1,2)内,求m 的取值范围.(2) 若方程两根均在区间(0,1)内,求m 的取值范围.【解析】(1)若抛物线f (x )=x 2+2mx +2m +1与x 轴的交点分别在区间(-1,0)和(1,2)内,则 ⎩⎪⎨⎪⎧ f (0)=2m +1<0,f (-1)=2>0,f (1)=4m +2<0,f (2)=6m +5>0,∴⎩⎪⎨⎪⎧ m <-12m ∈R m <-12m >-56,故-56<m <-12, ∴实数m 的取值范围是(-56,-12).(2)若抛物线与x 轴交点落在区间 (0,1) 内,列不等式组⎩⎪⎨⎪⎧ f (0)>0,f (1)>0,Δ≥0,0<-m <1,∴⎩⎪⎨⎪⎧ m >-12,m >-12,m ≥1+2或m ≤1-2,-1<m <0,∴-12<m ≤1-2, ∴实数m 的取值范围是(-12,1- 2 ]. 变式训练 已知方程2x 2-2(2a -1)x +a +2=0的两个根在-3与3之间,求a 的取值范围.【解析】若抛物线与x 轴交点落在区间 (-3,3) 内,列不等式组⎩⎪⎨⎪⎧ f (-3)>0,f (3)>0,Δ≥0,-3<2a -12<3,∴⎩⎪⎨⎪⎧ 18+6(2a -1)+a +2>0,18-6(2a -1)+a +2>0,4(2a -1)2-8(a +2)≥0,-52<a <72,,解得-1413<a ≤3-214或3+214≤a <2611, 故a 的取值范围是(-1413,3-214]∪[3+214,2611). 例3 求实数m 的范围,使关于x 的方程x 2+2(m -1)x +2m +6=0(1)有两个实根,且一个比2大,一个比2小;(2)有两个实根α,β,且满足0<α<1<β<4;(3)至少有一个正根.【解析】设y =f (x )=x 2+2(m -1)x +2m +6.(1)依题意有f (2)<0,即4+4(m -1)+2m +6<0,得m <-1.(2)依题意有⎩⎪⎨⎪⎧ f (0)=2m +6>0f (1)=4m +5<0f (4)=10m +14>0,解得-75<m <-54. (3)方程至少有一个正根,则有三种可能: ①有两个正根,此时可得⎩⎪⎨⎪⎧ Δ≥0f (0)>02(m -1)-2>0, 即⎩⎪⎨⎪⎧m ≤-1或m ≥5m >-3m <1,∴-3<m ≤-1.②有一个正根,一个负根,此时可得f (0)<0,得m <-3.③有一个正根,另一根为0,此时可得⎩⎪⎨⎪⎧6+2m =0-2(m -1)>0, ∴m =-3.综上所述,得m ≤-1.变式训练 已知a 是实数,函数f (x )=2ax 2+2x -3-a ,如果函数y =f (x )在区间[]-1,1上有零点,求a 的取值范围.【解析】函数y =f (x )在区间[-1,1]上有零点,即方程2ax 2+2x -3-a =0在[-1,1]上有解,a =0时,不符合题意,所以a ≠0.方程2ax 2+2x -3-a =0在[-1,1]上有解,∴f (-1)·f (1)≤0或⎩⎪⎨⎪⎧ af (-1)≥0af (1)≥0Δ=4+8a (3+a )≥0-1<-12a <1,解得1≤a ≤5或a ≤-3-72或a ≥5, 即a ≤-3-72或a ≥1. 所以实数a 的取值范围是a ≤-3-72或a ≥1.跟踪训练1.对一元二次方程2 012(x -2)2=2 013的两个根的情况,判断正确的是( )A .一根小于1,另一根大于3B .一根小于-2,另一根大于2C .两根都小于0D .两根都大于22.若一元二次方程3x 2-5x +a =0的一根大于-2且小于0,另一根大于1而小于3, 则实数a 的取值范围是 ( )A .(-12,0)B .(-∞,1514)C .(1514,+∞)D .(12,2) 3.已知关于x 的方程(m +3)x 2-4mx +2m -1=0的两根异号,且负根的绝对值比正根大,那么实数m 的取值范围是( )A .-3<m <0B .m <-3或m >0C .0<m <3D .m <0 或m >34.方程x 2+(2m -1)x +4-2m =0的一根大于2,一根小于2,那么实数m 的取值范围是 ________________.5.若方程mx 2+2mx +1=0一根大于1,另一根小于1,则实数m 的取值范围为_______.6.已知方程4x 2+2(m -1)x +(2m +3)=0有两个负根,则实数m 的取值范围是________.7.一元二次方程x 2+(2a -1)x +a -2=0的一根比1大,另一根比-1小,则实数a 的取值范围是______________.8.已知方程7x 2-(m +13)x +m 2-m -2=0(m 为实数)有两个实数根,且一根在(0,1)上,一根在(1,2)上,则m 的取值范围是 _________________.9.若方程x 2+(k -2)x +2k -1=0的两根中,一根在0和1之间,另一根在1和2之间,则实数k 的取值范围是_________________.10.方程x 2-2ax +4=0的两根均大于1,则实数a 的取值范围是________________.11.已知关于x 的方程ax 2-2(a +1)x +a -1=0,探究a 为何值时,(1)方程有一正一负两根;(2)方程的两根都大于1;(3)方程的一根大于1,一根小于1.12.已知二次函数f(x)=x2+2bx+c(b,c∈R).(1)若f(x)≤0的解集为{x|-1≤x≤1},求实数b,c的值;(2)若f(x)满足f(1)=0,且关于x的方程f(x)+x+b=0的两个实数根分别在区间(-3,-2),(0,1)内,求实数b的取值范围.参考答案1.A ∵2 012(x -2)2=2 013,∴(x -2)2=2 0132 012>1, ∴x -2<-1或x -2>1,∴x <1或x >3,∴该方程的两个根一个小于1,一个大于3.2.A 设f (x )=3x 2-5x +a ,根据函数图象可知⎩⎪⎨⎪⎧ f (-2)>0f (0)<0f (1)<0f (3)>0即⎩⎪⎨⎪⎧ 12+10+a >0a <03-5+a <027-15+a >0,解此不等式组可得a ∈(-12,0),即实数a 的取值范围是(-12,0).故选A.3.A 由题意x 1x 2<0,x 1+x 2<0,Δ>0,由根与系数的关系x 1x 2=2m -1m +3,x 1+x 2=4m m +3,因此可知参数的范围选A.4.(-∞,-3)解析 设f (x )=x 2+(2m -1)x +4-2m ,其图象开口向上,由题意,得f (2)<0,即22+(2m -1)×2+4-2m <0,解得m <-3.5.(-13,0) 6.[11,+∞)解析 依题意得⎩⎪⎨⎪⎧ -2(m -1)4<0,2m +34>0,Δ=4(m -1)2-16(2m +3)≥0,-2(m -1)8<0,即⎩⎪⎨⎪⎧ m >1,m >-32,m ≥11或m ≤-1,m >1,故m 的取值范围是[11,+∞).7.(0,23) 8.(-2,-1)∪(3,4)解析 设f (x )=7x 2-(m +13)x +m 2-m -2,要使方程7x 2-(m +13)x +m 2-m -2=0(m 为实数)有两个实数根,且一根在(0,1)上,一根在(1,2)上,只需⎩⎪⎨⎪⎧ f (0)>0f (1)<0f (2)>0,即⎩⎪⎨⎪⎧ m >2或m <-1-2<m <4m >3或m <0,则m 的取值范围为(-2,-1)∪(3,4).9.(12,23) 解析 设f (x )=x 2+(k -2)x +2k -1,⎩⎪⎨⎪⎧ f (0)>0f (1)<0f (2)>0即⎩⎪⎨⎪⎧ 2k -1>03k -2<04k -1>0, ∴12<k <23. 10.[2,52) 解析 因为方程x 2-2ax +4=0的两根均大于1,所以⎩⎪⎨⎪⎧12-2a ×1+4>0(-2a )2-4×1×4≥0, 解得实数a 的取值范围是[2,52). 11.解析 (1)因为方程有一正一负两根,所以由根与系数的关系得⎩⎪⎨⎪⎧a -1a <0Δ=12a +4>0, 解得0<a <1.即当0<a <1时,方程有一正一负两根.(2)方法一:当方程两根都大于1时,函数y =ax 2-2(a +1)x +a -1的大致图象如图(1)(2)所示,所以必须满足⎩⎨⎧ a >0Δ>0a +1a >1f (1)>0或⎩⎨⎧ a <0Δ>0a +1a >1f (1)<0,不等式组无解.所以不存在实数a ,使方程的两根都大于1.方法二:设方程的两根分别为x 1,x 2,由方程的两根都大于1,得x 1-1>0,x 2-1>0, 即⎩⎪⎨⎪⎧ (x 1-1)(x 2-1)>0x 1-1+x 2-1>0⇒⎩⎪⎨⎪⎧x 1x 2-(x 1+x 2)+1>0x 1+x 2>2. 所以⎩⎨⎧ a -1a -2(a +1)a +1>02(a +1)a >2⇒⎩⎨⎧a <0a >0, 不等式组无解. 即不论a 为何值,方程的两根不可能都大于1.(3)因为方程有一根大于1,一根小于1,函数y =ax 2-2(a +1)x +a -1的大致图象如图(3)(4)所示,所以必须满足⎩⎨⎧ a >0f (1)<0或⎩⎨⎧a <0f (1)>0,解得a >0. ∴即当a >0时,方程的一个根大于1,一个根小于1.12.解析 (1)依题意,x 1=-1,x 2=1是方程x 2+2bx +c =0的两个根.由根与系数的关系,得⎩⎪⎨⎪⎧ x 1+x 2=-2b x 1x 2=c 即⎩⎪⎨⎪⎧-2b =0c =-1, 所以b =0,c =-1.(2)由题意知,f (1)=1+2b +c =0,所以c =-1-2b .记g (x )=f (x )+x +b =x 2+(2b +1)x +b +c =x 2+(2b +1)x -b -1,则⎩⎪⎨⎪⎧ g (-3)=5-7b >0g (-2)=1-5b <0g (0)=-1-b <0g (1)=b +1>0, 解得15<b <57, 所以实数b 的取值范围为(15,57).。
用“参数分析法”解决一元二次方程的实根分布问题

用“参数分析法”解决一元二次方程的实根分布问题一元二次方程的实根分布问题(即实根限制在给定区间上的问题)是中学数学的一种常见题型,解决它的通法是将这类问题转化为二次函数的图象与x 轴的交点的分布问题,然后结合图形讨论各种位置情况而列出不等式(组)来求解.学生在应用这种方法时常因情况复杂,运算量较大而出错或者放弃.如果采用“参数分析法”,则可大大简化运算过程,减小运算量.设关于x 的一元二次方程:2()0f x ax bx c =++=的实根为x 1,x 2,给定区间的端点为p ,q (端点也可能会是一个或更多个). 利用六种参量(不一定每次都全用上):(1)二次项系数a ; (2)判别式24b ac ∆=- ;(3)顶点横坐标2b a -;(4) 区间端点函数值f(p),f(q); (5) 纵截距f(0)=c ; (6)两根之积c a.可达到简化的目的. 例1 求函数22sin (,,)sin x y x R x k k Z xπ+=∈≠∈且的值域. 分析:设sin t x =,[1,0)(0,1]t ∈- ,则得22220.t y t yt t+=⇔-+= 令2()2f t t yt =-+,则问题转化为:使方程()0f t =至少有一个实根属于[1,0)(0,1]- 时y 的取值范围.这是一个实根分布问题.若不进行简化,则画抛物线时需全面地(不可以漏掉任何一种情形)地考虑各种各样的位置关系与极端状态,颇费心思.而用“参数分析法就可以大大简化思维过程及运算量).0,(0)2a f >= ,且两根这积也是2(当二次项系数不是1时,两根这积不等于纵截距),故方程()0f t =至少有一个实根属于[1,0)(0,1]- ⇔1122011022t t t t <≤-≤<⎧⎧⎨⎨≥≥⎩⎩或 (1)0(1)0f f ⇔≤-≤或33y y ⇔≥≤-或故所求的值域为:(,3][3,)-∞-+∞练习:已知2{(,)|20},{(,)|10,02}M x y x mx y N x y x y x =+-+==-+=≤≤,若A B φ≠,求实数m 的取值范围.注:解决两根之积为定值的问题,结合区间端点为定值,一般只要再考虑区间的另一个端点的函数值的符号即可.例2 关于x 的方程lg(23x x p -+-)=lg(3x -)在(0,)+∞内有且只有一个解,求实数p 的取值范围.分析:令2()43f x x x p =-++.题设⇔方程()0f x =内在(0,3)恰有一根或有两个相等的实根.(**) 0,2(0,3)2b a a>-=∈ . ∴(**)⇔方程()0f x =在(0,1]上恰有一根或有重根2⇔(0)00(1)0f f >⎧∆⎨≤⎩或=⇔300p p p +>⎧⎨≤⎩或=1⇔301p p -<≤=或 例3 如果关于x 的方程210(0,1)x x a ma m a a +++=>≠至少有一个实根.试确定m 的取值范围.分析:设(0)x t a t =>,2()1f t t mt m =+++.问题转化成关于t 的方程()0f t =在(0,+∞)上有实根⇔抛物线与x 轴的正半轴有公共点.由于抛物线的纵截距是m +1,如果0m ≥,则纵截距11m +≥,且顶点横坐标02m -≤.抛物线()y f x =与x 轴的正半轴没有公共点. 故()00f t =+∞在(,)上有实根⇔00m <⎧⎨∆≥⎩⇔2m ≤-练习题1、(1)已知关于x 的方程22(2)240x k x k +-++=的一根大于3,另一根小于3. 求实数k 的取值范围.(2)关于x 的方程222320kx x k ---=的两个根一个大于1,另一个小于1.求实数k 的取值范围.(3)已知关于x 的方程21202kx kx k ++-=有两个实根,并且一个根在(-1,0)内,另一个根在(0,1)内.求实数k 的取值范围.(4)已知方程2(k +1)x 2+4kx +3k -2=0有两个负实根,求实数k 的取值范围.(5)已知关于x 的方程223230x x m -+-=的两根都在[-1,1]上.求实数m 的取值范围.2、已知关于x 的方程mx 2+(2m +1)x +m =0满足下列条件之一.分别求m 的范围:(1)有两个正根;(2)有两个负根;(3)两个根都小于1;(4)两个根都大于12;(5)一个根大于1,另一个根小于1;(6)两个根都在(0,2)内;(7)一个根在(0,2)内,另一个根在(0,2)外;(8)一个根在(-2,0)内,另一个根在(1,3)内;(9)一个正根,一个负根,且正根的绝对值大;(10)一个根小于2,另一根大于4;(11)一个在(-2,0)内,另一根在(0,4)内.3、若不等式2(2)2(2)40a x a x -+--<对任意x R ∈恒成立.求实数a 的取值范围.4、已知函数2()lg(22).f x x mx m =-++(1)当该函数的定义域为R 时,求实数m 的取值范围.(2)当该函数的值域为R 时,求实数m 的取值范围.(3)当该函数的定义域及值域都为R 时,求实数m 的取值范围.5.已知集合26{|1,},{|220,}1A x x RB x x x m x R x =≥∈=-+<∈+. (1)当{|14}A B x x =-<< 时,求m 的值.(2)当A B A = 时,求m 的取值范围.(前面已有)6.已知2{(,)|2},{(,)|10,02}A x y y x mx B x y x y x ==++=-+=≤≤,A B φ≠ ,求实数m 的取值范围.。
根的分布

一元二次方程实根的分布一元二次方程实根的分布是二次方程中的重要内容,在各类竞赛和中考中经常出现。
这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于一元二次方程根的判别式和根与系数关系(韦达定理)的运用。
本文将在前面方法的基础上,结合二次函数图象的性质,分两种情况系统地介绍一元二次方程实根分布的情况及其运用。
一.一元二次方程实根的基本分布——零分布一元二次方程实根的零分布,指的是方程的根相对于零的关系。
比如二次方程有一正根,有一负根,其实就是指这个二次方程一个根比零大,一个根比零小,或者说,这两个根分布在零的两侧。
对于这类问题,用一元二次方程根的判别式和根与系数关系(韦达定理)即可判别。
一元二次方程02=++c bx ax (0≠a )的两个实数根为1x 、2x ,则1x 、2x 均为正⇔△≥0,1x +2x >0,1x 2x >0; 1x 、2x 均为负⇔△≥0,1x +2x <0,1x 2x >0;1x 、2x 一正一负⇔1x 2x <0。
例1.关于x 的一元二次方程28(1)70x m x m +++-=有两个负数根,求实数m 取值范围。
解:设两个实数根为1x 、2x ,依题意有1212000x x x x ∆⎧⎪+< ⎨⎪> ⎩≥ ①②③由①得:2(1)32(7)0m m +--≥,2(15)0m -≥,恒成立。
由②得:18m +-<0,解之,m >1-。
由③得:78m ->0,解之,m >7。
综上,m 的取值范围是m >7。
例2.若n >0,关于x 的方程21(2)04x m n x mn --+=有两个相等的正实数根,求mn 的值。
解:设两个实数根为1x 、2x ,依题意有1212000x x x x ∆= ⎧⎪+⎨⎪> ⎩①> ②③由①得:2(2)0m n mn --=,()(4)0m n m n --=,∴m n =或4m n =。
若m n =,则1x +2x 22m n n n n =-=-=-<0,不符合②,舍去。
3.2数形结合解一元二次方程实根的分布

0 b m n 如 , (n, m) 2a f ( n) 0 f ( m) 0
(1) , 分居两区间时,只
设f ( x) ax2 bx c(a 0), 方程ax2 bx c 0的两个根为 ,
( ),m,n为常数,且n m,方程根的分布无外乎两种情况:
(, n) f (n) 0 如 考虑端点函数值的符号。 f (m) 0 (n, m)
高中数学人教A版
用数形结合解决一元二 次方程实根的分布问题
授课人:
1.设置问题、引出课题
引例:关于 x 的方程 x ax a 1 0,有 异号的两个实根,求实数 a 的取值范围。
2
解:记f ( x) x2 ax a 1
则原命题等价于f (0) 0
答案: a
1
2.师生互动、探求新知
25 答案: 1) 0m 12
2) f (0) 0
f (2) 0 f (0) 0 3) f (1) 0 f (3) 0
3) 12 m 0
2)m 0
3.知识迁移、提高能力
变式练习1:实数 m 在什么范围 取值时,关于 x 2 的方程 x (m 2) x 5 m 0 的两个实根都大于2?
则原命题 f (2) 0
答案:
m 5
4、课堂小结,知识梳理
1.今天这节课讨论一元二次方程的实根的分布 情况时,往往归结为不等式(组)的求解问 题,其方法主要是应用二次函数图象.在进 行转化时,应保证这种转化的等价性.
高中数学必修一延拓内容:一元二次方程根的分布

补充内容:一元二次方程根的分布一、课标要求掌握简单一元二次方程实根分布问题的处理方法,培养数形结合思想方法. 二、知识要点设一元二次方程02=++c bx ax (0≠a )的两个实根为1x ,2x ,且21x x ≤。
(1)一元二次方程根的基本分布——零分布【定理1】01>x ,02>x (两个正根)⇔212124000b ac b x x a c x x a ⎧∆=-≥⎪⎪⎪+=->⎨⎪⎪=>⎪⎩, 【推论1】01>x ,02>x ⇔⎪⎪⎩⎪⎪⎨⎧<>=>≥-=∆00)0(0042b c f a ac b 或⎪⎪⎩⎪⎪⎨⎧><=<≥-=∆00)0(042b c f a ac b 【定理2】01<x ,02<x ⇔⎪⎪⎪⎩⎪⎪⎪⎨⎧>=<-=+≥-=∆000421212a c x x a b x x ac b ,【推论2】01<x ,02<x ⇔⎪⎪⎩⎪⎪⎨⎧>>=>≥-=∆00)0(0042b c f a ac b 或⎪⎪⎩⎪⎪⎨⎧<<=<≥-=∆00)0(0042b c f a ac b 【定理3】210x x <<⇔0<ac【定理4】 ○101=x ,02>x ⇔0=c 且0<a b; ○201<x ,02=x ⇔0=c 且0>ab。
(2)一元二次方程的非零分布——k 分布【定理1】21x x k ≤<⇔⎪⎪⎩⎪⎪⎨⎧>->≥-=∆k ab k af ac b 20)(042【定理2】k x x <≤21⇔⎪⎪⎩⎪⎪⎨⎧<->≥-=∆k ab k af ac b 20)(042。
【定理3】21x k x <<⇔0)(<k af 。
【推论1】 210x x <<⇔0<ac 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
用数形结合的方法解决有关一元二次(函数)方程根(零点)的分布问题
一元二次方程根的分布是二次函数中的重要内容。
这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用。
利用函数与方程思想:若y =()f x 与x 轴有交点0x ⇔f (0x )=0。
下面我们将主要结合二次函数图象的性质,分两种情况系统地介绍一元二次方程实根分布的充要条件及其运用。
一.一元二次方程根的基本分布——零分布
所谓一元二次方程根的零分布,指的是方程的根相对于零的关系。
比如二次方程有一正根,有一负根,其实就是指这个二次方程一个根比零大,一个根比零小,或者说,这两个根分布在零的两侧。
设一元二次方程02
=++c bx ax (0≠a )的两个实根为1x ,2x ,且21x x ≤。
【定理1】:01>x ,02>x ⇔
⎪⎪⎩⎪⎪
⎨⎧<>=>≥-=∆00)0(0042b c f a ac b 或⎪⎪⎩⎪⎪⎨⎧><=<≥-=∆0
0)0(0
42b c f a ac b 上述推论结合二次函数图象不难得到。
【定理2】:01<x ,02<x ⇔
⎪⎪⎩⎪⎪
⎨⎧>>=>≥-=∆00)0(0042b c f a ac b 或⎪⎪⎩⎪⎪⎨⎧<<=<≥-=∆0
0)0(0
042b c f a ac b 由二次函数图象易知它的正确性。
【定理3】210x x <<⇔
0<a
c
【定理4】 ○101=x ,02
>x ⇔0=c 且0<a
b
; ○201<x ,02
=x ⇔0=c 且0>a
b。
二.一元二次方程的非零分布——k 分布
设一元二次方程02
=++c bx ax (0≠a )的两实根为1x ,2x ,且21x x ≤。
k 为常数。
则一元二次方程根的k 分布(即1x ,2x 相对于k 的位置)有以下若干定理。
构造相应二次函数c bx ax x f ++=2)((0≠a )
【定理
1】21x x k ≤<⇔⎪⎪⎩⎪⎪⎨⎧
>->≥-=∆k a
b k af a
c b 20)(0
42
【定理2】k
x x <≤21⇔⎪⎪⎩⎪
⎪⎨⎧
<->≥-=∆k a
b k af a
c b 20)(0
42。
【定理3】21x k x <<⇔0)(<k af 。
【定理4】有且仅有11x k <(或2x )2k <⇔0)()(21<k f k f
【定理5】221211p x p k x k <<≤<<⇔⎪⎪⎪⎩⎪⎪⎪⎨⎧><<>>0)(0)(0)(0)(02121p f p f k f k f a 或⎪⎪⎪⎩⎪⎪⎪⎨⎧<>><<0
)(0
)(0)(0
)(021
21
p f p f k f k f a 此定理可直接由定理4推出,请读者自证。
【定理6】2211k x x k <≤<⇔⎪⎪
⎪
⎪⎩
⎪⎪⎪
⎪⎨⎧<-<>>>≥-=∆2121
220)(0)(004k a b k k f k f a ac b 或⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧
<-<<<<≥-=∆2121220)(0)(004k a b k k f k f a ac b
二、例题详见课件
10解:如果在-1≤x ≤1上有两个解,则()()⎪⎪⎩
⎪⎪
⎨⎧≥-≥≤+≤-≥-=∆01012
20
16212f f x x m Φ∈⇒m
如果有一个解,则f(1)•f(-1)≤0 得 m ≤-5 或 m ≥5 (还有其他解法吗?)
三、练习题(补充)
*1. 关于x 的方程x 2+ax+a -1=0,有异号的两个实根,求a 的取值范围。
(a<1)
*2. 如果方程x 2+2(a+3)x+(2a -3)=0的两个实根中一根大于3,另一根小于3,求实数a 的取值范围。
(a<-3)
*3. 若方程8x2+(m+1)x+m-7=0有两个负根,求实数m的取值范围。
(m>7)
*4. 关于x的方程x2-ax+a2-4=0有两个正根,求实数a的取值范围。
(a>2)
5.设关于x的方程4x2-4(m+n)x+m2+n2=0有一个实根大于-1,另一个实根小于-1,则m,n必须满足什么关系。
((m+2)2+(n+2)2<4)
6.关于x的方程2kx2-2x-3k-2=0有两个实根,一根大于1另一个实根小于1,求k的取值范围。
(k<-4 或k>0)
7.实数m为何值时关于x的方程7x2-(m+13)x+m2-m-2=0的两个实根x1,x2满足0<x1<x2<2。
(-2<m<-1或3<m<4)
8.已知方程x2+ (a2-9)x+a2-5a+6=0的一根小于0,另一根大于2,求实数a的取值范围。
(2<a<8/3)
9.关于x的二次方程2x2+3x-5m=0有两个小于1的实根,求实数m的取值范围。
(-9/40≤m<1)
10.已知方程x2-mx+4=0在-1≤x≤1上有解,求实数m的取值范围。