高中地理1.1天文观测的基础知识
必考天文知识点总结高中

必考天文知识点总结高中天文学是研究宇宙中天体的位置、运动规律和物理特性的一门学科。
在高中地理课程中,天文学是一个重要的知识点。
下面将对高中必考的天文知识点进行总结,希望能够对大家的学习有所帮助。
一、太阳系和地球运动在太阳系中,太阳是星球运动的中心,行星、卫星和小天体围绕太阳运动。
在地球运动的过程中,它既绕太阳公转,又自转。
地球的公转轨道呈椭圆形,公转周期为一年,自转周期为一天。
1. 地球的自转地球自转是指地球围绕自身轴线旋转的运动。
自转轴线与公转轨道面有倾角,这就是地球的昼夜交替和季节变化的原因。
地球自转的速度不是匀速的,而是由快到慢,每天相对于远处的恒星,自转速度约为1670公里/小时。
2. 地球的公转地球绕太阳运行的轨道呈椭圆形。
地球的公转轨道呈椭圆形,所以我们可以看到在不同位置对太阳产生不同的季节。
地球与太阳的平均距离约为1.496亿公里,这个距离被定义为天文单位。
地球绕太阳运行周期为一年。
3. 地球的季节变化地球的季节变化是由于地球的自转轴与公转轨道面的倾斜造成的。
在公转运动过程中,地球的不同位置得到的太阳直射角不同,从而产生四季变化。
北半球对太阳直射时是夏天,南半球对太阳直射则是冬天。
4. 春、秋分和夏、冬至春分点和秋分点是地球在公转轨道上两个特殊的位置,春分点位于黄道和赤道的交点处,秋分点则位于春分点的对面。
当地球赤道与太阳黄道平面平行时,就是春分和秋分,每年大约在3月21日和9月23日。
而夏至是指地球北半球的最大斜射角,即北极圈内白昼最长的一天,发生在每年的6月21日。
冬至是指地球南半球的最大斜射角,即南极圈内白昼最短的一天,发生在每年的12月21日。
二、恒星和星系恒星是在宇宙中发光或者发射电磁辐射的天体,它们以核聚变为能源来产生光和热。
星系是由上亿甚至上万亿的恒星和星际物质组成的天体集团,如银河系就是一个包含了上百亿颗星球的星系。
1. 星的光度和色彩星的光度是指星体发出的光的亮度,绝对星等是指星体距离地球为10秒差距时的亮度。
天文观测基础知识(望远镜入门)

天文观测基础知识(望远镜入门)第一章天文观测基础知识第一节天球和天球坐标1、天球:天穹:人们所能直接观测到的地平之上的半个球形天空。
天球:以地心为球心半径为任意的假想球体,表示天体视运动的辅助工具。
(P1)由于天球球心的不同分为:观测者天球、地心天球、日心天球。
黄道黄道是太阳周年视运动的轨迹,实际上是地球公转轨道所在平面与天球相交的大圆,这个平面是黄道面。
2、天球坐标系(1)、地平坐标系基本要点:基圈:地平圈;始圈:午圈;原点:南点;纬度:高度:天体相对于地平圈的方向和角距离。
(解释度量及天顶距)经度:方位:天体所在的地平经圈相对于午圈的方向和角距离。
(0°到360°,自南点向西沿地平圈度量)。
(2)、第一赤道坐标系(也称时角坐标系)基本要点:基圈:天赤道;始圈:午圈;原点:上点;纬度:赤纬:天体相对于天赤道的方向和角距离。
(解释度量及极距)经度:时角:天体所在的时圈相对于上点(午圈)的方向和角距离。
自上点沿天赤道向西度量(为使天体的时角“与时俱增”)。
上、西、下、东为0时、6时、12时、18时。
(3)、第二赤道坐标系基本要点:基圈:天赤道始圈:春分圈;原点:春分点;纬度:赤纬;(与第一赤道坐标相同)经度:赤经:天体所在的时圈相对于春分点的方向和角距离。
自春分点沿天赤向东度量。
(4)、黄道坐标系基本要点:基圈:黄道;始圈:无名圈;(过春分点的黄经圈)原点:春分点;纬度:黄纬:天体相对于黄道的方向和角距离。
(解释度量)经度:黄经:天体所在的黄经圈相对于春分点的方向和角距离。
自春分点沿黄道向东度量(为使太阳的黄经“与日俱增”)。
(5)各天球坐标系的区别和联系仰极高度=天顶赤纬=当地纬度天体赤经+天体当时时角=当时恒星时第二节天体的视运动与四季星空1、天体的周日视运动所谓天体的周日视运动是指所有天体以一天为周期的自东向西运动。
天体周日视运动的轨迹叫做周日平行圈,简称周日圈。
恒隐星和恒显星2、太阳的周年视运动太阳的周年视运动是指因地球公转而引起的太阳在恒星背景上的运动轨迹(路线):即黄道方向:自西向东周期:与地球公转周期相同,约为365天。
《天文观测基础知识》课件

目录
CONTENTS
• 天文观测的基本概念 • 天文观测的硬件设备 • 天体的观测与识别 • 天文观测的实践技巧 • 天文观测的未来发展
01
天文观测的基本概 念
天文学的定义与分类
总结词
天文学是一门研究宇宙中天体的科学,包括恒星、行星、星 云、星系等。根据研究对象的不同,天文学可分为多个分支 ,如恒星天文学、行星天文学、星云天文学等。
详细描述
天文学是研究宇宙中各种天体的科学,其研究对象包括恒星 、行星、星云、星系等。通过对这些天体的观测和研究,人 们可以了解宇宙的起源、演化、结构以及天体的形成、演化 和终极命运。
天文观测的历史与意义
总结词
天文观测是人类探索宇宙的重要手段, 其历史悠久,对人类文明的发展产生了 深远的影响。通过天文观测,人们可以 了解宇宙的奥秘,探索天体的形成和演 化机制,为人类未来的太空探索提供科 学依据。
。
化学与天文学
天文学中涉及的元素和化合物种 类繁多,通过研究这些物质的性 质和演化过程,有助于深入了解
化学反应和分子结构。
地球科学和天文学
地球科学和天文学在研究地球和 宇宙中的物质、能量和演化过程 方面有许多交叉点,通过跨学科 合作可以取得更多突破性成果。
天文观测的社会影响与教育意义
提高公众科学素养
感谢您的观看
望远镜的类型与选择
折射望远镜
使用透镜作为主镜,适合观测恒星、行星等天体,但需要定期调整。
反射望远镜
使用反射镜作为主镜,适合观测星云、星系等深空天体,但需要定期 清洁。
折反射望远镜
结合折射和反射的原理,适合观测多种天体,但价格较高。
望远镜选择
根据个人需求和预算选择适合自己的望远镜,初学者可选择便携、易 操作的望远镜,有经验的观测者可选择更高级的望远镜。
(完整版)第一章天文观测基础知识

北冕座等天区。
天文学
二十八宿:黄道附近的二十八个区域 四象:将二十八宿分成四组,每组七宿,
分别与四个地平方位、四种颜色相匹配。 东方苍龙,青色:角、亢、氐、房、心、尾、箕; 北方玄武,黑色:斗、牛、女、虚、危、室、壁; 西方白虎,白色:奎、娄、胃、昴、毕、觜、参; 南方朱雀,红色:井、鬼、柳、星、张、翼、轸; 二十八宿的范围有大有小,最大的为井宿,赤经跨度约为330,
第一章 天文观测基础知识
世界上有两件东西能够深深地震撼人们的心灵,一件是我 们心中崇高的道德准则,另一件是我们头顶上灿烂的星空.
---伊曼努尔·康德
天文学
§1.1 星座与四季星空
一、星名: 1.有的根据神话故事,如牛郎星、织女星、天狼星、 老人星等; 2.有的根据中国二十八星宿,如角宿一、心宿二、 娄宿三、参宿四和毕宿五等; 3.有的根据恒星颜色,如大火(心宿二); 4.还有的根据所在天区,如天关星、北河二、北河 三、南河三、天津四、五车二和南门二。
在地球赤道地 区看到所有天体 都垂直于平面做 圆运动
在中纬地区看到 的天体的周日视 动
天文学
三、永不上升与永不下 落天体
1、永不下落天体: 永不上升天体:
2、地理纬度越高,这类 天体越多:
极区:各半; 赤道:无
天文学
永不下落天体 永不上升天体
天文学
这是北天恒星周 日视运动的照片。 每条弧线都是一颗 恒星穿过夜空的轨 迹。图(a)的暴光 时间约为1小时,
图(b)约为5小时。
天文学
§1.3 天体的周年视运动
周年视运动 地球的公转
→天体的周年 视运动→太阳 自西向东在黄 道上每年运行 一周 →造成四 季星空的不同。
天文公基知识点总结

天文公基知识点总结天文学是研究天体之间的相互关系和宇宙现象的科学,它涵盖了宇宙中的星球、恒星、星系、星云、行星际尘埃和气体以及宇宙射线等。
天文学的发展离不开天文观测和天文仪器,同时也包括了天体物理学、宇宙化学、天体力学、宇宙学等分支学科。
天文学对我们了解宇宙的起源、演化和未来发展具有重要意义,也对地球上的生命和环境产生深远影响。
1. 天文观测天文观测是天文学的基础,通过观测天体的位置、运动、亮度、光谱特征等信息来研究宇宙的物理现象和规律。
天文观测主要有地基观测和太空观测两种形式,地基观测通过地面望远镜和其他天文仪器进行观测,太空观测则是利用航天器、宇宙望远镜等设备在太空中进行观测。
天文观测的重要意义在于探索宇宙中的未知之处,例如黑洞、脉冲星、暗物质等。
2. 星系和星云星系是宇宙中由恒星、行星、尘埃和气体等组成的大系统,它们通过引力相互束缚在一起。
目前已知的星系包括螺旋星系、椭圆星系、不规则星系等不同类型,其中最著名的螺旋星系是我们所在的银河系。
星云是由气体和尘埃组成的大型云状物体,它们可能是新星的诞生地或者已经死去的恒星残骸。
星系和星云的研究可以帮助我们了解宇宙的演化过程和星际物质的分布状况。
3. 恒星和行星系统恒星是宇宙中由氢、氦等元素组成的巨大的球状天体,它们通过核聚变反应产生能量并发出光和热。
我们所熟知的太阳就是恒星的一种。
行星系统是恒星周围围绕其公转的一系列天体,包括行星、卫星、小行星和彗星等。
行星系统中的行星主要分为类地行星和类木行星两大类,它们的内部结构、表面特征和大气组成都具有独特的特点。
恒星和行星系统的研究有助于揭示宇宙中天体形成的规律和星球生命的可能性。
4. 天体物理学天体物理学是研究宇宙中物质的性质、运动和相互作用的学科,它旨在揭示宇宙中的物理规律和引力相互作用的机制。
天体物理学的研究对象包括恒星、恒星演化、行星大气、星际空间等,研究方法主要包括数学模型、物理实验和天文观测等手段。
天文观测基础知识

天文学
4、黄道与黄极
黄道:过天球中心做一与 地球公转轨道平面平行 的平面为黄道面,与天 球相交的大圆为黄道。
黄极:黄道所对应的两个 极点。 黄赤交角:黄道与赤道的 交角。ε=230.5
天文学
5、二分点、二至点
二分点: 黄道与天赤道的两个 交点。 春分点;秋分点
二至点: 黄道上与二分点相距 900的另两个点。 夏至点;冬至点
天文学
4.冬夜星空 在寒冷的冬天,夕阳西下后的夜空,北斗七星出现在东北低空,斗柄指 向北方(见本书所附光盘冬季星空图)。冬季星空中最引人注目的是高悬于 南天的猎户座。它主要由七颗亮星组成,夹在红色亮星参宿四(猎户座α,星 等为1m)和蓝白色亮星参宿七(猎户座β星,星等为1m)之间的三星(猎户座δ 星、ε星、ζ星)被看作是猎人腰带上的明珠;著名的猎户座大星云就位于 中间那颗明珠附近。顺着三星向南偏东巡去,可找到全天最亮的天狼星(大 犬座α),它是一颗双星。参宿四的正东另有一颗白色的亮星南河三(小犬座 α星,星等为1m)。参宿四、天狼星和南河三组成冬季大三角,淡淡的银河 从中穿过。 沿猎户座三星向西北望去,可找到一颗红色亮星——毕宿五(金牛座α 星,星等为1m)以及附近的几颗小星,它们组成毕星团;再继续向西北巡去, 可看到由6-7颗小星组成的昴星团;它们皆属金牛座。金牛座的东北是形如 五边形的御夫座,主星五车二(御夫座α星)是1m星。顺着参宿七和参宿四的 联线向东北巡去可找到双子座,它像个矩形,其中可找到两颗亮星:橙黄色 的1m星北河三(双子座β星)和蓝白色的2m星北河二(双子座α星)。五车二、 北河三、南河三、天狼星、参宿七、毕宿五共同组成冬季大六边形。
天文学
天体的视亮度和星等
自古以来人们为熟悉星空、识别星空的亮度,习惯上 把肉眼看到的星的亮度分为6等,把最亮的星定为1等, 把勉强看到的暗星定为6等星。 为了使星等系统更为精确,普森规定星等相差5等, 亮度之比精确地等于100倍。 后来星等的范围也向两端延伸了,比1等星亮的有0 等星和负星等的星,比6等星更暗的有7等星、8等星。 例如:太阳是-26.7等,月亮满月是-12.6等,木星是 -2.1,天狼星是-1.4等。
天文观察初学知识点总结

天文观察初学知识点总结天文观测是一项古老而又神秘的科学,通过对天体的观察和研究,人类能够更好地了解宇宙的奥秘。
对于初学者而言,了解和掌握天文观测的一些基本知识点是非常重要的。
本文将从天文观测的基本工具、常见的天文现象、观测技巧以及注意事项等方面进行总结,希望对初学者有所帮助。
一、天文观测的基本工具1. 望远镜望远镜是天文观测中最基本的工具之一。
它通过透镜或反射镜将远处的天体放大,使观察者能够看到更为清晰的图像。
在购买望远镜时,需要考虑其口径、放大倍数、镜筒类型等因素,以便选择适合自己观测需求的望远镜。
2. 显微镜对于微小的天文结构或者天体的观察,显微镜是必不可少的工具。
它能够将微小的物体放大,让观察者看到更加精细的细节。
3. 天文台天文台是专门用于天文观测的设施,一般包括天文望远镜、测量设备、数据处理设备等。
对于有条件的观测者来说,天文台是非常重要的工具。
二、常见的天文现象1. 星空星空是最常见的天文现象之一,我们可以通过望远镜或者肉眼观察到许多美丽的星星,甚至可以观察到星云、星团等结构。
2. 行星行星是太阳系中的天体,它们分布在太阳周围的轨道上,包括水星、金星、地球、火星、木星、土星、天王星和海王星等。
3. 彗星彗星是一种冰尘天体,它们会周期性地接近太阳,产生美丽的彗尾现象。
4. 恒星恒星是太空中发光的天体,有稳定的光度和光谱特征,代表着太空中最为耀眼的存在。
5. 星团星团是一群由几十甚至上百颗恒星组成的天体系统,通过望远镜可以观察到它们的集中分布,非常美丽。
6. 星系星系是由数量庞大的恒星、气体、尘埃以及黑洞组成的天体系统,其中最为著名的是我们所在的银河系。
7. 星云星云是由气体和尘埃组成的云状物体,在望远镜下呈现出绚丽多彩的图像。
8. 月亮月亮是地球的卫星,它在夜空中展现出不同的月相,给我们带来神秘而美丽的景观。
以上列举的天文现象只是天文观测中的一小部分,还有许多其他有趣和复杂的天文现象可以供我们去观察和研究。
高中地理第一章知识点

高中地理必修知识点梳理第一章地球的宇宙环境第一节地球的宇宙环境一、宇宙1、概念:宇宙是时间和空间的统一体,是运动、发展和变化着的物质世界。
2、特点:①物质性:宇宙是由物质组成的②运动性:宇宙中的一切在不断运动二、天体1、概念:宇宙中物质存在的形式。
2、类型:①自然天体:自然界存在的,包括恒星、星云、行星、卫星、彗星、流星体、星际物质等。
②人造天体:由人工研制并用运载火箭或航天飞机发射到宇宙空间的飞行体;运行规律与自然天体相同或基本相同;包括宇宙飞行器和空间垃圾等。
3、常见天体天体类型组成物质及成员特点恒星炽热气体①质量庞大,温度高,能自己发出光和热;②往往和周围其他天体组成一个系统,太阳是距离地球最近的恒星星云气体和尘埃组成的呈云雾状外表的天体,密度较小①本身不发光,一般星云里都会有恒星,呈云雾状;②体积和质量都很大;③因形状的不同,称为狮子状、玫瑰状星云等行星如:八大行星①自己本身不发光,靠反射恒星的光而发亮;②沿着固定椭圆轨道环绕恒星运动,质量比恒星小卫星如:月球①绕行星运行,本身不发光;②卫星大小不一,但是不会超过它绕转的行星流星体尘埃和固体块①不能自己发光,但与大气摩擦形成光迹;②进入大气层后,同大气摩擦燃烧而发光,产生流星现象;③没有烧尽的残体落到地面叫陨星,其中石质的叫陨石,铁质的叫陨铁彗星冰物质①密度很小,具有云雾状外表,不能自己发光;②绕太阳运行4、天体的判断标准:(1)位于地球大气层之外;(2)非附属于天体的一部分;(3)有独立的运行轨道三、天体系统1、形成:宇宙中的天体都在运动着,运动中的天体相互吸引、相互绕转,形成天体系统。
2、天体系统的层次3、主要天体系统①地月系:地球是地月系的中心天体,月球是地球唯一的天然卫星;月球是距离地球最近的天体。
月地距离约为38.4万千米。
②太阳系:由太阳、行星及其卫星、小行星、彗星、行星际物质等构成;太阳是太阳系的中心天体。
日地距离约为1.5亿千米。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
天文观测的基础知识为了进行天文观测,就要学会认识星空,识别天体;因此,有关天体的坐标,天体的运动,天文观测所用的时间系统,星座与星图,以及星星的星等、颜色、光谱型等多方面的基础知识,都是我们开展天文观测活动时,必须首先了解的。
1.天球和天球坐标系进行天文观测首先要从找星、认星开始。
在茫茫的星空中,怎样去寻找我们想要观测的天体呢?这就必须知道天体在空中的“住址”,即它在天空的坐标。
这样的坐标是怎样建立起来的呢?这就要从天球说起。
(1)天球当我们仰望天空观察天体时,无论是太阳、月亮还是恒星、行星,它们好像都镶嵌在同一个半球的内壁上,而我们自己无论在地球上什么位置,都好像是处于这个半球的中心。
这是由于天体离我们太远了,我们在地球上无法觉察不同天体与我们之间距离的差异。
因此,为了研究天体的位置和运动,可以引入一个假想的以观测者为球心,以任意长为半径的球,称作天球。
由于地球在浩瀚的宇宙中可以看作是一个质点,地心也可以当作地球的中心,因此可以假想一个地心天球,它是以地心为中心、无穷远为半径的球。
有了天球,我们认识天体就方便了,因为不论天体离我们多么遥远,我们都可以把它们投影到天球上,并用它们在天球上的视位置来表示它们。
在天球上,两颗星之间的距离如同在球面上两点间的距离一样,用角度来表示,称为角距。
显然,角距与两颗星的真实距离是两回事:角距很小的两颗星实际距离可能十分遥远。
星体的大小一般用视角直径(简称角直径),即从地球上看去它所张的角来表示。
同样,视角直径也不是天体的真实大小。
例如,月亮和太阳的视角直径大约都是1/2度,但月亮的大小与太阳相比简直可以忽略不计,只是由于月亮离地球很近才看起来很大。
(2)天球坐标系为了描述天体在天球上的视位置,就要在天球上建立起坐标系,称天球坐标系,就像我们为了描述地球上某一点的位置需要建立地球坐标系(如用地理纬度和地理经度表示)一样。
事实上,天球坐标系与地球坐标系的模式很相似。
例如,天球上的赤道坐标系(也称第二赤道坐标系)就可以看作是地球坐标系在天球上的延伸:把地轴(地球的自转轴)无限延长就是天轴;天轴与天球相交的两点就是北天极和南天极;地球赤道面的延伸与天球相交的大圆就是天赤道;与地球上的纬圈、经圈类似,天球上也有相应的赤纬圈和赤经圈,不过天球上经圈的起始点与地球不同。
这样,天体在天球上的位置就可用赤纬、赤经来表示。
除了赤道坐标系外,天文观测中常用的天球坐标系还有地平坐标系、时角坐标系(也称第一赤道坐标系)、黄道坐标系等,它们是以天球上不同的基本点、基本圈为基础建立起来的。
有关天球上各基本点、基本圈的定义,怎样以它们为基础建立起各种天球坐标系,不同坐标系的特点以及它们之间的相互关系,请参见附录。
不同天球坐标系各有其特点,因而也有不同的用途。
例如,在赤道坐标系中,赤经α的起算点是天球上的固定点——春分点,春分点与天体一同作周日视动,它与天体的相对位置不因天体的周日视动而改变;而赤纬δ的值也只由天体和天赤道决定;因此,一个天体的(α,δ)值是确定的,不受观测时间和观测地点的影响。
所以在星表中多用(α,δ)表示天体的位置。
再如,地平坐标系是以观测者为参照点建立起来的,具有“地方性”特点,即在不同时间、不同地点观星,星星的地平坐标(A,h)均不相同。
但由于它的参照物是地平圈,比较直观,只要知道某个天体在某一时刻的方位角A和地平高度h,就可以方便地在天球上找到它的位置,因此利用它非常便于观测。
在时角坐标系中引入时角t对于寻找天体也很方便。
由于天体的时角随周日视动变化,每小时变化15º,因此只要知道了某时某处天体的时角,就可以方便地把望远镜瞄向这个天体。
2.星座和星名人们很早就注意到,在绚丽多彩的夜空,繁星三五成群,构成各种美丽的图案。
由此,人们把天上的恒星划分成许多不同的区域,称为星座。
根据不同星座中较亮的星所组成的图形,人们为它们起了名字,并编撰了许多美丽的故事。
例如,我国关于牛郎织女的传说,就缘于银河两侧的牛郎星和织女星;而希腊人则把牛郎星及其周围的星想象成一只矫健的天鹰,把织女星及其周围的星想象成一架巨大的天琴,天鹰座、天琴座由此得名。
中国古代把恒星天空划分成三垣二十八宿,“垣”是墙的意思,“宿”是住址的意思。
日月穿行在黄道附近,把黄道附近的星分成28个大小不等的星区,叫二十八宿,月亮在绕地运动过程中,每日从西往东经过一宿。
二十八宿以外的星区划分为三垣:紫微垣、太微垣和天市垣。
紫微垣包括北天极附近的星区,太微垣大致包括室女座、后发座和狮子座,天市垣包括蛇夫座、武仙座、巨蛇座和天鹰等星座。
1928年,国际天文学联合会决定,将全天划分为88个星座,其中沿黄道天区的有12个星座,太阳的视运动穿过这里。
星座中的每颗星也有自己的名称。
我们祖先早就给天上的亮星起了名,有根据神话故事命名的,如牛郎星、织女星、天狼星、老人星等;有依据中国二十八宿命名的,如角宿一、心宿二、娄宿三、参宿四和毕宿五等;也有根据恒星颜色命名的,如大火星(心宿二);还有依据恒星所在天区命名的,如天关星、北河二、北河三、南河三、天津四、五车二和南门二;等等。
1603年,德国业余天文学家拜尔建议“平等对待”这些恒星,不能只给亮星起名,他提出:每个星座中的恒星从亮到暗顺序排列,以该星座名称加一个希腊字母表示。
例如,猎户座中有猎户座α(参宿四)、猎户座β(参宿七)、猎户座γ(参宿五)、猎户座δ(参宿三)等。
如果某个星座的恒星超过了24个或者为了方便,就用星座的名称后加阿拉伯数字表示,如天鹅座61星、天鹅座32星、双子座65及兔座17等。
天文学家有时直呼它们的星表号,这也是一种星名,如猎户座α星也叫HD 39801或BD+7 1055等(HD 和BD分别代表星表名)。
这美丽星空的88个星座不是每个地区的人们都能看到,如北京地区只能看到60多个星座。
由于地球的自转和公转,人们在不同地区、不同季节、不同时间看到的星空都不同。
3.天体的视运动我们白天看到太阳东升西落,夜晚见到斗转星移。
这是由于地球处于不断的自转与公转运动中,因此仿佛看见天体在运动,这就是天体的视运动。
(1)天体的周日视动地球自转是自西向东转,24小时一周,人在地球上觉察不到地球运动,却看到天体都从东方升起、西方落下,这就是天体的周日视动。
如果你对着北极星附近照相,采用长时间的曝光(如长于6小时),底片上就会看到所有天体围着北天极转的运动轨迹。
地球上不同纬度处天极的高度等于当地的地球纬度,站在不同纬度处的观测者,看到的天体的升落情况也不同。
站在两极观星。
在地球北极或南极,天极与天顶重合,天赤道与真地平重合,此时所看到的天体,其周日运动的轨迹平行于地平圈,即所看到的天体都是围绕观测者平行于地平打转转。
在北极只能看到北半天球的星,永远看不到南半天球的星;而在南极只能看到南半天球的星,永远看不到北半天球的星。
在北半球夜里可看到北极星在天顶,其他北天球的星全围绕着天极平行于地平转圈,没有升与落。
站在赤道观星。
在地球赤道地区看到的情景是,所有天体都在垂直于地平面的平面内运动,可看到全天球的星;中午时,太阳当头照,立杆不见影。
站在赤道观星站在两极和赤道之间观星站在两极和赤道之间观星。
在此范围内,天轴与地平的倾角等于当地的地球纬度 ,地球纬度越高,天极离地面越高,可看到的另外半天球的星就越少。
例如,在北京,北极星的高度约40º,在昆明看到北极星的高度只有25º;而在赤道以南地区,北极星则不能看到。
(2)太阳的周年视动由于地球公转,地球上的人们看到太阳在天球上相对其他恒星背景有视运动,这叫做太阳的周年视运动。
一年内太阳“穿行”于沿黄道带的12个星座,有人把这些星座叫黄道十二星座。
太阳在天球上的位置每个月移动一个星座。
例如,大约两千年前,春分前后太阳在白羊座,以后依次经过金牛座、双子座、巨蟹座、狮子座、室女座、天秤座、天蝎座、人马座、摩羯座、宝瓶座、双鱼座。
由于岁差的影响,现今春分日前后太阳的位置已移至双鱼座靠近宝瓶座的地方。
黄道与天赤道有两个交点,太阳在周年视运动过程中沿黄道由天赤道以南穿到天赤道以北的那个交点叫春分点,从天赤道以北穿到天赤道以南的那个交点叫秋分点;黄道上与春分点相距90º且在赤道以北的那一点叫夏至点,与夏至点相对的那一点叫冬至点。
太阳每年公历3月21日前后到达春分点,6月22日前后到达夏至日,9月23日前后到达秋分点,12月22日前后到达冬至点。
在地球不同纬度处,一年四季看到太阳的视运动是不一样的。
在北半球中纬地区,春分日和秋分日太阳正好位于天赤道上,早晨日出正东,傍晚落于正西,白天、黑夜等长。
春分过后,太阳北移,太阳从东北方升起,西北方落下,白昼渐长,黑夜渐短。
此后,正午时太阳高度逐渐增高,夏至日达到最高,白昼最长。
夏至过后,太阳正午高度逐渐降低,白昼也逐渐变短,至秋分日又昼夜平分。
秋分过后,太阳南移,正午高度继续降低,冬至日达到最低,白昼最短,太阳从东南方升起,西南方落下。
在赤道地区,春分日和秋分日中午太阳都位于头顶。
从春分到秋分,太阳在天顶北;从秋分到春分,太阳在天顶南。
一年中无论哪一天,太阳总沿着与地平圈垂直的路线直升直落,四季昼夜平分。
在北极,从春分到秋分,有半年不落的太阳;而另外那半年,则是连续的沉沉黑夜。
春分过后,太阳每天一圈沿地平线打转,十分艰难地慢慢爬升,到夏至爬到最高;往后又缓慢下落,到秋分时落下地平线,半年以后的下一个春分,才会再升起。
南极的情况与北极正好相反,从春分日到秋分日太阳永不上升,而从秋分日到春分日太阳永不下落。
在北极圈上,夏至日那天太阳不落,在半夜时它只和地平相切于北点;冬至日那天太阳不上升,只在中午时于南点附近光芒一现。
(3)星空的四季变化由于地球的自转与公转,我们看到天球上星座的位置也在不断变化,不仅每天有升有落,而且不同季节的同一时间看到的星空也不一样。
例如,就黄道带附近的天区而言,每年春季,夜晚人们主要看到的是狮子座、室女座等星座;每年秋季,夜晚看到的主要是宝瓶座、摩羯座等星座。
每过三个月,同一个星座就要提前6小时出现。
与太阳的周年视动一样,在地球的不同纬度处,一年四季看到的星座也是不同的。
4.天文观测的时间系统时间的计量对于天文观测是很重要的,这里我们仅介绍几个由地球自转周期确定的时间系统。
(1)平时与恒星时平时。
我们日常生活所用的时间系统称为平时,在这种时间系统中以地球自转一周的时间作为一日。
若地球的自转以真太阳(即太阳的视圆面中心)为标准,则地球自转一周的时间叫做一个真太阳日,相应的有真太阳时、分、秒等。
真太阳时作为一种计时系统是不方便的,因为地球自转与公转的速度不均匀。
因此,天文学家引入一个以平均速度运动的假想的平太阳作为衡量地球自转速度的标准,相应的日叫平太阳日。