现代控制理论基础

现代控制理论基础
现代控制理论基础

现代控制理论基础

1.一个线性系统的状态空间描述( B )

A.是唯一的; B.不是唯一的

C.是系统的内部描述;D.是系统的外部描述

2.设系统的状态空间方程为=X+u,则其特征根为( D )

A. s1= -2,s2= -3;B. s1= 2,s2= 3;C. s1= 1,s2= -3;D.s1=-1,s2=-2 3.状态转移矩阵(t)的重要性质有( D)。

A.φ(0)=0; B.φ-1(t)= -φ(t);

C.φk(t)=kφ(t);D .φ(t1+t2)=φ(t1)?φ(t2)4.系统矩阵A=,则状态转移矩阵φ(t)= ( C)

A. ; B. ; C. ; D. ;

5. 设系统=X+u,y=x,则该系统( A )。

A.状态能控且能观测; B.状态能控但不能观测;

C.状态不能控且不能观测 D.状态不能控且能观测;

6.若系统=X+u,y=x是能观测的,则常数a取值范围是( C)。

A.a ≠ 1;B.a = 1;C.a ≠ 0;D.a = 0;

7. 线性系统和互为对偶系统,则(AD)

A.C1=B2T;B. C1=B2;C. C1=C2;D.C1=B2T

8. 李雅普诺夫函数V(x)=(x1+x2)2,则V(x)是(C)

A.负定的;B.正定的;C.半正定的;D.不定的

9.单位脉冲响应的拉氏变换为(B)

A.; B.; C. 0; D. 1

10.通过状态反馈能镇定的充分必要条件是,渐近稳定的子系统是(B)

A.能控; B.不能控; C.能观测; D.不能观测

二.填空题(每空1分,10分)

11.状态方程揭示了系统的内部特征,也称为内部描述。

12.已知系统矩阵,则特征多项式为S2-S+1 。

13.对于完全能控的受控对象,不能采用输出反馈至参考信号入口处的结构去实现闭环极点的任意配置。

14.在状态空间分析中,常用状态结构图来反映系统各状态变量之间的信息传递关系。

15.为了便于求解和研究控制系统的状态响应,特定输入信号一般采用脉冲函数、阶跃函数和斜坡函数等输入信号。

16.若已知线性系统的矩阵【A AB A2B】的秩为3,那么该系统是能控的。

17.当且仅当系统矩阵A的所有特征值都具有负实部时,系统在平衡状态时渐近稳定的。

18.同一个系统,状态变量的选择不是唯一的。

19.控制系统的稳定性,包括外部稳定性和内部稳定性。

20.能观测性是反映输出对系统状态的判断能力。

三.名词解释(共20分)

21.状态空间描述(3分)

答:用状态变量构成输入,输出与状态之间的关系方程组即为状态空间描述。

22. 零输入响应(3分)

答:是指系统输入为零时,由初始状态引起的自由运动。

23.稳定(3分)

答:系统稳定性包括外部稳定和内部稳定;外部稳定是指系统在零初始条件下通过其外部状

态,即由系统的输入和输出两者关系所定义的外部稳定性;内部稳定是指系统在零输入条件下通过其内部状态变化所定义的内部稳定性。

李雅普诺夫定义下的稳定:设系统的初始状态位于以平衡状态为球心,半径为δ的闭球域S(δ)内,用数学表达式可表示为≤δt=,若系统方程的解在

t→∞的过程中都位于以平衡状态为球心,任意规定半径ε的闭球域S(ε)内,用数学表达式为:

≤εt≥

则称该系统在平衡状态是稳定的。

24.对偶原理(3分)

答:设和是互为对偶的两个系统,则的能控性等价于的能观测性,的能观测性等价于的能控性。

25.状态观测器(3分)

答:状态重构的新系统是利用原系统中能直接量测到的信号作为输入,而它的输出状态在一定条件下能与原系统的状态保持相等,称这个用以实现重构状态的新系统为状态观测器。四.简答题(共15分)

26.已知3阶系统的状态空间描述,试画出系统状态结构图。

+u

y=

解:

27.简述状态空间描述与传递函数的区别

答:经典控制理论中,对一个线性定常系统,是用传递函数来描述的,它反映系统输出响应与输入的关系,称为外部描述。它一般只能处理但输入单输出系统,并且对存在于系统内部的中间变量是不能描述的。状态空间描述是由状态变量构成的一阶微分方程组来描述,揭示了系统的内部特征,它可以处理多输入多输出系统,而且还可以方便的处理初始条件。28.简述传递函数矩阵的实现问题。

所谓实现问题,就是根据给定的传递函数阵W(S),求其相应的状态空间描述的问题。就是对于给定的传递函数阵W(S),寻求一个状态空间描述,是分式C(SI-A)-1B+D= W(S)

成立,称该状态空间描述为传递函数阵地一个实现。

29.简述李雅普诺夫第二法的含义

李雅普诺夫第二法是从系统能量的观点出发,对系统进行稳定性分析的。它的基本思想是如果一个系统,它的总能量连续地减小,直到平衡状态时会衰减到最小值,那么这个系统就是渐近稳定的。

30.简述状态方程= Ax + Bu,x(0)=0,t≥0的解的表达式x(t)=的

物理含义。

答:物理含义:系统的运动有两部分组成,其中第一项是初始状态的转移项,第二项为控制输入作用下的受控项。正是由于受控项的存在,提供了通过选取合适的输入u,是状态x(t)的轨迹满足期望要求的可能性,这是我们分析系统的结构特性和对系统进行综合的基本依据。

五.计算题(共15分)

31.设系统的状态空间描述为=X,试分析系统在平衡状态的稳定性。

解:(1)求平衡状态,令=0,得=0;即x e1=x e2=0

(2)选取李雅普诺夫函数V(x),并求其对t的导数,

V(x) = x12+ x22>0

其导数 = 2x1+2x2= 2x1(-x1-x2)+2x2(x1-2x2)=-2x12-4x22<0

<0

可见其导数是负定的,根据李雅普诺夫第一判据可知,系统在平衡状态下x e=T处是渐近稳定的。

32.已知状态转移矩阵Ф(t)=,试求系统矩阵A和Ф-1(t)。

解:=

Ф-1(t) = Ф(-t) =

系统矩阵A=,其中t=0,

则A=

33.已知系统的状态空间描述=X+u,y=x,

(1) 求系统的传递函数W(S)

(2) 试设计状态反馈控制器,使闭环系统的极点为-1,-1。

解:(1) W(s)=c(sI-A)-1b=

=

=

(2) 传递函数无零极点对消,受控系统完全能观测;

由于是单输入-单输出系统,设反馈矩阵G=;

则观测器的特征方程有

f(λ)= det [λI-(A-Gc)]==λ2+(2g1-1) λ+(2g2-2g1) 根据给定的期望极点,求出期望的观测器特征方程为:

f()=( λ+1)2=λ2+2λ+1

比较两式中λ的同次项系数,系数相等得:

2g1-1=2;2g2-2g1=1;

解得:g1=1.5;g2=2

即:G=

现代控制理论基础考试题A卷及答案

即 112442k g k f M L M ML θθθ??=-+++ ??? && 212 44k k g M M L θθθ??=-+ ??? && (2)定义状态变量 11x θ=,21x θ=&,32 x θ=,42x θ=& 则 一.(本题满分10分) 如图所示为一个摆杆系统,两摆杆长度均为L ,摆杆的质量忽略不计,摆杆末端两个质量块(质量均为M )视为质点,两摆杆中点处连接一条弹簧,1θ与2θ分别为两摆杆与竖直方向的夹角。当12θθ=时,弹簧没有伸长和压缩。水平向右的外力()f t 作用在左杆中点处,假设摆杆与支点之间没有摩擦与阻尼,而且位移足够小,满足近似式sin θθ=,cos 1θ=。 (1)写出系统的运动微分方程; (2)写出系统的状态方程。 【解】 (1)对左边的质量块,有 ()2111211 cos sin sin cos sin 222 L L L ML f k MgL θθθθθθ=?-?-?-&& 对右边的质量块,有 ()221222 sin sin cos sin 22 L L ML k MgL θθθθθ=?-?-&& 在位移足够小的条件下,近似写成: ()1121 24f kL ML Mg θθθθ=---&& ()2122 4kL ML Mg θθθθ=--&&

2 / 7 1221 334413 44244x x k g k f x x x M L M ML x x k k g x x x M M L =?? ???=-+++ ???? ? =????=-+? ????? &&&& 或写成 11 223 34401 000014420001000044x x k g k x x M L M f ML x x x x k k g M M L ? ? ?? ?????????? ??-+???? ???????????=+???? ????? ??????????????????? ????-+?? ? ? ?????? ? &&&& 二.(本题满分10分) 设一个线性定常系统的状态方程为=x Ax &,其中22R ?∈A 。 若1(0)1?? =??-??x 时,状态响应为22()t t e t e --??=??-?? x ;2(0)1??=??-??x 时,状态响应为 2()t t e t e --?? =??-?? x 。试求当1(0)3??=????x 时的状态响应()t x 。 【解答】系统的状态转移矩阵为()t t e =A Φ,根据题意有 221()1t t t e t e e --????==????--???? A x 22()1t t t e t e e --????==????--???? A x 合并得 2212211t t t t t e e e e e ----????=????----?? ??A 求得状态转移矩阵为 1 22221212221111t t t t t t t t t e e e e e e e e e -----------?????? ?? ==????????------???? ????A 22222222t t t t t t t t e e e e e e e e --------?? -+-+=??--??

现代控制理论实验报告

实验报告 ( 2016-2017年度第二学期) 名称:《现代控制理论基础》 题目:状态空间模型分析 院系:控制科学与工程学院 班级: ___ 学号: __ 学生姓名: ______ 指导教师: _______ 成绩: 日期: 2017年 4月 15日

线控实验报告 一、实验目的: l.加强对现代控制理论相关知识的理解; 2.掌握用 matlab 进行系统李雅普诺夫稳定性分析、能控能观性分析; 二、实验内容 1 第一题:已知某系统的传递函数为G (s) S23S2 求解下列问题: (1)用 matlab 表示系统传递函数 num=[1]; den=[1 3 2]; sys=tf(num,den); sys1=zpk([],[-1 -2],1); 结果: sys = 1 ------------- s^2 + 3 s + 2 sys1 = 1 ----------- (s+1) (s+2) (2)求该系统状态空间表达式: [A1,B1,C1,D1]=tf2ss(num,den); A = -3-2 10 B = 1 C = 0 1

第二题:已知某系统的状态空间表达式为: 321 A ,B,C 01:10 求解下列问题: (1)求该系统的传递函数矩阵: (2)该系统的能观性和能空性: (3)求该系统的对角标准型: (4)求该系统能控标准型: (5)求该系统能观标准型: (6)求该系统的单位阶跃状态响应以及零输入响应:解题过程: 程序: A=[-3 -2;1 0];B=[1 0]';C=[0 1];D=0; [num,den]=ss2tf(A,B,C,D); co=ctrb(A,B); t1=rank(co); ob=obsv(A,C); t2=rank(ob); [At,Bt,Ct,Dt,T]=canon(A,B,C,D, 'modal' ); [Ac,Bc,Cc,Dc,Tc]=canon(A,B,C,D, 'companion' ); Ao=Ac'; Bo=Cc'; Co=Bc'; 结果: (1) num = 0 01 den = 1 32 (2)能控判别矩阵为: co = 1-3 0 1 能控判别矩阵的秩为: t1 = 2 故系统能控。 (3)能观判别矩阵为: ob = 0 1

现代控制理论课后习题答案

绪论 为了帮助大家在期末复习中能更全面地掌握书中知识点,并且在以后参加考研考博考试直到工作中,为大家提供一个理论参考依据,我们11级自动化二班的同学们在王整风教授的带领下合力编写了这本《现代控制理论习题集》(刘豹第三版),希望大家好好利用这本辅助工具。 根据老师要求,本次任务分组化,责任到个人。我们班整体分为五大组,每组负责整理一章习题,每个人的任务由组长具体分配,一个人大概分1~2道题,每个人任务虽然不算多,但也给同学们提出了要求:1.写清题号,抄题,画图(用CAD或word画)。2.题解详略得当,老师要求的步骤必须写上。3.遇到一题多解,要尽量写出多种方法。 本习题集贯穿全书,为大家展示了控制理论的基础、性质和控制一个动态系统的四个基本步骤,即建模、系统辨识、信号处理、综合控制输入。我们紧贴原课本,强调运用统一、联系的方法分析处理每一道题,将各章节的知识点都有机地整合在一起,力争做到了对控制理论概念阐述明确,给每道题的解析赋予了较强的物理概念及工程背景。在课后题中出现的本章节重难点部分,我们加上了必要的文字和图例说明,让读者感觉每一题都思路清晰,简单明了,由于我们给习题配以多种解法,更有助于发散大家的思维,做到举一反三!

这本书是由11级自动化二班《现代控制理论》授课老师王整风教授全程监管,魏琳琳同学负责分组和发布任务书,由五个小组组组长李卓钰、程俊辉、林玉松、王亚楠、张宝峰负责自己章节的初步审核,然后汇总到胡玉皓同学那里,并由他做最后的总审核工作,绪论是段培龙同学和付博同学共同编写的。 本书耗时两周,在同学的共同努力下完成,是二班大家庭里又一份智慧和努力的结晶,望大家能够合理使用,如发现错误请及时通知,欢迎大家的批评指正! 2014年6月2日

华南农业大学现代控制理论期末考试试卷

华南农业大学期末考试试卷(A卷)2007 学年第1 学期考试科目:自动控制原理II 考试类型:闭卷考试时间:120 分钟 学号年级专业 题号 1 2 3 4 5 6 7 8 9 10 总分得分 评阅人 1、已知下图电路,以电源电压u(t)为输入量,求以电感中的电流和电容中的电压作为状态变量的状态方程,和以电阻R 2 上的电压为输出量的输出方程。并画出相应的模拟结构图。(10分) 解:(1)由电路原理得: 1 1 2 2 12 1 111 2 22 11 1 11 L L c L L c c L L di R i u u dt L L L di R i u dt L L du i i dt c c =--+ =-+ =- 22 2 R L u R i = 11 22 1 11 1 2 22 1 01 1 00 11 L L L L c c R i i L L L R i i u L L u u c c ?? --?? ???? ?? ?? ???? ?? ?? ???? ?? =-+?? ???? ?? ?? ???? ?? ?? ???? ?? ?? - ???? ?????? ?? ?? g g g

[]1222 00L R L c i u R i u ??????=?????????? 2、建立下列输入-输出高阶微分方程的状态空间表达式。(8分) 322y y y y u u u +++=++&&&&&&&&& 解:方法一: 12301233,2,10,1,2,1 a a a b b b b ======= ()001110221120331221300 1301 231201 13121102 b b a b a a b a a a ββββββββββ===-=-?==--=-?-?=-=---=-?--?-?= ()010100111232100x x u y x ?????? ? ?=+-? ? ?? ? ?---????? ?=?& 方法二:

现代控制理论实验

华北电力大学 实验报告| | 实验名称状态空间模型分析 课程名称现代控制理论 | | 专业班级:自动化1201 学生姓名:马铭远 学号:2 成绩: 指导教师:刘鑫屏实验日期:4月25日

状态空间模型分析 一、实验目的 1.加强对现代控制理论相关知识的理解; 2.掌握用 matlab 进行系统李雅普诺夫稳定性分析、能控能观性分析; 二、实验仪器与软件 1. MATLAB7.6 环境 三、实验内容 1 、模型转换 图 1、模型转换示意图及所用命令 传递函数一般形式: MATLAB 表示为: G=tf(num,den),,其中 num,den 分别是上式中分子,分母系数矩阵。 零极点形式: MATLAB 表示为:G=zpk(Z,P,K) ,其中 Z,P ,K 分别表示上式中的零点矩阵,极点矩阵和增益。 传递函数向状态空间转换:[A,B,C,D] = TF2SS(NUM,DEN); 状态空间转换向传递函数:[NUM,DEN] = SS2TF(A,B,C,D,iu)---iu 表示对系统的第 iu 个输入量求传递函数;对单输入 iu 为 1。

例1:已知系统的传递函数为G(S)= 2 2 3 24 11611 s s s s s ++ +++ ,利用matlab将传递函数 和状态空间相互转换。 解:1.传递函数转换为状态空间模型: NUM=[1 2 4];DEN=[1 11 6 11]; [A,B,C,D] = tf2ss(NUM,DEN) 2.状态空间模型转换为传递函数: A=[-11 -6 -11;1 0 0;0 1 0];B=[1;0;0];C=[1 2 4];D=[0];iu=1; [NUM,DEN] = ss2tf(A,B,C,D,iu); G=tf(NUM,DEN) 2 、状态方程状态解和输出解 单位阶跃输入作用下的状态响应: G=ss(A,B,C,D);[y,t,x]=step(G);plot(t,x). 零输入响应 [y,t,x]=initial(G,x0)其中,x0 为状态初值。

现代控制理论考试试卷A

北京航空航天大学 2019-2020 学年 第二学期期末 《现代控制理论》 A卷 班 级______________学 号 _________ 姓 名______________成 绩 _________ 2020年6月22日

班号 学号 姓名 成绩 《现代控制理论》期末考试卷 一、(本题10分)某RLC 电路如题一图所示,其中u 为输入信号、y 为输出信号、i 为流过网络的电流。若令状态x 1=i ,x 2=y ,建立系统的动态方程,并判断系统的可控性和可观测性(所有参数非零)。 题一图 二、(本题10分)系统的动态方程为 010*********???? ????=+????-???????? x x u , []001=y x 若[](0)001=-T x ,()()δ=u t t (单位脉冲信号),求()x t 和()y t 。 三、(本题15分)已知系统具有如下形式: []111122********* a b x Ax bu a x b u b y cx c c c x l l l éù éùêúêúêúêú=+=+êúêú êúêú???? == (1). 若12=l l ,给出系统可控并且可观测的充分必要条件;若12≠l l ,20=b ,

给出系统可控的充分必要条件(即参数12123123,,,,,,,a a b b b c c c 需满足的条件); (2). 若11=-l ,11=a ,[][]12123301,1000b b c c c b éùéù êúêú êúêú==êúêúêúêú??? ?,计算系统的传 递函数()G s ,并给出该传递函数的可观标准型最小阶实现。 四、(本题20分)已知系统具有如下形式: []1112212200 n n A A x Ax bu x u A A b y cx c x éùéù êúêú=+=+êúêú????== 其中, 11A 为(1)(1)-?-n n 的方阵,22A 为11?的方阵,12A 为(1)-n 维列向量,21A 为(1)-n 维行向量,n b 和n c 分别为非零实数。 (1). 证明系统既可控又可观测的充分必要条件是:1112(,)A A 可控且1121(,)A A 可观测; (2). 若A 的特征多项式为()p s ,而 110100001000011000 A éù êúêúêúêú=êúêúêú êú?? 求系统的传递函数,并证明若系统既可控又可观测,则有(1)0≠p 。 五、(本题15分)已知系统动态方程如下: 210431x x u éùéù êúêú=+êúêúêúêú???? , 11y x éù=êú?? (1). 判断系统的可控性。若系统可控,将系统化为可控标准型; (2). 是否可以用状态反馈将A bk -的特征值配置到{}2,3--?若可以,求出状态反馈增益阵k 。

现代控制理论基础试卷及答案.doc

现代控制理论基础考试题 西北工业大学考试题(A卷) (考试时间120分钟) 学院:专业:姓名:学号: 一.填空题(共27分,每空1.5分) 1.现代控制理论基础的系统分析包括___________和___________。 2._______是系统松弛时,输出量、输入量的拉普拉斯变换之比。 3.线性定常系统齐次状态方程是指系统___________时的状态方程。 4.推导离散化系统方程时在被控对象上串接一个开关,该开关以T 为周期进行开和关。这个开关称为_______。 5.离散系统的能______和能______是有条件的等价。 6.在所有可能的实现中,维数最小的实现称为最小实现,也称为 __________。 7.构造一个与系统状态x有关的标量函数V(x, t)来表征系统的广义 能量, V(x, t)称为___________。 8.单输入-单输出线性定常系统,其BIBO稳定的充要条件是传递函

数的所有极点具有______。 9. 控制系统的综合目的在于通过系统的综合保证系统稳定,有满意的_________、_________和较强的_________。 10. 所谓系统镇定问题就是一个李亚普诺夫意义下非渐近稳定的 系统通过引入_______,以实现系统在李亚普诺夫意义下渐近稳定的问题。 11. 实际的物理系统中,控制向量总是受到限制的,只能在r 维控 制空间中某一个控制域内取值,这个控制域称为_______。 12. _________和_________是两个相并行的求解最优控制问题的 重要方法。 二. 判断题(共20分,每空2分) 1. 一个系统,状态变量的数目和选取都是惟一的。 (×) 2. 传递函数矩阵的描述与状态变量选择无关。 (√) 3. 状态方程是矩阵代数方程,输出方程是矩阵微分方程。 (×) 4. 对于任意的初始状态)(0t x 和输入向量)(t u ,系统状态方程的解存在并且 惟 一 。 (√) 5. 传递函数矩阵也能描述系统方程中能控不能观测部分的特性。 (×)

(完整版)现代控制理论考试卷及答案

西北工业大学考试试题(卷)2008 -2009 学年第2 学期

2009年《现代控制理论》试卷A 评分标准及答案 第一题(10分,每个小题答对1分,答错0分) (1)对 (2)错 (3)对 (4)错 (5)对 (6)对 (7)对 (8)对 (9)对 (10)错 第二题(15分) (1))(t Φ(7分):公式正确3分,计算过程及结果正确4分 ? ? ? ???+-+---=-=Φ?? ?? ??????+- +-+- +-+- ++-+=??????-+++=-??? ???+-=------------t t t t t t t t e e e e e e e e A sI L t s s s s s s s s s s s s A sI s s A sI 22221 11 2222}){()(22112 21221112112 213)2)(1(1 )(321 (2) 状态方程有两种解法(8分):公式正确4分,计算过程及结果正确4分 ??????-+-+-=????? ???????+-+++-+++-++??????+--=??????????? ???????++-++++-=-+-=??????---+-=????? ?+--+??? ???+--=??????-Φ+Φ=------------------------------??t t t t t t t t t t t t t t t t t t t t t e e te e e te s s s s s s L e e e e t x t x s s s s s L x A sI L t x s BU A sI x A sI s X e e t e e t d e e e e e e e e e t x t x d t Bu x t t x 222 21 22212 21111122)(02222210 2344}2414)1(42212)1(4 {2)()(} )2()1(4) 2()1()3(2{)}0(){()() ()()0()()(2)34()14(22222)()()()()0()()(或者 ττ τττττττ 第三题(15分,答案不唯一,这里仅给出可控标准型的结果) (1) 系统动态方程(3分) []x y u x x 0010 1003201 00010=???? ??????+??????????--=&

现代控制理论实验报告

现代控制理论实验报告

实验一系统能控性与能观性分析 一、实验目的 1.理解系统的能控和可观性。 二、实验设备 1.THBCC-1型信号与系统·控制理论及计算机控制技术实验平台; 三、实验内容 二阶系统能控性和能观性的分析 四、实验原理 系统的能控性是指输入信号u对各状态变量x的控制能力,如果对于系统任意的初始状态,可以找到一个容许的输入量,在有限的时间内把系统所有的状态引向状态空间的坐标原点,则称系统是能控的。 对于图21-1所示的电路系统,设iL和uc分别为系统的两个状态变量,如果电桥中 则输入电压ur能控制iL和uc状态变量的变化,此时,状态是能控的。反之,当 时,电桥中的A点和B点的电位始终相等,因而uc不受输入ur的控制,ur只能改变iL的大小,故系统不能控。 系统的能观性是指由系统的输出量确定所有初始状态的能力,如果在有限的时间内根据系统的输出能唯一地确定系统的初始状态,则称系统能观。为了说明图21-1所示电路的能观性,分别列出电桥不平衡和平衡时的状态空间表达式: 平衡时:

由式(2)可知,状态变量iL和uc没有耦合关系,外施信号u只能控制iL的变化,不会改变uc的大小,所以uc不能控。基于输出是uc,而uc与iL无关连,即输出uc中不含有iL的信息,因此对uc的检测不能确定iL。反之式(1)中iL与uc有耦合关系,即ur的改变将同时控制iL和uc的大小。由于iL与uc的耦合关系,因而输出uc的检测,能得到iL的信息,即根据uc的观测能确定iL(ω) 五、实验步骤 1.用2号导线将该单元中的一端接到阶跃信号发生器中输出2上,另一端接到地上。将阶跃信号发生器选择负输出。 2.将短路帽接到2K处,调节RP2,将Uab和Ucd的数据填在下面的表格中。然后将阶跃信号发生器选择正输出使调节RP1,记录Uab和Ucd。此时为非能控系统,Uab和Ucd没有关系(Ucd始终为0)。 3.将短路帽分别接到1K、3K处,重复上面的实验。 六、实验结果 表20-1Uab与Ucd的关系

《现代控制理论基础》考试题B卷及答案

一.(本题满分10分) 请写出如图所示电路当开关闭合后系统的状态方程和输出方程。其中状态变量的设置如图所示,系统的输出变量为流经电感2L 的电流强度。 【解答】根据基尔霍夫定律得: 1113222332 1L x Rx x u L x Rx x Cx x x ++=?? +=??+=? 改写为1 13111 22 322 312 11111R x x x u L L L R x x x L L x x x C C ? =--+?? ?=-+???=-?? ,输出方程为2y x = 写成矩阵形式为

[]11 111222 2 331231011000110010R L L x x L R x x u L L x x C C x y x x ??? --???????????????? ???????=-+???? ??????? ??????????????? ? ???-?????? ? ? ??? ?? ?=??? ?????? 二.(本题满分10分) 单输入单输出离散时间系统的差分方程为 (2)5(1)3()(1)2()y k y k y k r k r k ++++=++ 回答下列问题: (1)求系统的脉冲传递函数; (2)分析系统的稳定性; (3)取状态变量为1()()x k y k =,21()(1)()x k x k r k =+-,求系统的状态空间表达式; (4)分析系统的状态能观性。 【解答】 (1)在零初始条件下进行z 变换有: ()()253()2()z z Y z z R z ++=+ 系统的脉冲传递函数: 2()2 ()53 Y z z R z z z +=++ (2)系统的特征方程为 2()530D z z z =++= 特征根为1 4.3z =-,20.7z =-,11z >,所以离散系统不稳定。 (3)由1()()x k y k =,21()(1)()x k x k r k =+-,可以得到 21(1)(2)(1)(2)(1)x k x k r k y k r k +=+-+=+-+ 由已知得 (2)(1)2()5(1)3()y k r k r k y k y k +-+=-+-112()5(1)3()r k x k x k =-+- []212()5()()3()r k x k r k x k =-+-123()5()3()x k x k r k =--- 于是有: 212(1)3()5()3()x k x k x k r k +=--- 又因为 12(1)()()x k x k r k +=+ 所以状态空间表达式为

现代控制理论期末试卷

一、(10分,每小题1分) 1、任一线性连续定常系统的系统矩阵均可对角形化。(×) 2、对SISO 线性连续定常系统,传递函数存在零极点对消,则系统一定不能观且不能控制。(×) 3、对线性连续定常系统,非奇异变换后的系统特征值不变。(√) 4、对于线性连续定常系统的最小实现是唯一的。(×) 5、稳定性问题是相对于某个平衡状态而言的。(√) 6、Lyapunov 第二法只给出了判定稳定性的充分条件。(√) 7、对于SISO 线性连续定常系统,状态反馈后形成的闭环系统零点与原系统一样。(√) 8、对于一个系统,只能选取一组状态变量。(×) 9、对于一个n 维的线性定常连续系统,若其完全能观,则利用状态观测器实现的状态反馈闭环系统是2n 维的。(√) 10、对线性定常系统,其Lyapunov 意义下的渐近稳定性和矩阵特征值都具有负实部是一致的。(√) 二(10分,每小题5分) (1)简述平衡状态及平衡点的定义。 (2)简述状态方程解的意义。 解:(1)状态空间中状态变量的导数向量为零向量的点。由平衡状态在状态空间中所确定的点称之为平衡点。 (2)线性连续定常系统状态方程的解由两部分组成,一部分是由初始状态所引起的自由运动即零输入响应,第二部分是由输入所引起的系统强迫运动,与输入有关称为零状态响应。 三、(10分)考虑如图的质量弹簧系统。其中,m 为运动物体的质量,k 为弹簧的弹性系数,h 为阻尼器的阻尼系数,f 为系统所受外力。取物体位移为状态变量x 1,速度为状态变量x 2,并取位移为系统输出y ,外力为系统输入u ,试建立系统的状态空间表达式。 解: f ma =……………………………….……1分 令位移变量为x 1,速度变量为x 2,外力为输入u ,有 122u kx kx mx --=………………………………2分 于是有 12x x =………………………………..……………1分 2121k h x x x u m m m =--+……….….……………….2分 再令位移为系统的输出y ,有

现代控制理论实验报告

现代控制理论实验报告 组员: 院系:信息工程学院 专业: 指导老师: 年月日

实验1 系统的传递函数阵和状态空间表达式的转换 [实验要求] 应用MATLAB 对系统仿照[例]编程,求系统的A 、B 、C 、阵;然后再仿照[例]进行验证。并写出实验报告。 [实验目的] 1、学习多变量系统状态空间表达式的建立方法、了解系统状态空间表达式与传递函数相互转换的方法; 2、通过编程、上机调试,掌握多变量系统状态空间表达式与传递函数相互转换方法。 [实验内容] 1 设系统的模型如式示。 p m n R y R u R x D Cx y Bu Ax x ∈∈∈?? ?+=+=& 其中A 为n ×n 维系数矩阵、B 为n ×m 维输入矩阵 C 为p ×n 维输出矩阵,D 为传递阵,一般情况下为0,只有n 和m 维数相同时,D=1。系统的传递函数阵和状态空间表达式之间的关系如式示。 D B A SI C s den s num s G +-== -1)() () (()( 式中,)(s num 表示传递函数阵的分子阵,其维数是p ×m ;)(s den 表示传递函数阵的按s 降幂排列的分母。 2 实验步骤 ① 根据所给系统的传递函数或(A 、B 、C 阵),依据系统的传递函数阵和状态空间表达式之间的关系如式,采用MATLA 的编程。注意:ss2tf 和tf2ss 是互为逆转换的指令; ② 在MATLA 界面下调试程序,并检查是否运行正确。 ③ [] 已知SISO 系统的状态空间表达式为,求系统的传递函数。

, 2010050010000100001 0432143 21u x x x x x x x x ? ? ??? ? ??????-+????????????????????????-=????????????&&&&[]??? ? ? ???????=43210001x x x x y 程序: A=[0 1 0 0;0 0 -1 0;0 0 0 1;0 0 5 0]; B=[0;1;0;-2]; C=[1 0 0 0]; D=0; [num,den]=ss2tf(A,B,C,D,1) 程序运行结果: num = 0 den = 0 0 0 从程序运行结果得到:系统的传递函数为: 2 4253 )(s s s S G --= ④ [] 从系统的传递函数式求状态空间表达式。 程序: num =[0 0 1 0 -3]; den =[1 0 -5 0 0]; [A,B,C,D]=tf2ss(num,den) 程序运行结果: A = 0 5 0 0 1 0 0 0 0 1 0 0

《现代控制理论》.

《现代控制理论》实验指导书 俞立徐建明编 浙江工业大学信息工程学院 2007年4月

实验1 利用MATLAB 进行传递函数和状态空间模型间的转换 1.1 实验设备 PC 计算机1台(要求P4-1.8G 以上),MATLAB6.X 或MATLAB7.X 软件1套。 1.2 实验目的 1、学习系统状态空间模型的建立方法、了解状态空间模型与传递函数相互转换的方法; 2、通过编程、上机调试,掌握系统状态空间模型与传递函数相互转换的方法。 1.3 实验原理说明 设系统的状态空间模型是 x Ax Bu y Cx Du =+?? =+?& (1.1) p y R ∈其中:n x R ∈是系统的状态向量,是控制输入,m u R ∈是测量输出,A 是维状态矩阵、是维输入矩阵、是n n ×m n ×n p ×B D C 维输出矩阵、是直接转移矩阵。系统传递函数和状态空间模型之间的关系如式(1.2)所示。 1()()G s C sI A B D ?=?+ (1.2) 表示状态空间模型和传递函数的MATLAB 函数。 函数ss (state space 的首字母)给出了状态空间模型,其一般形式是 SYS = ss(A,B,C,D) 函数tf (transfer function 的首字母)给出了传递函数,其一般形式是 G=tf(num,den) 其中的num 表示传递函数中分子多项式的系数向量(单输入单输出系统),den 表示传递函数中分母多项式的系数向量。 函数tf2ss 给出了传递函数的一个状态空间实现,其一般形式是 [A,B,C,D]=tf2ss(num,den) 函数ss2tf 给出了状态空间模型所描述系统的传递函数,其一般形式是 [num,den]=ss2tf(A,B,C,D,iu) 其中对多输入系统,必须确定iu 的值。例如,若系统有三个输入和,则iu 必须是1、2或3,其中1表示,2表示,3表示。该函数的结果是第iu 个输入到所有输出的传递函数。 21,u u 3u 1u 2u 3u 1.4 实验步骤 1、根据所给系统的传递函数或(A 、B 、C 、D ),依据系统的传递函数阵和状态空间模型之间的关系(1.2),采用MATLAB 的相关函数编写m-文件。 2、在MATLAB 界面下调试程序。 例1.1 求由以下状态空间模型所表示系统的传递函数, ?? ? ? ? ?????=?????? ?????+???????????????????????=??????????321321321]001[1202505255100010x x x y u x x x x x x &&&

现代控制理论试题(详细答案)

现代控制理论试题B 卷及答案 一、1 系统[]210,01021x x u y x ? ??? =+=????-???? 能控的状态变量个数是cvcvx ,能观测的状态变量个数是。 2试从高阶微分方程385y y y u ++= 求得系统的状态方程和输出方程(4分/个) 解 1. 能控的状态变量个数是2,能观测的状态变量个数是1。状态变量个数是2。…..(4分) 2.选取状态变量1x y =,2x y = ,3x y = ,可得 …..….…….(1分) 12233131 835x x x x x x x u y x ===--+= …..….…….(1分) 写成 010*********x x u ???? ????=+????????--???? …..….…….(1分) []100y x = …..….…….(1分) 二、1给出线性定常系统(1)()(),()()x k Ax k Bu k y k Cx k +=+=能控的定义。 (3分) 2已知系统[]210 020,011003x x y x ?? ??==?? ??-?? ,判定该系统是否完 全能观?(5分)

解 1.答:若存在控制向量序列(),(1),,(1)u k u k u k N ++- ,时系统从第 k 步的状态()x k 开始,在第N 步达到零状态,即()0x N =,其中N 是大于 0的有限数,那么就称此系统在第k 步上是能控的。若对每一个k ,系统的所有状态都是能控的,就称系统是状态完全能控的,简称能控。…..….…….(3分) 2. [][]320300020012 110-=?? ?? ? ?????-=CA ………..……….(1分) [][]940300020012 3202=?? ?? ? ?????--=CA ……..……….(1分) ???? ? ?????-=??????????=940320110 2CA CA C U O ………………..……….(1分) rank 2O U n =<,所以该系统不完全能观……..….……. (2分) 三、已知系统1、2的传递函数分别为 2122211 (),()3232 s s g s g s s s s s -+==++-+ 求两系统串联后系统的最小实现。(8分) 解 112(1)(1)11 ()()()(1)(2)(1)(2)4 s s s s g s g s g s s s s s s -+++== ?=++--- …..….……. (5分) 最小实现为

现代控制理论课程学习心得.

现代控制理论基础课程总结 学院:__机械与车辆学院_ 学号:____2120120536___ 姓名:_____王文硕______ 专业:___交通运输工程__ 《现代控制理论》学习心得 摘要:从经典控制论发展到现代控制论,是人类对控制技术认识上的一次飞跃。现代控制论是用状态空间方法表示,概念抽象,不易掌握。对于《现代控制理论》这门课程,本人选择了最为感兴趣的几个知识点进行分析,并谈一下对于学习这么课程的一点心得体会。 关键词:现代控制理论;学习策略;学习方法;学习心得 在现代科学技术飞速发展中,伴随着学科的高度分化和高度综合,各学科之间相互交叉、相互渗透,出现了横向科学。作为跨接于自然科学和社会科学的具有横向科学特点的现代控制理论已成为我国理工科大学高年级的选修课和研究生的学位课。 从经典控制论发展到现代控制论,是人类对控制技术认识上的一次飞跃。经典控制论限于处理单变量的线性定常问题,在数学上可归结为单变量的常系数微分方程问题。现代控制论面向多变量控制系统的问题,它是以矩阵论和线性空间理论作为主要数学工具,并用计算机来实现。现代控制论来源于工程实际,具有明显的工程技术特点,但它又属于系统论范畴。系统论的特点是在数学描述的基础上,充分利用现有的强有力的数学工具,对系统进行分析和综合。系统特性的度量,即表现为状态;系统状态的变化,即为动态过程。状态和过程在自然界、社会和思维中普遍存在。现代控制论是在引入状态和状态空间的概念基础上发展起来的。状态和状态空间早在古典动力学中得到了广泛的应用。在5O年代Mesarovic教授曾提出“结构不确定

性原理”,指出经典理论对于多变量系统不能确切描述系统的内在结构。后来采用状态变量的描述方法,才完全表达出系统的动力学性质。6O年代初,卡尔曼(Kalman从外界输入对状态的控制能力以及输出对状态的反映能力这两方面提出能控制性和能观性的概念。这些概念深入揭示了系统的内在特性。实际上,现代控制论中所研究的许多基本问题,诸如最优控制和最佳估计等,都是以能能控性和能观性作为“解”的存在条件的。 现代控制理论是一门工程理论性强的课程,在自学这门课程时,深感概念抽象,不易掌握;学完之后,从工程实际抽象出一个控制论方面的课题很难,如何用现代控制论的基本原理去解决生产实际问题则更困难,这是一个比较突出的矛盾。 对现代控制理论来说,首先遇到的问题是将实际系统抽象为数学模型,有了数学模型,才能有效地去研究系统的各个方面。许多机电系统、经济系统、管理系统常可近似概括为线 性系统。线性系统和力学中质点系统一样,是一个理想模型,理想模型是研究复杂事物的主要方法,是对客观事物及其变化过程的一种近似反映。现代控制论从自然和社会现象中抽象出的理想模型,用状态空间方法表示,再作理论上的探讨。 线性系统理论是一门严谨的科学。抽象严谨是其本质的属性,一旦体会到数学抽象的丰富含义,再不会感到枯燥乏味。线性系统理论是建立在线性空间的基础上的,它大量使用矩阵论中深奥的内容,比如线性变换、子空间等,是分析中最常用的核心的内容,要深入理解,才能体会其物理意义。比如,状态空间分解就是一种数学分析方法。在控制论中把实际系统按能控性和能观性化分成四个子空间,它们有着确切的物理概念。线性变换的核心思想在于:线性系统的基本性质(如能控性、能观性、极点、传递函数等在线性变换下都不改变,从而可将系统化为特定形式,使问题的研究变得简单而透彻。 在学习现代控制理论教材时,发现不少“引而未发”的问题。由于作者有丰富的教学经验与学术造诣,能深入浅出阐述问题,发人深省。因此,通过自己反复阅读教材,就能理解这些内容。比如,在探讨线性系统的传递函数的零极点相消时,如果潜伏着

2014湖南工业大学现代控制理论期末考卷

湖南工业大学2014年现代控制理论(A卷闭卷) 适用专业年级:电气、测控考试时间100 分钟 一、(第1小题12分,第2小题8分,共20分) 1.如图所示R-L-C网络: C u c R i u L (1)以电容电压和回路电路i为系统的状态变量,电容电压为输出变量, 给出该系统的状态空间表达式。 (2)根据状态空间表达式从输入u到输出u c的传递函数。 2、已知两个子系统的传递函数矩阵分别为 (1)求两个系统并联联接时,系统的传递函数阵。 求两个系统串联联接时(G1(s)在前,G2(s)在后),系统的传递函数阵。 二、(20分) 有系统如图所示: 2 ∫ -3 -2 ∫ x2x1 u y (1)给出系统状态空间表达式 (2)求系统的单位阶跃响应(初始状态x(0)=())。 (3)求出该系统的离散化空间表达式(采样周期为T)。 答案 三、(每题10分,共20分) 1.确定下列系统为状态完全能控和状态完全能观的特定 常熟a和b。 要点:

2、系统传递函数为 (1)建立系统能控标准形实现。(2)建立系统能观测标准形实现。 四、(每题10分,共20分) 1.设系统状态方程为: 1-试确定平衡状态的稳定性。 2、设线性离散系统状态方程为: 试确定在平衡点渐近稳定的条件。 五、(20分) 设系统传递函数为: )2 )( 1 ( 10 ) ( + + = s s s W (1)给出系统能控标准型的实现,在此基础上设计状态反馈控制器,使闭环极点特征配置在-1±j 上, 并给出闭环传递函数的结构图。 (2)给出系统能观标准型实现,并在此基础上设计全维观测器,使观测极点为-2 ,-3。

现代控制理论实验报告

现代控制理论实验指导书 实验一:线性系统状态空间分析 1、模型转换 图1、模型转换示意图及所用命令 传递函数一般形式: )()(11101110n m a s a s a s a b s b s b s b s G n n n n m m m m ≤++++++++= ---- MATLAB 表示为:G=tf(num,den),其中num,den 分别是上式中分子,分母系数矩阵。 零极点形式: ∏∏==--= n i j m i i p s z s K s G 1 1 ) () ()( MATLAB 表示为:G=zpk(Z,P,K),其中 Z ,P ,K 分别表示上式中的零点矩阵,极点矩阵和增益。 传递函数向状态空间转换:[A,B,C,D] = TF2SS(NUM,DEN); 状态空间转换向传递函数:[NUM,DEN] = SS2TF(A,B,C,D,iu)---iu 表示对系统的第iu 个输入量求传递函数;对单输入iu 为1; 验证教材P438页的例9-6。求P512的9-6题的状态空间描述。 >> A=[0 1;0 -2];

>> B=[1 0;0 1]; >> C=[1 0;0 1]; >> D=[0 0;0 0]; >> [NUM,DEN] = ss2tf(A,B,C,D,1) NUM = 0 1 2 0 0 0 DEN = 1 2 0 >> [NUM,DEN] = ss2tf(A,B,C,D,2) NUM = 0 0 1 0 1 0 DEN = 1 2 0 给出的结果是正确的,是没有约分过的形式 P512 9-6 >> [A,B,C,D]=tf2ss([1 6 8],[1 4 3])

现代控制理论基础

现代控制理论基础 1.一个线性系统的状态空间描述( B ) A.是唯一的; B.不是唯一的 C.是系统的内部描述;D.是系统的外部描述 2.设系统的状态空间方程为=X+u,则其特征根为( D ) A. s1= -2,s2= -3;B. s1= 2,s2= 3;C. s1= 1,s2= -3;D.s1=-1,s2=-2 3.状态转移矩阵(t)的重要性质有( D)。 A.φ(0)=0; B.φ-1(t)= -φ(t); C.φk(t)=kφ(t);D .φ(t1+t2)=φ(t1)?φ(t2)4.系统矩阵A=,则状态转移矩阵φ(t)= ( C) A. ; B. ; C. ; D. ; 5. 设系统=X+u,y=x,则该系统( A )。 A.状态能控且能观测; B.状态能控但不能观测; C.状态不能控且不能观测 D.状态不能控且能观测; 6.若系统=X+u,y=x是能观测的,则常数a取值范围是( C)。 A.a ≠ 1;B.a = 1;C.a ≠ 0;D.a = 0; 7. 线性系统和互为对偶系统,则(AD) A.C1=B2T;B. C1=B2;C. C1=C2;D.C1=B2T 8. 李雅普诺夫函数V(x)=(x1+x2)2,则V(x)是(C) A.负定的;B.正定的;C.半正定的;D.不定的 9.单位脉冲响应的拉氏变换为(B)

A.; B.; C. 0; D. 1 10.通过状态反馈能镇定的充分必要条件是,渐近稳定的子系统是(B) A.能控; B.不能控; C.能观测; D.不能观测 二.填空题(每空1分,10分) 11.状态方程揭示了系统的内部特征,也称为内部描述。 12.已知系统矩阵,则特征多项式为S2-S+1 。 13.对于完全能控的受控对象,不能采用输出反馈至参考信号入口处的结构去实现闭环极点的任意配置。 14.在状态空间分析中,常用状态结构图来反映系统各状态变量之间的信息传递关系。 15.为了便于求解和研究控制系统的状态响应,特定输入信号一般采用脉冲函数、阶跃函数和斜坡函数等输入信号。 16.若已知线性系统的矩阵【A AB A2B】的秩为3,那么该系统是能控的。 17.当且仅当系统矩阵A的所有特征值都具有负实部时,系统在平衡状态时渐近稳定的。 18.同一个系统,状态变量的选择不是唯一的。 19.控制系统的稳定性,包括外部稳定性和内部稳定性。 20.能观测性是反映输出对系统状态的判断能力。 三.名词解释(共20分) 21.状态空间描述(3分) 答:用状态变量构成输入,输出与状态之间的关系方程组即为状态空间描述。 22. 零输入响应(3分) 答:是指系统输入为零时,由初始状态引起的自由运动。 23.稳定(3分) 答:系统稳定性包括外部稳定和内部稳定;外部稳定是指系统在零初始条件下通过其外部状

相关文档
最新文档