什么是熵
(完整word版)综合自然地理学复习思考题

综合自然地理学名词解释1.系统的概念:由相互联系、相互作用的诸要素按一定规律组成的,具有一定功能的有机整体。
2.自然地理要素:自然地理环境的各种物质,各种能量以及在能量支配下物质运动所构成的各种动态体系.3.自然地理环境的结构:指自然地理环境各组成要素之间以及各组成部分之间的组合格局。
4.耗散结构:一个远离平衡的开放系统,只有通过不断地与外界交换物质和能量,在外界条件的变化达到一定阈值时,可以从原有的混乱无序状态自发地转变为一种在时间上,空间上或功能上的有序状态。
5.熵及熵定律:熵是描述系统无序性(即混乱度)的物理量。
熵定律即热力学第二定律,孤立系统中,热量是由高温物体自动的转向低温物体,直至热量平衡为止.亦即,孤立系统中的自发过程中总是使系统的熵增加。
6.元素的地球化学迁移:自然地理环境中化学元素的这种由一种存在形式转变为另一种存在形式,并伴随着一定的空间位移的运动过程,属于元素的地球化学迁移。
‘7.辐射干燥指数:是一地的年辐射平衡(热量收入)与用热量单位表示的年降水量(即蒸发该地年降水量所需的热量)之比,可视为蒸发力与降水量之比。
8.周期性节律:是自然地理过程按严格的时间间隔重复的变化规律.其发生基础是地球自转和公转及地表光、热、水的周期性变化。
9.自然地理环境的稳定性:又称自稳性,系统的性质在一定内外干扰下,不发生相应改变或发生改变后,可以自动恢复到原来状态的性能。
10.旋回性规律:以不等长的时间间隔为重复时间的自然演化规律。
11.反馈:指信息反馈,即将输入又回输到原系统中去。
12.地域分异:指自然地理环境各组成要素或自然综合体沿地表按确定方向有规律的发生分化所引起的差异(支配这种分化现象的客观规律称为地域分异规律).13.地带性:由于地球作为一个行星所具有的形状和运动特性,以及它在宇宙中测点位置,致使太阳辐射在地表分布不均而引起的地域分异。
14.非地带性:由于地球内能作用而产生的海陆分布、地势起伏、构造活动等区域性分异.15.经度省性(经向地带性):他表现为自然地理要素或自然综合体大致沿经线方向延伸(向南北延伸),按经度由海向陆发生有规律的东西向分化。
热工问答题

4、什么是气体的状态参数?答:气体的状态参数分为基本状态参数和一般状态参数。
基本状态参数:温度、压力和比容,可通过仪表直接测量;一般的状态参数还有焓、熵、内能等。
这些表明气体状态特征的物理量,称为气体状态参数。
5、什么叫等温过程?答:工质在温度不变的条件下进行的热力过程称为等温过程,如给水在锅炉内的汽化过程。
6、什么叫等压过程?答:工质在保持压力不变的情况下进行的热力过程称等压过程。
如给水在锅炉内的加热、汽化、过热等过程。
7、什么叫等容过程?答:工质在保持容积不变的情况下进行的热力过程称等容过程。
8、什么叫绝热过程?答:工质与外界没有热交换的热力过程称绝热过程。
如蒸汽在汽轮机内膨胀作功的过程。
9、什么是能量转换和能量守恒定律?答:能的形式有多种,各种形式的能可以相互转换,如电能转换为光能和热能,机械能转变为电能,电能又能转变为机械能等,以上是能量的转换。
能量既不能创造,也不能消灭,但它可以从一种形式转变为只一种形式。
这就是能量守恒定律。
10、水蒸气的形成分哪几个阶段?答:水蒸气的形成过程分为3个阶段:(1)水的等压预热过程,即水从任意温度加热到饱和状态,所加的热量叫液体热或预热;(2)饱和水的等压等温汽化过程,即从饱和水加热到干饱和蒸汽,所加的热量叫汽化热;(3)干饱和蒸汽的等压过热过程,即从干饱和蒸汽加热到任意温度的过程蒸汽,所加的热叫做过热。
11、什么是汽化现象,什么是凝结现象?答:物质从液态转变为汽态的过程叫汽化。
汽化方式有两种:蒸发、沸腾。
物质从汽态变成液态的现象叫凝结。
在一定的压力下,液体的沸点也就是蒸汽的凝结温度。
凝结与汽化是两个相反的热力过程。
12、什么是热膨胀?什么是热膨胀系数?答:大多数物质在外压不变的情况下,受热后体积随温度的升高而增大的现象,称物体的热膨胀。
不同的物质,在温升相同的情况下的膨胀值是不一样的,其中气体最大,液体次之,固体最小。
物体温度上升1度所引起的体积增大值与其0度时的体积之比值,称膨胀系数。
熵

1.熵的定义 2.熵函数的来历 3.熵函数的统计学意义 4.基本特性 5.熵在热力学的应用
1.熵的定义
什么是熵? 什么是熵? 《博弈圣经》中说;熵就是混沌,就是无序 科学家已经发明了测量无序的量,它称作熵, 熵也是混沌度,是内部无序结构的总量 物理意义:物质微观热运动时,混乱程度的 标志。
引言 德国物理学家克劳修斯1850年提出热力学第 二定律之后, 为了进一步描述热力学第二定 律的实质, 于1865年根据“ 转变” 定义了 熵这一物理量。熵是物理学中的重要概念, 完成了热力学第二定律的量化问题, 目前, 熵概念己被泛化, 在现代科学技术中的应用 越来越广泛。
基本特性
熵均大于等于零,即,H_s \ge 0。 设N是系统S内的事件总数,则熵H_s \le log_2N。 当且仅当p1=p2=...=pn时,等号成立,此时熵最大。 联合熵:H(X,Y) \le H(X) + H(Y),当且仅当X,Y 在统计学上相互独立时等号成立。 条件熵:H(X|Y) = H(X,Y) - H(Y) \le H(X),当且 仅当X,Y在统计学上相互独立时等号成立。 社会学意义:从宏观上表示世界和社会在进化过程 中的混乱程度
它表明随着孤立系统由非平衡态趋于平衡 态,其熵单调增大,当系统达到平衡态时, 熵达到最大值。熵的变化和最大值确定了孤 立系统过程进行的方向和限度,熵增加原理 就是热力学第二定律。
熵增加原理 熵的引入可以将热力学第二定律表示出来在 孤立系统内任何变化不可能导致熵的总值减 少,即dS>0式中等号对应可逆过程, 不等号对 应不可逆过程,熵值有增无减, 即熵增加原理。 由式, ()可以看出, 要确定某一状态的熵 值, 存在一个待定的常数S,因此,应选择某 一特定状态的摘值为零。能斯特提出的热力 学第三定律说明任何物体的温度达到了绝对 温度零度, 其嫡值就等于零。
什么是熵(shang)

熵
熵的概念是由德国物理学家克劳修斯于1865年所提出。
熵是一个物理概念,用来描述系统的混乱程度或无序状态。
在热力学中,熵是系统的状态函数之一,通常用符号S表示。
熵的本质是一个系统“内在的混乱程度”,它表示系统内部能量的分布情况,即能量分布的均匀程度。
在一个封闭系统中,熵总是不断增加的,即系统总是朝着更加混乱、无序的方向演化。
这是因为热量总是从高温流向低温,在没有外界干预的情况下,系统总是朝着熵增加的方向演化。
除了在热力学领域中广泛的应用,熵的概念也被引入到其他学科领域中,如信息论、控制论、生物学等。
在信息论中,熵被用来衡量信息的不确定度或混乱程度。
在控制论中,熵被用来描述系统的复杂程度或自由度。
在生物学中,熵的概念也被用来描述生物系统的复杂性和组织结构。
总之,熵是一个描述系统混乱程度或无序状态的物理量,广泛存在于自然界和人类社会中。
在不同的学科领域中,熵的概念也有着广泛的应用和解释。
热工基础试题讲解及答案

热工基础试题讲解及答案1. 热力学第一定律的数学表达式是什么?热力学第一定律的数学表达式为:\(\Delta U = Q - W\),其中\(\Delta U\)表示内能的变化,\(Q\)表示系统吸收的热量,\(W\)表示系统对外做的功。
2. 什么是热机效率,其计算公式是什么?热机效率是指热机将热能转换为机械能的效率,其计算公式为:\(\eta = \frac{W}{Q_{\text{in}}}\),其中\(W\)表示输出的机械功,\(Q_{\text{in}}\)表示输入的热量。
3. 理想气体状态方程是什么?理想气体状态方程为:\(PV = nRT\),其中\(P\)表示气体的压强,\(V\)表示气体的体积,\(n\)表示气体的摩尔数,\(R\)表示理想气体常数,\(T\)表示气体的温度(单位为开尔文)。
4. 什么是熵,熵变的计算公式是什么?熵是热力学中描述系统无序程度的物理量,其计算公式为:\(\DeltaS = \int \frac{\delta Q}{T}\),其中\(\Delta S\)表示熵变,\(\delta Q\)表示系统吸收或释放的热量,\(T\)表示绝对温度。
5. 热传导、热对流和热辐射是热传递的三种基本方式,请分别解释这三种方式。
热传导是指热量通过物体内部分子振动和碰撞传递的过程,通常在固体中进行。
热对流是指热量通过流体(如气体或液体)的宏观运动传递的过程,常见于流体内部或流体与固体表面之间。
热辐射是指物体通过电磁波(如红外线)传递热量的过程,不需要介质,可以在真空中进行。
6. 什么是临界压力和临界温度?临界压力是指在临界温度下,物质的液相和气相可以共存的压力。
临界温度是指在该温度下,物质的液相和气相可以共存的最高温度。
7. 什么是卡诺循环,其效率如何计算?卡诺循环是一种理想化的热机循环,由两个等温过程和两个绝热过程组成。
其效率计算公式为:\(\eta_{\text{Carnot}} = 1 -\frac{T_{\text{cold}}}{T_{\text{hot}}}\),其中\(T_{\text{cold}}\)和\(T_{\text{hot}}\)分别表示冷热源的绝对温度。
熵和焓是什么?有什么区别?焓变与熵变又是什么?怎么计算?

熵和焓是什么?有什么区别?焓变与熵变又是什么?怎么计算?1.熵与焓是什么?熵是描述物质混乱程度的物理量,用符号S来表示,单位是J/(mol·K)焓也是物质的一种物理量,跟内能有点关系,但又不是内能,是在做一些计算时,人为引入的一个物理量。
用符号H来表示,单位是kJ/mol。
焓值与内能的关系可以用一个公式表示:H=U+pV(U是内能,p是压强,V是体积)但是在高中可以把焓简单认为是物质的内能。
由此可见,熵是对物质混乱程度的描述,而焓是有关“内能”的物理量,区别还是很大的。
2.熵的大小比较与熵变熵值的大小关系:物质越混乱熵值越大,对于同一种物质,熵值大小关系是气态>液态>固态;在一个化学反应中,由固态变成液态或者气态,或者由液态变成气态,以及气态分子数由少变多的等过程熵的值都会增加。
至于熵值是如何得出来的,一般可以根据实验数据、按一定规律计算,也可以按统计力学方法计算,方法较为复杂,这里暂时不做探讨。
如果想要知道具体某个物质的熵值是多少,如果是常见的物质,可以直接通过查询标准熵值表得到,这些熵值是科学家们通过实验和计算得到的,可以自行搜索。
在一个化学反应中,从反应物变为生成物的过程中,熵的值是会发生变化的,这个变化的值我们称为“熵变”,用生成物的熵减去反应物的熵来得到,公式如下:熵变这个公式既是熵变的定义,也能直接用于计算熵变的具体值,只要查询熵值表找到生成物与反应物的熵值就能进行计算。
注意,熵值增大,熵变为正值,熵值减小,熵变为负值。
3.焓的大小比较与焓变焓值的大小关系:一般内能越高,焓值越大,但是一种物质的内能是无法直接测定的,也就无法得到焓值的具体数值。
但是我们可以通过实验或者计算比较一个化学变化中生成物与反应物的焓值的差值,这样的差值我们称作“焓变”,公式如下:焓变注意,这个公式是焓变的定义公式,但是无法用它计算焓变的具体值,因为反应物和生成物的焓值是无法得到的。
那么如何得到某个反应焓变的具体值呢,一个方法就是在恒压的环境中,实验测定该化学反应释放或吸收的热量(注意要求释放出的能量只做体积功,不做非体积功),而这个热量就是焓变的绝对值。
力学考研面试题及答案

力学考研面试题及答案1. 请简述牛顿三大定律的内容。
答案:牛顿三大定律是经典力学的基础,包括:(1)第一定律(惯性定律):物体会保持静止或匀速直线运动状态,除非受到外力作用。
(2)第二定律(加速度定律):物体的加速度与作用在物体上的净外力成正比,与物体的质量成反比,且加速度的方向与净外力的方向相同。
(3)第三定律(作用与反作用定律):对于任何两个相互作用的物体,它们之间的力是大小相等、方向相反的。
2. 描述一下弹性模量的概念及其物理意义。
答案:弹性模量是材料力学性质的一个重要参数,它描述了材料在受到外力作用时的弹性变形能力。
具体来说,弹性模量是材料在弹性范围内,应力与应变的比值。
物理意义上,弹性模量越大,表示材料越难发生形变。
3. 请解释什么是达朗贝尔原理,并给出其应用。
答案:达朗贝尔原理是分析力学中的一个重要原理,它指出一个系统在任意虚位移下,系统内所有力做的虚功之和等于零。
这个原理可以用来推导动力学方程,是拉格朗日力学的基础之一。
4. 阐述一下什么是刚体的转动惯量。
答案:刚体的转动惯量是一个用来描述刚体在旋转运动中抵抗外力矩改变其旋转状态的物理量。
它与刚体的质量分布和旋转轴的位置有关。
转动惯量越大,刚体在旋转时就越难被加速或减速。
5. 请解释什么是流体静力学平衡条件。
答案:流体静力学平衡条件是指在静止流体中,任意一点的压力在所有方向上都是相等的。
这意味着流体内部不存在压力梯度,流体处于平衡状态。
6. 描述一下什么是伯努利方程。
答案:伯努利方程是流体动力学中的一个重要方程,它描述了不可压缩流体在流动过程中,速度、压力和高度之间的关系。
方程表明,在没有外力作用的情况下,流体在流动过程中的总能量(动能、压力能和势能)是守恒的。
7. 请简述什么是热力学第一定律。
答案:热力学第一定律,也称为能量守恒定律,它指出在一个封闭系统中,能量既不能被创造也不能被消灭,只能从一种形式转化为另一种形式。
在热力学过程中,系统吸收的热量等于系统内能的增加和对外做的功的总和。
热力学第二定律熵增定律

热力学第二定律熵增定律随着科学技术的发展,热力学第二定律越来越受到人们的重视。
其中,熵增定律是热力学第二定律的核心内容,应用非常广泛。
本文将从什么是热力学第二定律,熵和熵增定律的概念和意义、熵增定律的形式等方面为大家阐述热力学第二定律熵增定律。
一、什么是热力学第二定律热力学第二定律是对热力学系统中热能转化的规律的总结和描述。
其核心是熵增原理,即熵的增加是所有能量变化进行的过程中不可避免的宇宙趋势。
二、熵和熵增定律的概念和意义熵是一个物理量,描述了一个系统中混乱程度的大小,其单位是焦耳/开尔文(J/K),通常用S表示。
熵增是指热力学系统内部混乱状态的增加程度,即混乱程度的增加,表明热力学系统趋向于更少有序的状态。
熵增定律是热力学第二定律的核心内容,描述的是封闭系统熵增的事实。
熵增定律的意义是指,自然界内的任何过程,在可能的情况下都取向于熵的增加,即使是可以转化熵的过程,即能量的转化,也不能改变熵的增加趋势。
三、熵增定律的形式熵增定律有多种形式,其中最常用的是卡诺-克劳修斯不等式或阿切鲁斯不等式,它们分别是在恒定温度和温度变化过程中的熵增定律。
具体来说,卡诺-克劳修斯不等式规定了热力学系统中所有过程的熵增必须大于零,即ΔS>0。
而阿切鲁斯不等式则描述了在温度变化过程中熵的增加程度要大于温度为恒定的情况。
四、熵增定律的应用熵增定律的应用非常广泛,尤其是在强制温度梯度下进行的热传导和对准态或非平衡态观察的能量转换中。
在自然界中,熵增定律是不可避免的,因此我们需要通过合理设计和利用热力学系统来达到最佳的熵增控制。
总之,熵增定律是热力学第二定律的核心内容,它描述了自然界内系统混乱状态的增加趋势。
熵增定律的形式多种多样,但它的应用范围非常广泛,在实际应用中发挥着重要作用。
我们需要进一步深入研究和利用热力学第二定律和熵增定律,以应对当前和未来面临的挑战。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
什么是熵?
是生命科学的借助概念,借助的是热力学第二定律来
解释生命现象不懂得熵的人,就是人体科学的门外汉。
不可逆过程遵从一个很重要的极值原理,它是由开耳
芬爵士发现的。
这个原理说,这个叫熵的量将随过程
而增加,并且在最后的平衡状态达到最大值。
神秘的
熵,很难用可以直接观测的量,例如:体积、压强、
温度、浓度、热量等等来描述。
但是从原子论的观点
看,熵的意义就很直接明了。
准备一小瓶红色的溶液,
放在大瓶的纯水中,起初,红色染液的分子集中在一
个有限的体积内,后来向外散开到更大的体积里去。
一个有序度较高的状态,被一个有序度较低的状态所
取代了。
这是一个统计规律,是自然状态,是中庸,
是无为无不为,是自然界自古至今发展的模式,达到
最大值。
人体也是如此,它总是在自然状态下处于熵
的最大状态,生命的最佳状态人为任何措施都会破坏
这个状态,而在自然中遭到灭顶之灾。
有谁能把散开
了的红色液体再一个一个地收集起来?那就是消耗能
量,对于生命来说,就是消耗生命的能量,这就是医
学所能做的,现在正在做的。
比如:打点滴,把凉水
注入病人的血管子,人的血液类似上面例子里的“红
色的溶液,放在大瓶的纯水中,起初,红色染液的分
子集中在一个有限的体积内,后来向外散开到更大的
体积里去。
一个有序度较高的状态,被一个有序度较
低的状态所取代了。
”
熵是描述系统混乱的量,熵越大说明系统越混乱,携带的信息就越少,熵越小说明系统越有序,携带的信息越多。
你要现确定系统,再来描述。
你的例子,可以这样理解,同样大的硬盘,熵越大什么坏了的硬盘越多,他可以承载的信息越少,熵越小意味着坏掉的硬盘越少,可以承载的信息量越大。
熵表示了信息量的大小,熵越大,不确定的因素就越大,信息量就越大。
通常讲随机变量X的熵是其概率分布p(x)的函数,有表达式H=sum(p(x)log(p(x)))
熵
entropy
描述热力学系统的重要态函数之一。
熵的大小反映系统所处状态的稳定情况,熵的变化指明热力学过程进行的方向,熵为热力学第二定律提供了定量表述。
为了定量表述热力学第二定律,应该寻找一个在可逆过程中保持不变,在不可逆过程中单调变化的态函数。
克劳修斯在研究卡诺热机时,根据卡诺定理得出,对任意循环过程都有,式中Q是系统从温度为T的热源吸收的微小热量,等号和不等号分别对应可逆和不可逆过程。
可逆循环的表明存在着一个态函数熵,定义为
对于绝热过程Q=0,故S≥0,即系统的熵在可逆绝热过程中不变,在不可逆绝热过程中单调增大。
这就是熵增加原理。
由于孤立系统内部的一切变化与外界无关,必然是绝热过程,所以熵增加原理也可表为:一个孤立系统的熵永远不会减少。
它表明随着孤立系统由非平衡态趋于平衡态,其熵单调增大,当系统达到平衡态时,熵达到最大值。
熵的变化和最大值确定了孤立系统过程进行的方向和限度,熵增加原理就是热力学第二定律。
能量是物质运动的一种量度,形式多样,可以相互转换。
某种形式的能量如内能越多表明可供转换的潜力越大。
熵原文的字意是转变,描述内能与其他形式能量自发转换的方向和转换完成的程度。
随着转换的进行,系统趋于平衡态,熵值越来越大,这表明虽然在此过程中能量总值不变,但可供利用或转换的能量却越来越少了。
内能、熵和热力学第一、第二定律使人们对与热运动相联系的能量转换过程的基本特征有了全面完整的认识。
从微观上说,熵是组成系统的大量微观粒子无序度的量度,系统越无序、越混乱,熵就越大。
热力学过程不可逆性的微观本质和统计意义就是系统从有序趋于无序,从概率较小的状态趋于概率较大的状态。
在信息论中,熵可用作某事件不确定度的量度。
信息量越大,体系结构越规则,功能越完善,熵就越小。
利用熵的概念,可以从理论上研究信息的计量、传递、变换、存储。
此外,熵在控制论、概率论、数论、天体物理、生命科学等领域也都有一定的应用。