2017年广东省3+1证书高职高考数学试卷

合集下载

2017年广东省高考数学试卷

2017年广东省高考数学试卷

2017年广东省高考数学试卷选择题:设函数 f(x) = 2x^2 - 3x + 1,那么 f(2) 的值为:A. 1B. 3C. 5D. 7已知三角形 ABC,AB = 5,AC = 12,BC = 13,那么角 B 的大小为:A. 30°B. 45°C. 60°D. 90°若 a + b = 5,a - b = 3,那么 a 的值为:A. 1B. 2C. 3D. 4函数 y = 2x + 3 的图像与 x 轴交于点 P,那么点 P 的坐标为:A. (0, 0)B. (0, 3)C. (3, 0)D. (-3, 0)若 sinθ = 1/2,那么θ的值为:A. 30°B. 45°C. 60°D. 90°已知函数 f(x) = x^2 + 2x + 1,那么 f(-1) 的值为:A. -1B. 0C. 1D. 2若 a:b = 3:4,b:c = 2:5,那么 a:c 的值为:A. 3:5B. 4:5C. 6:10D. 8:10若 log2(x) = 3,那么 x 的值为:A. 2B. 4C. 6D. 8若直线 y = 2x + 1 与 x 轴交于点 P,那么点 P 的坐标为:A. (0, 0)B. (0, 1)C. (1, 0)D. (-1, 0)填空题:二次函数 y = ax^2 + bx + c 的图像开口方向由参数 a 的值决定,若 a > 0,则图像开口向上;若 a < 0,则图像开口向__________。

若 a:b = 2:3,b:c = 4:5,那么 a:c 的值为__________。

若直线 y = 3x + 2 与 y 轴交于点 P,那么点 P 的坐标为__________。

若 log3(x) = 2,那么 x 的值为__________。

若 sinθ = 3/5,那么 cosθ的值为__________。

广东省3+1证书高职高考数学解三角形、三角函数解答题详解

广东省3+1证书高职高考数学解三角形、三角函数解答题详解

;的面积求△;求,且△△ABC S ABC )2(C )1(.3,2b 45B c,b,的对对边分别C ,∠B 为锐角三角形,∠ABC (2008)已∠==︒=∠c.43375sin 3221sin 21S 75A 60C 45B )2(.322232sin sin )1(ABC +=︒⨯⨯==︒=︒=∠︒=∠=⨯==A bc BCb c △则,,可得,由由正弦定理得:解析:);4tan()2(;sin )1(,41)2sin()2009(παααπα+=+求是锐角,且设7815151115tan 11tan 4tan 14tantan )4tan(1541415cos sin tan )2(415sin 0sin cos 1sin 1cos sin 41cos )2sin(2222+=-+=-+=∙-+=+====∴>∴-=∴=+==+ααπαπαπααααααααααααπαan 是锐角,解析:的长;,求若求,中,已知在△AC 5BC )2(;cos )1(.1010cos 45A ABC )2010(==︒=∠C B5322101035sin sin BC AC 5BC )2(551010322101022sin sin cos cos )cos(cos 10103sin ,1010cos 45A ABC )1(=⨯====⨯+⨯-=--=+-===︒=∠A B B A B A B A C B B ,若,中,已知在△解析:.32,4,2ABC C B A ABC ,,ABC )2011(===∠∠∠S b a S c b a 的面积,若是△的对边,,,中是△为锐角三角形,已知△321260cos 422164cos 26023sin sin 322132sin 21)1(222=∴=︒⨯⨯-+=-+=︒=∴=∴⨯⨯=∴=c C ab b a c C C C CC ab S 根据余弦定理得:是锐角,解析:的值;求的值;求,已知的对边分别为,,中,角在△C b B c a c b a sin )2()1(.41cos ,4,3,,C B A ABC )2012(=== 1915cos 1sin ,1922cos )2(19,19cos 2)1(2222222=-==-+====-+=C C ab c b a C b B ac c a b 解析:的值;求的值;求,已知的对边分别为,,中,角在△a B c b c b a )2(cos )1(.32C ,3,1,,C B A ABC )2013(π=∠== 123213sin sin ,sin sin 6A 6B )1()2(23cos 6B ,32C ABC 213231sin sin sin sin )1(=⨯=========⨯===C A c a CcA aB c Cb B Cc B b 即,由正弦定理得,故得由,所以中,又在△可得由正弦定理得:解析:ππππ的值;求求的值;求,且的对边分别为,,中,角在△c b a B A B A B A c b a ,2,1)2(sin cos cos sin )1(.3,,C B A ABC )2014(==+=+π7,7725)21(21241cos 2,323,3A )2(233sin )sin(sin cos cos c sin )1(222=±=∴=+=-⨯⨯⨯-+=-+==-=∴=+==+=+c c C ab b a c C B B A B A B A 根据题意舍去负值,故根据余弦定理得:解析:πππππ少资金:?元草皮,问需要投入多方米若在该空地上种植每平的值;求,,已知边形的空地如图,某单位有一块四100)2(cos )1(.13,12,4,3AB 90A ABCD )2015(C m CD m BC m AD m ====︒=∠36003610036512214321S ABCD )2(1312cos 90CBD CBD 13169144255169BD ABD BD )1(CBD BAD 222222=⨯=⨯⨯+⨯⨯=+===︒=∠∴===+=+=+=+=∴△△的面积四边形故为直角三角形,△为直角三角形,,则△连结解析:S CD BC C CD BC BD AD AB的值;求的周长;求△中,已知在△)sin()2(ABC )1(.41cos ,2,1ABC )2016(C A C b a +-=== 410sin )180sin()sin(180,180410sin sin 24156,sin sin ,415sin 1800,41cos )2(63621,6615)41(21221cos 241cos ,2,1,,,ABC ABC )1(ABC 22222==-︒=+∴-︒=+∴︒=++=⇒=∴==∴︒<<︒-=+=++==∴=+=-⨯⨯⨯-+=-+=∴-===B B C A B C A C B A B BB bC c C C C C c C ab b a c C b a c b a ,且所对的边分别是中,角在△解析:△的值;求的值;求,已知的对边分别为,,的内角设△C 2sin )B cos()2(sin )1(.5,3,2,,C B A ABC )2017(++===A C c b a c b a96543235232cos sin 2cos 2sin )cos()2(35)32(1cos 1sin ,20,0323222942cos )1(22222-=⨯⨯+-=+-=++=-=-=<<∴>=⨯⨯-+=-+=C C C C B A C C C ab c b a C π由余弦定理得:解析;.____cos ,2,43,,ABC )2018(===A A B a b c b a 则,已知对边分别为△32cos cos sin 2sin 342sin sin 342sin 34sin sin sin ,34,43=⇒==⇒=⇒===C A A A A A A aA aB b A a a b a b 解析:的周长;求△求,若的对边分别是,,中,角在△ABC )2(;cos )1(.41sin sin cos cos ,,B A ABC )2019(C B A B A c b a C =-。

2017年广东省高职高考数学试卷及参考答案

2017年广东省高职高考数学试卷及参考答案

word 格式-可编辑-感谢下载支持2017年广东省高职高考数学试卷及参考答案考试时间:120分钟 总分:150姓名:__________班级:__________考号:__________△注意事项:1.填写答题卡请使用2B 铅笔填涂2.提前5分钟收答题卡一 、选择题(本大题共15小题,每小题5分,共75分。

在每小题给出的四个选项中,只有一个选项是符合题目要求的) 1. 已知集合}5,4,3{},4,3,2,1,0{==N M ,则下列结论正确的是( )。

A. N M ⊆B. N M ⊇C. {}4,3=N MD. {}5,2,1,0=N M 2.函数xx f +=41)(的定义域是( )。

A. ]4,(--∞ B. ()4,-∞- C. ),4[+∞- D. ),4(+∞- 3.设向量)4,(x a =,)3,2(-=b ,若2=⋅b a ,则x =( )。

A. -5B. -2C. 2D. 7 4.样本5,4,6,7,3的平均数和标准差为( )。

A. 5和2B. 5和2C. 6和3D. 6和35.设)(x f 是定义在R 上的奇函数,已知当324)(0x x x f x -=≥时,,则f(-1)=( )。

A. -5B. -3C. 3D. 56.已知角θ的顶点与原点重合,始边为x 轴的非负半轴,如果θ的终边与单位圆的交点为)54,53(-P ,则下列 等式正确的是( )。

A. 53sin =θ B. 54cos -=θ C. 34tan -=θ D. 43tan -=θ7. “4>x ”是“0)4)(1(>--x x ”的( )。

A. 必要非充分条件B. 充分非必要条件C. 充分必要条件D. 非充分非必要条件 8.下列运算不正确的是( )。

A. 1log log 52102=- B. 15252102log log log =+C. 12= D. 422810=÷9.函数x x x x x f sin 3sin cos 3cos )(-=的最小正周期为( )。

2017年广东卷高考理科数学真题 精品

2017年广东卷高考理科数学真题 精品

2017年普通高等学校招生全国统一考试(广东卷) 数学理一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 已知集合{1,0,1},{0,1,2},M N =-=则M N ⋃= A .{1,0,1}- B. {1,0,1,2}- C. {1,0,2}- D. {0,1} 2.已知复数Z 满足(34)25,i z +=则Z=A .34i - B. 34i + C. 34i -- D. 34i -+3.若变量,x y 满足约束条件121y x x y z x y y ≤⎧⎪+≤=+⎨⎪≥-⎩且的最大值和最小值分别为M 和m ,则M-m=A .8 B.7 C.6 D.54.若实数k 满足09,k <<则曲线221259x y k-=-与曲线221259x y k -=-的 A .离心率相等 B.虚半轴长相等 C. 实半轴长相等 D.焦距相等 5.已知向量()1,0,1,a =-则下列向量中与a 成60︒夹角的是A .(-1,1,0) B. (1,-1,0) C. (0,-1,1) D. (-1,0,1) 6、已知某地区中小学生人数和近视情况分别如图1和图2所示,为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为A 、200,20B 、100,20C 、200,10D 、100,107、若空间中四条两两不同的直线1234,,,l l l l ,满足122334,,,l l l l l l ⊥⊥⊥,则下列结论一定正确的是A .14l l ⊥B .14//l lC .14,l l 既不垂直也不平行D .14,l l 的位置关系不确定 8.设集合(){}12345=,,,,1,0,1,1,2,3,4,5i A x x x x x x i ∈-=,那么集合A 中满足条件“1234513x x x x x ≤++++≤”的元素个数为 A .60 B90 C.120 D.130二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9~13题)9.不等式521≥++-x x 的解集为 。

数学真题2017年广东省3+证书高职高考数学试卷及参考详细答案

数学真题2017年广东省3+证书高职高考数学试卷及参考详细答案

数学真题2017年广东省3+证书高职高考数学试卷及参考详细答案————————————————————————————————作者:————————————————————————————————日期:2017年广东省高等职业院校 招收中等职业学校毕业生考试数 学 试 题注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、考场号、座位号填写在答题卡上。

用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上。

将条形码横贴在答题卡右上角“条形码粘贴处”。

2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,在选涂其他答案。

答案不能答在试卷上。

3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上:如需改动,先画掉原来的答案,然后再写上新的答案:不能使用铅笔和涂改液。

不按以上要求作答的答案无效。

4.考生必须保持答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

一、选择题:本大题共15小题,没小题5分,满分75分.在每小题给出的四个只有一项是符合题目要求的.1.已知集合}5,4,3{},4,3,2,1,0{==N M ,则下列结论正确的是A.N M ⊆ B. N M ⊇C. {}4,3=N M I D. {}5,2,1,0=N M Y 2.函数xx f +=41)(的定义域是A. ]4,(--∞ B. ()4,-∞- C. ),4[+∞- D. ),4(+∞- 3.设向量a = )4,(x ,b = )3,2(-,若a .b ,则x= A. -5 B. -2 C. 2 D. 7 4.样本5,4,6,7,3的平均数和标准差为A. 5和2B. 5和2C. 6和3D. 6和3 设0>a 且y x a ,,1≠为任意实数,则下列算式错误..的是 A. 10=a B. yx yxaa a +=⋅C. yx y x a aa -= D. 22)(x x a a =5.设)(x f 是定义在R 上的奇函数,已知当324)(时,0x xx f x -=≥,则f(-1)=A. -5B. -3C. 3D. 56.已知角θ的顶点与原点重合,始边为x 轴的非负半轴,如果θ的终边与单位圆的交点为)54,53(-P ,则下列等式正确的是A. 53sin =θ B. 54cos -=θ C. 34tan -=θ D. 43tan -=θ 7.“4>x ”是“0)4)(1(>--x x ”的A. 必要非充分条件B. 充分非必要条件C. 充分必要条件D. 非充分非必要条件 8.下列运算不正确的是 A. 1log log 52102=- B. 15252102log log log =+C.120= D. 422810=÷9.函数x x x x x f sin 3sin cos 3cos )(-=的最小正周期为A.2πB. 32πC. πD. π210.抛物线x y 82-=的焦点坐标是A. (-2,0)B. (2,0)C. (0,-2)D. (0,2)11.已知双曲线16222=-y ax (a>0)的离心率为2,则a= A. 6 B. 3 C.3 D. 212.从某班的21名男生和20名女生中,任意选一名男生和一名女生代表班级参加评教座谈会,则不同的选派方案共有A. 41种B. 420种C. 520种D. 820种 13.已知数列}{n a 为等差数列,且1a =2,公差d=2,若k a a a ,,21成等比数列,则k= A. 4 B. 6 C. 8 D. 10 14.设直线l 经过圆02222=+++y x y x的圆心,且在y 轴上的截距1,则直线l 的斜率为A. 2B. -2C. 21D. 21- 15. 已知函数x e y =的图象与单调递减函数R)f(x)(x =y ∈的图象相交于(a ,b ),给出的下列四个结论:①b aln =,②a b ln =,③,b a f =)(④ 当x>a 时,xe xf <)(. 其中正确的结论共有A. 1个B. 2个C. 3个D. 4个二、填空题:本大题共5小题,每小题5分,满分25分.16.已知点)4,3(),10,7(),0,0(--B A O ,则设a =OB OA +,则a ρ= . 17.设向量a =(2,3sin θ), b =(4,3cos θ),若a //b ,则tan θ= .18.从编号分别为1,2,3,4的4张卡片中随机抽取两张不同的卡片,它们的编号之和为5的概率是 . 19.已知点A (1,2)和点B (3,-4),则以线段AB 的中点为圆心,且与直线x+y=5相切的圆的标准方程是 .20.若等比数列{}n a 的前n 项和1n 313--=nS ,则{}n a 的公比q= .三、解答题:本大题共4小题,第21~23题各12分,第24题14分,满分50分. 解答须写出文字说明、证明过程和演算步骤. 21.(本小题满分12分)如图, 已知两点A (6,0)和点B (3,4),点C 在y 轴上,四边形OABC 为梯形,P 为线段OA 上异于端点的一点,设x OP =.(1)求点C 的坐标;(2)试问当x 为何值时,三角形ABP 的面积与四边形OPBC 的面积相等? 22.(本小题满分12分)设ABC ∆的内角C B A ,,的对边分别为,,,c b a 已知a=2,b=3,c=5.(Ⅰ)求sinC 的值;(Ⅱ)求cos(A+B)+sin2C 的值.23.(本小题满分12分)已知数列{}n a 是等差数列,n S 是{}n a 的前n 项和,若26,16127==a a . (1)求n a 和n S ; (2)设2S 1+=n n b ,求数列{}n b 的前n 项和为n T .24.(本小题满分14分)如图,设21,F F 分别为椭圆C :1a 16a 2222=-+y x (a>0)的左、右焦点,且22F F 21=.(1)求椭圆C 的标准方程;(2)设P 为第一象限内位于椭圆C 上的一点,过点P 和2F 的直线交y 轴于点Q ,若21QF QF ⊥,求线段PQ 的长.参考答案一、选择题(共15小题,每小题5分,共75分.)CDDBC CBBAA DBAAC二、填空题(共5小题,每小题5分,共25分.)16、 5;17、61 ; 18、31 ; 19、 8)1()2(22=++-Y x ; 20、 31.。

(完整版)2017年广东省3+证书高职高考数学试卷(真题)和答案

(完整版)2017年广东省3+证书高职高考数学试卷(真题)和答案

2017年广东省高等职业院校招收中等职业学校毕业生考试数 学班级学号姓名本试卷共4页,24小题,满分150分,考试用时120分钟一、选择题:(本大题共15小题,每小题5分,满分75分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

)题号123456789101112131415答案1.若集合,,则下列结论正确的是 ( ).{}0,1,2,3,4=M {}3,4,5=N A. B.C.D. ⊆M N ⊆N M {}3,4= M N {}0,1,2,5= M N2. 函数的定义域是 ().()=f x A.B. C. D. (,)-∞+∞3,2⎡⎫-+∞⎪⎢⎣⎭3,2⎛⎤-∞- ⎥⎝⎦()0,+∞3. 设向量,, 若则().(,4)= a x (2,3)=-b 2∙= a b =x A. B. C. D. 5-2-274. 样本的平均数和标准差分别为 ().5,4,6,7,3 A. 和B.C. 和D.525636不等式的解集是 ().2560x x --≤A. B. {}23x x -≤≤{}16x x -≤≤C.D.{}61x x -≤≤{}16x x x ≤-≥或5. 设是定义在上的奇函数,已知当时,,则(()f x 0≥x 23()4=-f x x x (1)-=f ).下列函数在其定义域内单调递增的是 () .A.B.C.D. 5-3-356.已知角的顶点与原点重合,始边为轴的非负半轴,如果的终边与单位圆θx θ的交点为,则下列等式正确的是( ).34,55⎛⎫- ⎪⎝⎭P A.B.C.D. 3sin 5θ=4cos 5θ=-4tan 3θ=-3tan 4θ=-7. “”,是“”的 ().4>x (1)(4)0-->x x A. 必要非充分条件 B. 充分非必要条件C. 充分必要条件 D. 非充分非必要条件8. 下列运算不正确的是( ) .A. B. 22log 10log 51-=222log 10log 5log 15+=C.D. 021=108224÷=9. 函数的最小正周期为 ().()cos3cos sin 3sin =-f x x x x x A.B.C. D.2π23ππ2π10. 抛物线的焦点坐标是 ().28=-y x A.B.C. D. (2,0)-(2,0)(0,2)-(0,2)11. 已知双曲线的离心率为,则 ().22216-=x y a 2=a A. B.6312.从某班的名男生和名女生中,任意选派一名男生和一名女生代表班级2120参加评教座谈会,则不同的选派方案共有 ( ).A. 种B. 种C. 种D. 种4142052082013.已知数列为等差数列,且,公差,若成等比数列,则{}n a 12=a 2=d 12,,k a a a ().=kA.B.C.D. 4681014. 设直线经过圆的圆心,且在轴上的截距为,则直线的l 22220+++=x y x y y 1l 斜率为 ( ). A.B.C.D. 22-1212-15. 已知函数的图象与单调递减函数,的图象相交于点,=x y e ()=y f x ()∈x R (),a b 给出下列四个结论:则当时,(1)ln =a b (2)ln =b a (3)()=f a b (4)>x a 。

数学真题广东省3+证书高职高考数学试卷及参考答案精编版

数学真题广东省3+证书高职高考数学试卷及参考答案精编版

2017年广东省高等职业院校 招收中等职业学校毕业生考试数 学 试 题注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、考场号、座位号填写在答题卡上。

用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上。

将条形码横贴在答题卡右上角“条形码粘贴处”。

2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,在选涂其他答案。

答案不能答在试卷上。

3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上:如需改动,先画掉原来的答案,然后再写上新的答案:不能使用铅笔和涂改液。

不按以上要求作答的答案无效。

4.考生必须保持答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

一、选择题:本大题共15小题,没小题5分,满分75分.在每小题给出的四个只有一项是符合题目要求的.1.已知集合}5,4,3{},4,3,2,1,0{==N M ,则下列结论正确的是A.N M ⊆ B. N M ⊇C. {}4,3=N M D. {}5,2,1,0=N M 2.函数xx f +=41)(的定义域是A. ]4,(--∞ B. ()4,-∞- C. ),4[+∞- D. ),4(+∞- 3.设向量a = )4,(x ,b = )3,2(-,若a .b ,则x= A. -5 B. -2 C. 2 D. 7 4.样本5,4,6,7,3的平均数和标准差为A. 5和2B. 5和2C. 6和3D. 6和3 设0>a 且y x a ,,1≠为任意实数,则下列算式错误..的是 A. 10=a B. yx yxaa a +=⋅C. yx y x a aa -= D. 22)(x x a a =5.设)(x f 是定义在R 上的奇函数,已知当324)(时,0x xx f x -=≥,则f(-1)=A. -5B. -3C. 3D. 56.已知角θ的顶点与原点重合,始边为x 轴的非负半轴,如果θ的终边与单位圆的交点为)54,53(-P ,则下列等式正确的是A. 53sin =θ B. 54cos -=θ C. 34tan -=θ D. 43tan -=θ 7.“4>x ”是“0)4)(1(>--x x ”的A. 必要非充分条件B. 充分非必要条件C. 充分必要条件D. 非充分非必要条件 8.下列运算不正确的是 A. 1log log 52102=- B. 15252102log log log =+C.120= D. 422810=÷9.函数x x x x x f sin 3sin cos 3cos )(-=的最小正周期为A.2πB. 32πC. πD. π210.抛物线x y 82-=的焦点坐标是A. (-2,0)B. (2,0)C. (0,-2)D. (0,2)11.已知双曲线16222=-y ax (a>0)的离心率为2,则a= A. 6 B. 3 C.3 D. 212.从某班的21名男生和20名女生中,任意选一名男生和一名女生代表班级参加评教座谈会,则不同的选派方案共有A. 41种B. 420种C. 520种D. 820种 13.已知数列}{n a 为等差数列,且1a =2,公差d=2,若k a a a ,,21成等比数列,则k= A. 4 B. 6 C. 8 D. 10 14.设直线l 经过圆02222=+++y x y x的圆心,且在y 轴上的截距1,则直线l 的斜率为A. 2B. -2C. 21D. 21- 15. 已知函数x e y =的图象与单调递减函数R)f(x)(x =y ∈的图象相交于(a ,b ),给出的下列四个结论:①b aln =,②a b ln =,③,b a f =)(④ 当x>a 时,xe xf <)(. 其中正确的结论共有A. 1个B. 2个C. 3个D. 4个二、填空题:本大题共5小题,每小题5分,满分25分.16.已知点)4,3(),10,7(),0,0(--B A O ,则设a =OB OA +,则a= . 17.设向量a =(2,3sin θ), b =(4,3cos θ),若a //b ,则tan θ= .18.从编号分别为1,2,3,4的4张卡片中随机抽取两张不同的卡片,它们的编号之和为5的概率是 . 19.已知点A (1,2)和点B (3,-4),则以线段AB 的中点为圆心,且与直线x+y=5相切的圆的标准方程是 .20.若等比数列{}n a 的前n 项和1n 313--=nS ,则{}n a 的公比q= .三、解答题:本大题共4小题,第21~23题各12分,第24题14分,满分50分. 解答须写出文字说明、证明过程和演算步骤. 21.(本小题满分12分)如图, 已知两点A (6,0)和点B (3,4),点C 在y 轴上,四边形OABC 为梯形,P 为线段OA 上异于端点的一点,设x OP =.(1)求点C 的坐标;(2)试问当x 为何值时,三角形ABP 的面积与四边形OPBC 的面积相等? 22.(本小题满分12分)设ABC ∆的内角C B A ,,的对边分别为,,,c b a 已知a=2,b=3,c=5.(Ⅰ)求sinC 的值;(Ⅱ)求cos(A+B)+sin2C 的值.23.(本小题满分12分)已知数列{}n a 是等差数列,n S 是{}n a 的前n 项和,若26,16127==a a . (1)求n a 和n S ; (2)设2S 1+=n n b ,求数列{}n b 的前n 项和为n T .24.(本小题满分14分)如图,设21,F F 分别为椭圆C :1a 16a 2222=-+y x (a>0)的左、右焦点,且22F F 21=.(1)求椭圆C 的标准方程;(2)设P 为第一象限内位于椭圆C 上的一点,过点P 和2F 的直线交y 轴于点Q ,若21QF QF ⊥,求线段PQ 的长.参考答案一、选择题(共15小题,每小题5分,共75分.)CDDBC CBBAA DBAAC二、填空题(共5小题,每小题5分,共25分.)16、 5;17、61 ; 18、31 ; 19、 8)1()2(22=++-Y x ; 20、 31.。

2017年广东省深圳市三校联考高考数学一模试卷(文科)

2017年广东省深圳市三校联考高考数学一模试卷(文科)

2017年广东省深圳市三校联考高考数学一模试卷(文科)、选择题:本大题共 12小题,每小题5分,在每小题给出的四个选项中,只有一项是符 合题目要求的.(5 分)已知集合 M ={x|x 2 =x}, N ={x| --0},则 M 「]N=() x _11 1 (5 分)“ x :::0 ”是 “ In (x 1) :::0 ”(1 )、f (卜,所得出的正确结果可能是((5分)执行如图所示的程序框图,则输出的结果是1. A ..一B . {0}C . {1}D . {0 , 1}2. A .充分不必要条件B •必要不充分条件 3. 4.C .充分必要2 +i(5分)复数 ---- 的共轭复数是( 1 -2i A . -3i5 3(5分)对于函数 f(x)二atanx • bx cx(a 、 D .既不充分也不必要条件 C . -ib 、c • R ),选取b 、c 的一组值计算f2和-1D . 2 和-26. ( 5分)将函数y=2sin (2x;)的图象向左平移丄7 1丄个周期后, 4所得图象对应的函数为7 . 9 .A. y =2si n(2x 兰)3B . y=2si n(2x 乞)12C. y =2sin(2 x D . y=2sin(2 x _—)12(5 分)已知当x d 时,f (x) =(2 _a)x • 1 ;当x-1 时,f(x)=a x(a.O 且a=1).若对任意X! =X2,都有f(x1)—f(x2)o成立,则a的取值范围是()X i -X2A . (1,2)3B .(1,R C.(5分)已知A. -35(5分)已知A. 58510. (5 分) .:j是第一象限角,满sin:- —cos tB . _35C.[|,2),贝U cos2:=( 545(0 , 1)- (2,:-)x2+33 f(x) 一一(x・N ),贝U f(x)在定义域上的最小值为(B . 23 C. 33 D. 2 33y满足约束条件y..・Xx y--1 则z =3x • 4y的最小值为(2x 3y・・3C.215b , c满足(C.12 .( 5分)x (0,;),都有f [f (x) -log 2 x] =3,则方程f(x)-f(x)=2的解所在的区间是(1 A. (O’?1B.(2,1)C. (1,2) D . (2,3)11. (5 分)设函数A. a b cB. a cb Xf(x)=家的图象如图,则二、填空题:本大题共4小题,每小题5分.13.(5 分)已知平面向量 a =(1,2) , £ =(2, _m),且 a _b ,则 |a - b.x14. _________________________________________________ (5分)曲线y 二sinx e 在点(0,1)处的切线方程为 ___________________________________________ . 15. ____________________________________________________________________ (5分)设当x =:•时,函数f(x) =3si nx cosx 取得最大值,则 tan2 :• = _____________________. 216 . (5分)若定义在R 上的函数f(x)满足f (x) f (x) :::1且f(0)=3,则不等式f(x) x 1e(其中e 为自然对数的底数)的解集为 ________ . 三、解答题:解答应写出文字说明,证明过程或演算步骤117 . (12 分)在:ABC 中,A , B , C 为的 a 、b 、c 所对的角,若 cosBcosC -sin Bsin C 2(1 )求 A ; (2)若 a =2..3, b=4,求 ABC 的面积.2 *{a n }前 n 项和为 S ,且 S n = n c(n • N ).(I)求 c , a n;a(n) 若b nn,求数列{b n }前n 项和T n .219. ( 12分)某气象站观测点记录的连续 4天里,AQI 指数M 与当天的空气水平可见度 y (单)设喘,根据表的数据,求出y 关于x 的回归方程;n乞XiW - nxy y=bx a ;其中 i?==- 2 2j X i 〜nxi =1(2)小张开了一家洗车店, 经统计,当M 不高于200时,洗车店平均每天亏损约 18. (12分)已知等差数列(参考公a - t?x)2000 元;4000元;当M大于400时,洗车店平均当M在200至400时,洗车店平均每天收入约每天收入约7000元;根据表2估计小张的洗车店该月份平均每天的收入.2第5页(共18页)220. (12分)已知定义在R上的奇函数f(x)满足f(x)=x —2x_3(x . 0).(I)若函数g(x)#f(x)|』有4个零点,求实数a的取值范围;(n)求| f(x 1)|, 4的解集.221. (12 分)已知函数f(x) =1 nx-ax(a・ R)(I) 讨论f (x)的单调性;(n) 若对于x・(0, ;) , f(x), a -1恒成立,求实数a的取值范围.[选修4-1:几何证明选讲]22. (10分)选修4 _1 :平面几何如图AB是L O的直径,弦BD , CA的延长线相交于点E , EF垂直BA的延长线于点F .(I)求证:.DEA=/DFA ;(II )若.EBA =30 , EF = 3 , EA =2AC,求AF 的长.[选修4-4 :坐标系与参数方程]23. 在直角坐标系中,以原点O为极点,x轴为正半轴为极轴,建立极坐标系.设曲线C :《x —仪为参数);直线丨:p(c°s B +sin日)=4 .y 二sin •.<(1)写出曲线C的普通方程和直线l的直角坐标方程;(n)求曲线C上的点到直线l的最大距离.[选修4-5:不等式选讲]24. 设函数f (x) =|2x • 1| _|x _2| .(1 )求不等式f(x) .2的解集;(2)-x・R,使f(x)-t2 -^t,求实数t的取值范围.第5页(共18页)2017年广东省深圳市三校联考高考数学一模试卷(文科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. (5 分)已知集合M ={x|x?二x}, N ={x|—--0},贝U M D N=()x _1 ||A . .一B . {0} C. {1} D. {0 , 1}【解答】解:•.•集合M ={x|x? =x}, N ={x|—-0},x —1.M ={0 , 1} , N ={x|x, 0 或x 1},M p|N 二{0}.故选:B .2. (5 分)“ x :::0 ”是“ ln(x 1):::0 ”的()A .充分不必要条件B .必要不充分条件C •充分必要条件D •既不充分也不必要条件【解答】解:;x:::0,. x・1:::1,当x 1 0 时,In (x・1):::0 ;Tin(x 1)::0 , 0 ::: x 1 ::1 , - 1 :: x :: 0 , x :: 0 ,“ x ::: 0 ”是In (x 1):: 0的必要不充分条件.故选:B .3. (5分)复数务的共轭复数是(A . -3i【解答】解:复数B.3i52 - i (2 i)(1 2i)C. -i1_2i (1_2i)(1 2i),它的共轭复数为: _,i .故选:C .34. ( 5 分)对于函数f(x) =atanx bx cx(a、 c • R),选取a、b、c的一组值计算f(1 )、f (卜,所得出的正确结果可能是(C. 2 和-1 D . 2 和-2第5页(共18页)第5页(共18页)于原点对称,【解答】解:根据题意,对于函数3f (X )二atanx bx cx ,其定义域为 {x|x=k二石},第9页(共18页)3又由 f(「x)=Jatanx 亠bx 亠cx) = _f(x),故函数f(x)为奇函数, 必有—f (1) = f(_1),即f (1 )、f& 的值互为相反数; 分析选项可得:只有 D 的2个数互为相反数; 故选:D .5. ( 5分)执行如图所示的程序框图,则输出的结果是C .【解答】 解:模拟执行程序框图,可得程序框图的功能是计算并输出由于S =丄1X2故选: 丄的值. 6 71 1 1—"T -———2 2 3第8页(共18页)2 — y =2sin(2 x )3ny=2s "(2^3)【解答】解:函数y =2sin(2 x )的周期T,6 2分)将函数y =2sin(2x)的图象向左平移 6-个周期后,所得图象对应的函数为(4y 二 2sin(2 x —)12 厂2s in(2xpx第11页(共18页)3 .2sin 「cos 二5.sin -::「cos : = (sin 二、cos -:i )2 = 1 2sin -i cos : =2 10, 5 22I i2(10 -贝 U cos2 : -cos ■- -sin : - (cos :£ 亠 sin 、:)L(cos : - sin 、:)10、 4)= 5 5故选:C .x 2 +33 一 *9. ( 5分)已知f(x)(x ・N ),贝U f(x)在定义域上的最小值为(将函数y =2si n(2x)的图象向左平移1个周期,即向左平移 二个单位,64 4.平移后所得图象对应的函数为 y =2sin[2( x 匸)•三]=2sin(2 x —).4 63故选:A .7.( 5 分)已知当 x <1 时,f (x^(2 -a)x 1 ;当 xT 时,f(x)=a x (a.O 且 a").若对任意X i =X 2,都有f(xi)一仏)o 成立,则a 的取值范围是()X i —X 233A . (1,2)B . (1q]C . [-,2)D . (0, 1)- (2,::)【解答】解:对任意為-x 2,都有f (x1)- f(x 2)0成立,X 1 — X 2即为f (x)在R 上单调递增,由当 x ::;1 时,f(x) =(2 _a)x 1,可得 解得a :::2 ;① 又当 x--1 时,f(x)二 a x (a 0 且 a 厂1),又f(x)在R 上单调递增,可得32 —a +1, a ,解得a …?③3由①②③可得-,a <2 ,2故选:C .2 -a 0 ,& ( 5分)已知:丄是第一象限角,满sin : - cos 、;C .105 4,则 cos2 -(【解答】解: •是第一象限角,-10 510.1 —2sin 一::cos 二25第8页(共18页):x^N* 0 ,x■ 33…2、4J 33 =2・、33,当且仅当x 二33时取等号•但x. N*,故x =5或x =6 ,当 x =5 时,f (x):5当 x =6 时,f (x)二23故选:B ."•••X10. (5分)若x , y 满足约束条件 x y--1 则z =3x 4y 的最小值为()2x 3厂3C . 4【解答】解:先根据约束条件 x y--1 画出可行域, 2x 3y ・・・323C . .33D . 2、33【解答】解:由f (x )=—次竺,xx故得f (x )在定义域上的最小值为 23221 ~5设z =3x 4y ,将最大值转化为y轴上的截距,(x::;'y =1 当直线z =3x 4y经过点B时,z最大,由丫可得B(0,0)|2x 3y =3最大值是:3 0 ^ 4 1=4 .故选:C .x第13页(共18页)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年广东省高等职业院校招收中等职业学校毕业生考试
数学试卷
一、选择题:本大题共15小题,没小题5分,满分75分.在每小题给出的四个只有一项是符合题目要求的. 1.已知集合}5,4,3{},4,3,2,1,0{==N M ,则下列结论正确的是 A.
N M ⊆ B. N M ⊇
C. {}
4,
3=N M D. {}
5,2,1,0=N M 2.函数x
x f +=
41
)(的定义域是
A. ]4,
(--∞ B. ()
4,-∞- C. ),4[+∞- D. ),4(+∞- 3.设向量a = )4,
(x ,b = )3,2(-,若a .
b ,则x= A. -5 B. -2 C. 2 D. 7 4.样本5,4,6,7,3的平均数和标准差为
A. 5和2
B. 5和2
C. 6和3
D. 6和3 设0>a 且y x a ,,1≠为任意实数,则下列算式错误..的是 A. 10
=a B. y
x y
x
a
a a +=⋅
C. y
x y x a a
a -= D. 22)(x x a a =
5.设)(x f 是定义在R 上的奇函数,已知当32
4)(时,0x x x f x -=≥,则f(-1)=
A. -5
B. -3
C. 3
D. 5
6.已知角θ的顶点与原点重合,始边为x 轴的非负半轴,如果θ的终边与单位圆的交点为)5
4,53(
-P ,则下列等式正确的是
A. 53sin =
θ B. 54cos -=θ C. 34tan -=θ D. 4
3
tan -=θ 7.“4>x ”是“0)4)(1(>--x x ”的
A. 必要非充分条件
B. 充分非必要条件
C. 充分必要条件
D. 非充分非必要条件 8.下列运算不正确的是 A. 1log log 52102=- B. 15
252102log log log =+
C.
120= D. 422810=÷
9.函数x x x x x f sin 3sin cos 3cos )(-=的最小正周期为
A.
2π B. 3
2π C. π D. π2 10.抛物线x y 82
-=的焦点坐标是
A. (-2,0)
B. (2,0)
C. (0,-2)
D. (0,2)
11.已知双曲线162
22=-y a
x (a>0)的离心率为2,则a= A. 6 B. 3 C.
3 D. 2
12.从某班的21名男生和20名女生中,任意选一名男生和一名女生代表班级参加评教座谈会,则不同的选派方案共有
A. 41种
B. 420种
C. 520种
D. 820种 13.已知数列}{n a 为等差数列,且1a =2,公差d=2,若k a a a ,,21成等比数列,则k= A. 4 B. 6 C. 8 D. 10 14.设直线l 经过圆02222
=+++y x y x
的圆心,且在y 轴上的截距1,则直线l 的斜率为
A. 2
B. -2
C. 21
D. 2
1
- 15. 已知函数x e y =的图象与单调递减函数R)f(x)(x =y ∈的图象相交于(a ,b ),给出的下列四个结
论:①b a
ln =,②a b ln =,③,b a f =)(④ 当x>a 时,x
e x
f <)(. 其中正确的结论共有
A. 1个
B. 2个
C. 3个
D. 4个
二、填空题:本大题共5小题,每小题5分,满分25分.
16.已知点)4,3(),10,7(),0,
0(--B A O ,则设a =OB OA +,则a
= .
17.设向量a =(2,3sin θ), b =(4,3cos θ),若a //b ,则tan θ= .
18.从编号分别为1,2,3,4的4张卡片中随机抽取两张不同的卡片,它们的编号之和为5的概率是 . 19.已知点A (1,2)和点B (3,-4),则以线段AB 的中点为圆心,且与直线x+y=5相切的圆的标准方程是 .
20.若等比数列{}n a 的前n 项和1
n 3
13--
=n
S ,则{}n a 的公比q= .
三、解答题:本大题共4小题,第21~23题各12分,第24题14分,满分50分. 解答须写出文字说明、证明过程和演算步骤. 21.(本小题满分12分)
如图, 已知两点A (6,0)和点B (3,4),点C 在y 轴上,四边形OABC 为梯形,P 为线段OA 上异于端点的一点,设x OP =.
(1)求点C 的坐标;
(2)试问当x 为何值时,三角形ABP 的面积与四边形OPBC 的面
积相等? 22.(本小题满分12分)
设ABC ∆的内角C B A ,,的对边分别为,,,c b a 已知a=2,b=3,c=5.
(Ⅰ)求sinC 的值;
(Ⅱ)求cos(A+B)+sin2C 的值. 23.(本小题满分12分)
已知数列{}n a 是等差数列,n S 是{}n a 的前n 项和,若26,16127==a a . (1)求n a 和n S ; (2)设2
S 1
+=
n n b ,求数列{}n b 的前n 项和为n T .
24.(本小题满分14分)
如图,设21,F F 分别为椭圆C :
1a
16a
2
2
2
2
=-+
y x (a>0)的左、右焦点,且22F F 21=.
(1)求椭圆C 的标准方程;
(2)设P 为第一象限内位于椭圆C 上的一点,过点P 和
2F 的直线交y 轴于点Q ,若21QF QF ⊥,求线段PQ 的长。

相关文档
最新文档