随机信号分析实验:随机过程通过线性系统的分析 ln
第4章 随机过程通过线性系统分析

上述积分可用极限形式表示:
、 固定时, 为确定的常用,上式是正态变量 的线性组合,而正态的线性组合还是正态分布。
2.高斯过程的均值与方差近似计算
对于高斯过程,只要均值与方差确定,则整个分布函数便确定。
由于
取定一个合适的 ,利用
可求出求出 均值与方差的近似值。
作业:P1515.1,5.2,5.7,5.8,5.9,5.11,5.14,5.15,5.26,5.28。
等效原则:理想系统与实际系统的输出平均功率相等。
例:设理想输出为 ,理想系统是矩形传输函数
为等效带宽。
如何确定 ?
依等效原则,理想系统的平均功率为 ,而
所以
称 为等效噪声带宽。
3.白噪声通过理想低通线性系统
在实际应用中,设
白噪声的谱密度为:
输出 的功率谱密度为
输出 的相关函数为:
输出 的平均功率为
输出 的自相关系统为
但求输入的概率分布不是一件容易的事为使问题得到简化一般我们假设高斯随机过程通过线性系统定理
第4章随机过程通过线性系统分析
引言:信号与系统的传统理论方法的基础是卷积运算。如图,
图1:系统的物理示意图
是系统的输入, 是系统的输出, 是系统的冲激响应函数
其中 ,为冲激函数。
对于线性系统,系统的数学运算为:
相关时间为
4.白噪声通过理想带通线性系统
理想带通线性系统具有理想矩形频率特性
白噪声的谱密度为:
输出 的功率谱密度为
输出 的相关函数为:
可写成
称为相关函数的包络。
输出 的平均功率为
输出 的自相关系统为
相关时间为
5.白噪声通过具有高斯频率特性的线性系统
随机信号通过线性系统的分析

信息与通信工程学院实验报告(软件仿真性实验)课程名称:随机信号分析实验题目:随机信号通过线性系统的分析 指导教师:陈友兴班级: 学号: 学生姓名:一、 实验目的和任务1、掌握随机信号通过线性系统的分析方法2.掌握系统输出信号的数字特征和功率谱密度的求解二、 实验内容及原理实验内容:1.产生一信号为123()sin 2sin 2sin 2()X t f t f t f t N t πππ=+++,其中1f nkHz =(n 为学号),22f nkHz =,33f nkHz =,()N t 为高斯白噪声;求出()X t 的时域信号、频谱、自相关、功率谱密度、期望、方差等。
2.设计一FIR 低通滤波器()h t ,通带截止频率为1f ,阻带截止频率为2f ,通带最大衰减为40dB ,阻带最小衰减为1dB 。
3. 将信号()X t 通过()h t 得到响应()Y t ,求出()Y t 的时域信号、频谱、自相关、功率谱密度、期望、方差等,并分析与()X t 性能参数的差异;实验原理:1、线性系统的时域分析方法系统输入和输出的关系为:ττ-τ=ττ-τ==⎰⎰∞∞-∞∞-d )t (x )(h d )t (h )(x )t (h *)t (x )t (y输出期望:∑∞===0m X Y )m (h m )]t (Y [E m输出的自相关函数:)(h )(h )(R )(R X Y τ*τ-*τ=τ输出平均功率:⎰⎰∞∞-∞∞--=τdvdu )u (h )v (h )u v (R )(R X Y 互相关:)()()()()(ττσσσττh R d h R R X X XY *=-=⎰∞∞-2、线性系统的频域分析方法输入与输出的关系:)(H )(X )(Y ωω=ω 输出的功率谱:2X X Y )(H )(S )(H )(H )(S )(S ωω=ωω-ω=ω功率谱:)(H )(S )(S X XY ωω=ω 三、 实验步骤或程序流程1. 产生三个正弦信号和高斯白噪声叠加的信号,求叠加信号的均值、方差、自相关函数,计算功率谱密度以及傅里叶变换;绘出叠加信号时域特性曲线、傅里叶变换特性曲线、自相关函数曲线、功率谱密度曲线;2. 设计低通滤波器;3. 分析滤波后信号时域、频域的各参数的特性。
实验三 随机过程通过线性系统

实验名称线性系统对随机过程的响应一、实验目的通过本仿真实验了解正态白色噪声随机过程通过线性系统后相关函数以及功率谱的变化;培养计算机编程能力。
二、实验平台MATLAB R2014a三、实验要求(1)运用正态分布随机数产生函数产生均值为m=0,根方差σ=1的白色正态分布序列{u(n)|n=1,2,…,2000},画出噪声u(n)的波形图。
(2)设离散时间线性系统的差分方程为x(n)=u(n)-0.36u(n-1)+0.85u(n-2)(n=3,4,…,2000).画出x(n)的波形图。
(3)随机过程x(n)的理论上的功率谱函数为在[0,π]范围内对w进行采样,采样间隔0.001π,计算S(i×0.001π) (i=1,2,…,1000);画出波形图。
(4)根据步骤二产生的数据序列x(n)计算相关函数的估计值与理论值1.1296、-0.666、0.85、0、0、0的差异。
(5)根据相关函数的估计值对随机过程的功率谱密度函数进行估计在[0,π]范围内对w进行采样,采样间隔0.001π,计算S(i×0.001π) (i=1,2,…,1000);画出波形图,比较其与理论上的功率谱密度函数S(w)的差异。
(6)依照实验1的方法统计数据x(n)在不同区间出现的概率,计算其理论概率,观察二者是否基本一致。
四、实验代码及结果A、运用正态分布随机数产生函数产生均值为m=0,根方差σ=1的白色正态分布序列{u(n)|n=1,2,…,2000},画出噪声u(n)的波形图。
代码实现:波形图:分析:运用正态分布随机数产生函数产生均值为0,根方差σ=1的白色噪声样本序列。
B、设离散时间线性系统的差分方程为x(n)=u(n)-0.36u(n-1)+0.85u(n-2)(n=3,4,…,2000).画出x(n)的波形图。
代码实现:波形图:分析:正态随机序列通过离散时间线性系统生成的仍是正态随机序列。
C、随机过程x(n)的理论上的功率谱函数为在[0,π]范围内对w进行采样,采样间隔0.001π,计算S(i×0.001π) (i=1,2,…,1000);画出波形图。
随机信号分析实验报告

实验一 随机噪声的产生与性能测试一、实验内容1.产生满足均匀分布、高斯分布、指数分布、瑞利分布的随机数,长度为N=1024,并计算这些数的均值、方差、自相关函数、概率密度函数、概率分布函数、功率谱密度,画出时域、频域特性曲线; 2.编程分别确定当五个均匀分布过程和5个指数分布分别叠加时,结果是否是高斯分布; 3.采用幅度为2, 频率为25Hz 的正弦信号为原信号,在其中加入均值为2 , 方差为0.04 的高斯噪声得到混合随机信号()X t ,编程求 0()()tY t X d ττ=⎰的均值、相关函数、协方差函数和方差,并与计算结果进行比较分析。
二、实验步骤 1.程序N=1024; fs=1000; n=0:N —1;signal=chi2rnd (2,1,N); %rand(1,N)均匀分布 ,randn(1,N )高斯分布,exprnd(2,1,N )指数分布,raylrnd (2,1,N)瑞利分布,chi2rnd(2,1,N )卡方分布 signal_mean=mean(signal ); signal_var=var (signal );signal_corr=xcorr(signal,signal ,'unbiased ’); signal_density=unifpdf(signal ,0,1); signal_power=fft(signal_corr); %[s,w]=periodogram (signal); [k1,n1]=ksdensity(signal);[k2,n2]=ksdensity (signal,’function ’,'cdf ’); figure ;hist(signal);title (’频数直方图’); figure ;plot (signal);title(’均匀分布随机信号曲线’); f=n *fs/N ; %频率序列 figure;plot(abs (signal_power)); title('功率幅频’); figure;plot(angle (signal_power)); title ('功率相频'); figure;plot (1:2047,signal_corr); title ('自相关函数’); figure;plot(n1,k1);title('概率密度’);figure;plot(n2,k2);title('分布函数’);结果(1)均匀分布(2)高斯分布(3)指数分布(4)瑞利分布(5)卡方分布2.程序N=1024;signal_1=rand(1,N);signal_2=rand(1,N);signal_3=rand(1,N);signal_4=rand(1,N);signal_5=rand(1,N);signal=signal_1+signal_2+signal_3+signal_4+signal_5; [k1,n1]=ksdensity(signal);figure(1)subplot(1,2,1);hist(signal);title('叠加均匀分布随机数直方图');subplot(1,2,2);plot(n1,k1);title(’叠加均匀分布的概率密度');结果指数分布叠加均匀分布叠加结果:五个均匀分布过程和五个指数分布分别叠加时,结果是高斯分布。
随机信号分析实验报告(基于MATLAB语言)

随机信号分析实验报告——基于MATLAB语言姓名:_班级:_学号:专业:目录实验一随机序列的产生及数字特征估计 (2)实验目的 (2)实验原理 (2)实验内容及实验结果 (3)实验小结 (6)实验二随机过程的模拟与数字特征 (7)实验目的 (7)实验原理 (7)实验内容及实验结果 (8)实验小结 (11)实验三随机过程通过线性系统的分析 (12)实验目的 (12)实验原理 (12)实验内容及实验结果 (13)实验小结 (17)实验四窄带随机过程的产生及其性能测试 (18)实验目的 (18)实验原理 (18)实验内容及实验结果 (18)实验小结 (23)实验总结 (23)实验一随机序列的产生及数字特征估计实验目的1.学习和掌握随机数的产生方法。
2.实现随机序列的数字特征估计。
实验原理1.随机数的产生随机数指的是各种不同分布随机变量的抽样序列(样本值序列)。
进行随机信号仿真分析时,需要模拟产生各种分布的随机数。
在计算机仿真时,通常利用数学方法产生随机数,这种随机数称为伪随机数。
伪随机数是按照一定的计算公式产生的,这个公式称为随机数发生器。
伪随机数本质上不是随机的,而且存在周期性,但是如果计算公式选择适当,所产生的数据看似随机的,与真正的随机数具有相近的统计特性,可以作为随机数使用。
(0,1)均匀分布随机数是最最基本、最简单的随机数。
(0,1)均匀分布指的是在[0,1]区间上的均匀分布, U(0,1)。
即实际应用中有许多现成的随机数发生器可以用于产生(0,1)均匀分布随机数,通常采用的方法为线性同余法,公式如下:,序列为产生的(0,1)均匀分布随机数。
定理1.1若随机变量X 具有连续分布函数,而R 为(0,1)均匀分布随机变量,则有2.MATLAB中产生随机序列的函数(1)(0,1)均匀分布的随机序列函数:rand用法:x = rand(m,n)功能:产生m×n 的均匀分布随机数矩阵。
(2)正态分布的随机序列函数:randn用法:x = randn(m,n)功能:产生m×n 的标准正态分布随机数矩阵。
随机过程通过线性系统

▪ 频域: 若 h(t)dt 物理可实现,且x(t)有界,则有:
Y ( ) H ( )X ( ) 。 所以对于确定信号,总可以用数学式或列表形式给定其 时域的描述,或用变换的方式给出其“频域”的表述,而且 对于其通过线性时不变系统的表述为:
x(t)
X ()
h(t )
H ( )
e
H ( ) 2 d
0
H ( 0 ) 2
e
o
0
o
e 表示:系统对噪声功率谱的选择性。
线性系统的通频带宽与等效噪声带宽 e 的关系
线性系统通频带的一般定义:系统频率特性曲线半功
率点的通频带宽 (也称为三分贝带宽)。其表示系
统对有用信号的选择性。
因为 ,e 都取决于系统的传输函数H ( ),
E[Y (t )] m X h( )d m X H (0) ,其中 h( )d H (0)
➢ 输出过程的均值=输入过程的均值×H(0)≡常数。
2. 系统输出Y(t) 的自相关函数:
RY (t, t ) E[Y (t )Y (t )]
h( )h( )E[ X (t )X (t )]dd
3.输入X(t) 与输出Y(t) 的互相关函数和互谱密度
RXY ( ) RX 1Y1 ( ) RX 1Y2 ( ) RX 2Y1 ( ) RX2Y 2 ( )
G XY ( ) G X 1Y1 ( ) G X 1Y2 ( ) G X 2Y1 ( ) G X2Y 2 ( )
四、白噪声通过线性系统
RXY ( ) RX ( ) h( ) (N 0 / 2) ( ) h( ) (N 0 / 2)h( )
即有
h( )
2 N0
RXY ( )
随机信号分析实验报告

随机信号分析实验报告实验一:平稳随机过程的数字特征实验二:平稳随机过程的谱分析实验三:随机信号通过线性系统的分析实验四:平稳时间序列模型预测班级:姓名:学号:一、实验目的1、加深理解平稳随机过程数字特征的概念2、掌握平稳随机序列期望、自相关序列的求解3、分析平稳随机过程数字特征的特点二、实验原理平稳随机过程数字特征求解的相关原理三、实验过程function y = experimentnumber = 49; %学号49I = 8; %幅值为8u = 1/number;Ex = I*0.5 + (-I)*0.5;N = 64;C0 = 1; %计数p(1) = exp(-u);for m = 2:Nk = 1:m/2;p(m) = exp(-u*m) + sum((u*m).^(2*k)./factorial(2*k)*exp(-u*m));2222()[()()]{()()}{()()}X R m E X n X n m I P X n X n m I I P X n X n m I =+=+=-+=-E[X(n)]= I P{X(n)=+I}+(-I)P{X(n)=-I}=0⨯⨯0m >当时,/2220(){()()}(2)!m k m k m P X n X n m I e P k λλ⎢⎥⎣⎦-=+===∑222()(1)(21)X R m I P I P I P =--=-2()()X X X C m R m m =-me I m n X n X E m R λ22)]()([)(-=+=end;pp = [fliplr(p) C0 p];Rx = (2*pp - 1)*I^2;m = -N:N;Kx = Rx - Ex*Ex;rx = Kx/25;subplot(211), plot(m,Rx); axis([-N N 0 I*I]); title('自相关序列');subplot(212), plot(m,rx); axis([-N N 0 1]); title('自相关序数');四、实验结果及分析自相关序列的特点分析:m>0时Rx(m)随着m的增大而减小,m<0时Rx(m)随着m的增大而增大。
北理工随机信号分析实验报告

本科实验报告实验名称:随机信号分析实验实验一 随机序列的产生及数字特征估计一、实验目的1、学习和掌握随机数的产生方法。
2、实现随机序列的数字特征估计。
二、实验原理1、随机数的产生随机数指的是各种不同分布随机变量的抽样序列(样本值序列)。
进行随机信号仿真分析时,需要模拟产生各种分布的随机数。
在计算机仿真时,通常利用数学方法产生随机数,这种随机数称为伪随机数。
伪随机数是按照一定的计算公式产生的,这个公式称为随机数发生器。
伪随机数本质上不是随机的,而且存在周期性,但是如果计算公式选择适当,所产生的数据看似随机的,与真正的随机数具有相近的统计特性,可以作为随机数使用。
(0,1)均匀分布随机数是最最基本、最简单的随机数。
(0,1)均匀分布指的是在[0,1]区间上的均匀分布,即 U(0,1)。
实际应用中有许多现成的随机数发生器可以用于产生(0,1)均匀分布随机数,通常采用的方法为线性同余法,公式如下:)(m od ,110N ky y y n n -=N y x n n /=序列{}n x 为产生的(0,1)均匀分布随机数。
下面给出了上式的3组常用参数: 1、10N 10,k 7==,周期7510≈⨯;2、(IBM 随机数发生器)3116N 2,k 23,==+周期8510≈⨯; 3、(ran0)315N 21,k 7,=-=周期9210≈⨯;由均匀分布随机数,可以利用反函数构造出任意分布的随机数。
定理 1.1 若随机变量 X 具有连续分布函数F X (x),而R 为(0,1)均匀分布随机变量,则有)(1R F X x -=由这一定理可知,分布函数为F X (x)的随机数可以由(0,1)均匀分布随机数按上式进行变换得到。
2、MATLAB 中产生随机序列的函数(1)(0,1)均匀分布的随机序列 函数:rand 用法:x = rand(m,n)功能:产生m ×n 的均匀分布随机数矩阵。
(2)正态分布的随机序列 函数:randn 用法:x = randn(m,n)功能:产生m ×n 的标准正态分布随机数矩阵。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
随机信号分析实验:随机过程通过线性系统的分析
实验三 随机过程通过线性系统的分析
实验目的
1. 理解和分析白噪声通过线性系统后输出的特性。
2. 学习和掌握随机过程通过线性系统后的特性,验证随机过程的正态化问题。
实验原理
1.白噪声通过线性系统
设连续线性系统的传递函数为)(ωH 或)(s H ,输入白噪声的功率谱密度为2)(0
N S X
=ω,那么系统输出的功率谱密度为
2
)()(02
N H S Y ⋅
=ωω (3.1)
输出自相关函数为
⎰
∞
∞
-=
ω
ωπ
τωτd e H N R j Y 2
)(4)( (3.2)
输出相关系数为
)
0()()(Y Y Y R R ττγ=
(3.3)
输出相关时间为
⎰∞
=0
)(ττγτd Y
(3.4) 输出平均功率为
[]
⎰
∞
=
2
02)(2)(ω
ωπ
d H N t Y E (3.5)
上述式子表明,若输入端是具有均匀谱的白噪声,则输出端随机信号的功率谱主要由系统的幅频特性)(ωH 决定,不再是常数。
2.等效噪声带宽
在实际中,常常用一个理想系统等效代替实际系统的)(ωH ,因此引入了等效噪声带宽的概念,他被定义为理想系统的带宽。
等效的原则是,理想系统与实际系统在同一白噪声的激励下,两个系统的输出平均功率相等,理想系统的增益等于实际系统的最大增益。
实际系统的等效噪声带宽为
⎰∞
=∆0
2
2
max
)()(1
ωωωωd H H e
(3.6)
或
⎰
∞
∞
--=
∆j j e ds
s H s H H j )()()(212
max
ωω (3.7)
3.线性系统输出端随机过程的概率分布 (1)正态随机过程通过线性系统 若线性系统输入为正态过程,则该系统输出仍为正态过程。
(2)随机过程的正态化 随机过程的正态化指的是,非正态随机过程通过线性系统后变换为正态过程。
任意分布的白噪声通过线性系统后输出是服从正态分布的;宽带噪声通过窄带系统,输出近似服从正态分布。
实验内容
设白噪声通过图3.1所示的RC 电路,分析输出的统计特性。
图3.1 RC 电路
(1)试推导系统输出的功率谱密度、相关函数、相关时间和系统的等效噪声带宽。
系统的传递函数为:
1111
)(+=+=
cR j c
j R c
j H ωωωω
系统的功率谱密度为:
2
1)(1
2)11(2)()(0202
02
N cR N cR j N H S Y ⋅
+=⋅+=⋅=ωωωω
系统的自相关函数为:
τωτ
ωτωωπ
ωωπτRc j j Y e
Rc N d e cR N
d e H N
R 1
020
20
41)(14)(4)(-∞
∞-∞
∞
-=+==⎰⎰
系统的相关时间为:
RC
d e d R R d RC
Y Y Y ====⎰⎰
⎰∞-∞∞
01
00)
0()()(τττττγττ
系统的等效噪声带宽为:
RC
d RC d H H
e 21)(1)()(10
20
2
2
max
π
ωωωωωω=
+==
∆⎰
⎰
∞
∞
(2)采用MATLAB 模拟正态分布白噪声通过上述RC 电路,观察输入和输出的噪声波形以及输出噪声的概率密度。
实验代码:
注释:
>> a=[1]; 分子的系数
>> b=[1,1]; 分母的系数
>> sys=tf(a,b); 生成RC系统的传递函数
>> t=0:1:49; 选取0到50为打出函数的区间
>> x=randn(50,1); 生成正态分布白噪声
>> lsim(sys,'g',x,t); 画出系统的输入输出图
>> k=lsim(sys,x,t); 求出系统的输出
>> y=ksdensity(k); 求出系统输出的概率密度
>> plot(y); 画出输出的概率密度图
实验结果:
输入和输出的噪声波形
概率密度
(3)模拟产生均匀分布的白噪声通过上述RC 电路,观察输入和输出的噪声波形以及输出噪声的概率密度。
实验代码:
注释
>> a=[1]; 分子的系数
>> b=[1,1]; 分母的系数
>> sys=tf(a,b); 生成RC系统的传递函数
>> t=0:1:99; 选取0到100为打出函数的区间
>> x=rand(100,1); 生成均匀分布白噪声
>> lsim(sys,'g',x,t); 画出系统的输入输出图
>> k=lsim(sys,x,t); 求出系统的输出
>> y=ksdensity(k); 求出系统输出的概率密度
>> plot(y); 画出输出的概率密度图
实验结果:
输入和输出的噪声波形
概率密度
(4)改变RC电路的参数(电路的RC值),重做(2)和(3),与之前的结果进行比较。
重做(2)
实验代码:
>> a=[1];
>> b=[0.1,1];
>> sys=tf(a,b);
>> t=0:1:49;
>> x=randn(50,1);
>> lsim(sys,'g',x,t);
>> k=lsim(sys,x,t);
>> y=ksdensity(k);
>> plot(y);
注释:此代码与2题基本相同,只是改变了传递函数分母的参数,各步骤实现的都是同样的过程。
实验结果:
输入和输出波形
概率密度
重做(3)
实验代码:
>> a=[1];
>> b=[0.1,1];
>> sys=tf(a,b);
>> t=0:1:99;
>> x=rand(100,1);
>> lsim(sys,'g',x,t); >> k=lsim(sys,x,t);
>> y=ksdensity(k);
>> plot(y);
注释:此代码与3题基本相同,只是改变了传递函数分母的参数,各步骤实现的都是同样的过程。
实验结果:
输入和输出函数
概率密度
实验原理:
本实验中我们主要研究了均匀分布和高斯分布的白噪声通过线性系统的特性,在试验中我们主要使用了sys()语句来生成线性系统的传递函数,然后使用了lsim语句画出系统在特定输入的情况下的输出,并通过ksdensity函数求出了输出的概率密度,这就是整个过程在MATLAB软件的实现原理。
实验心得体会:
在本次实验中,我们在MATLAB上面实现了线性系统的仿真,这个将随机信号相关章节真正地在软件上得到了实现,使我们获益匪浅,极大地帮助了我们了解随机信号有关线性系统的描述,有助于我们进一步深入地学习。