网络最短路 练习题

合集下载

3第三章最短路问题

3第三章最短路问题

现在我们就来构造一个图G,它的顶点就是这10 种情况,G中的边是按照下述原则来连的;如果情况 甲经过一次渡河可以变成情况乙,那么就在情况甲与 乙之间连一条边.
MWSV MWS MWV WSV MS
WV
W
S
V
Ø
例如,MWSV经过一次渡河可以变成WV(人带着羊 过河,左岸留下狼和白菜),又例如MWV经过一次渡河 可以变为W(人带着白菜过河,留下狼),或变为V.当 然反过来,W也可以变为MWV(人带着白菜从右岸返回 左岸).
§3.2 求最短有向路的标号法
这一节介绍一种求有向图上最短有向路的方法 ,叫做标号法。
所谓标号,我们是指与图的每一个顶点对应的一个 数(或几个数).例如设G=(V,A)的顶点集合是V={v1,v2, …,vn},如果我们能使v1对应一个数b(1),v2对应数 b(2),…,vn对应数b(n),那么,这些数b(i)就称为vi的 标号,当然,在不同的问题中,标号b(i)一般代表不同 的意义.
从上面的简单比较久可以看出,为什么说计算 次数是n的多项式的方法是有效的,而计算次数是 n的指数函数的方法是无效的.另外,也可以看出, 单靠提高计算机的速度还不够,还必须从数学上寻 求有效的计算方法.
现在再回过头来看看标号法好不好.回想一下标 号法的各轮计算,可以看出,它只包含两种运算: 加法与比较大小(比较大小也需要花费时间,所以 也要考虑).加法用于计算k(i,j),每计算一个k(i,j)进 行一次加法,而且每一条弧最多只计算一次.因此, 如果图中有m条弧,那么至多进行m次加法.对于一 个有n个顶点的简单有向图来说,最多有n(n-1)条 弧(假设从每一个顶点vi出发,都有n-1条弧指向其 他的n-1个顶点),因此,最多进行n(n-1)次加法, 放宽一点,也可以说,至多进行n2次加法.

最短路问题例题

最短路问题例题

问题:求出A-F之间最短路线;(1)写出思路于算法;(2)Matlab 编程找出最短路径。

答案:A-F之间的最短路线有A-B3-D3-E1-F,A-B3-D3-E1-E2-F;A-B2-C1-D1-D2-E2-F 这三条路线的最短距离均为8。

方案一:思路:对于是否返回的分析:如图可以看出只有B端才能跨越C端的点直接到达D端的,其余的各端点都是必须按照字母顺序一路下来。

若如D端返回到C端或B端这是不可能的,因为这样无疑增加了路程,如图可以看出C端的点能到达D端的各个点,所以要求的直接命中想到达的该点;而D端出发去到E端后有图可以看出不可能再返回D端了,因为这只会增加路线的长度,而且E 端的各点是相通的,也没必要再返回D端;同样B端到达C端或D端的,因为B2,B2到能直接到达C端的各点,只有B1只能到达C1,但B1它到D1的距离和B1点到C1的距离同样为4但也不可能经过C1后返回B端的,因为C1也是联系D端的各点,而且你要返回B 段端,还不如在A端的时候就选择好一个理想的B点,这样距离会更加短。

所以不能进行返回。

如图将我们本来所需要的的路线分成两半,以D字母的为中间端。

后半部分:后半部分主要由D端连接到E端最后才连接到F端的,同时D端无法越过E端直接连接到F端。

更为重要的是前半部分,也必须要经过D端才能与F端相接,所以构成他们之间的枢纽定在D端是最好不过的。

首先的是先分析D端的三个点D1,D2,D3分别到点F的最短距离。

一、已经从D端出发去到E端后有图可以看出不可能再返回D端了,因为这只会增加路线的长度,而且E端的各点是相通的,也没必要再返回D端;二、由图可以看出E端到点F最好的路线是E2-F距离为1,除E2外的E1,E3他们到F点的方式(E1-F, E1-E2-F ,E3-F ,E3-E2-F)的距离均为2;所以如果能先到达E2则可以只考虑E2到F这条路线。

若先到达了E1,或E3、则这路线的最短路径必定变化为两条。

最短路问题(整理版)

最短路问题(整理版)

最短路问题(short-path problem)若网络中的每条边都有一个权值值(长度、成本、时间等),则找出两节点(通常是源节点与结束点)之间总权和最小的路径就是最短路问题。

最短路问题是网络理论解决的典型问题之一,可用来解决管路铺设、线路安装、厂区布局和设备更新等实际问题。

最短路问题,我们通常归属为三类:单源最短路径问题(确定起点或确定终点的最短路径问题)、确定起点终点的最短路径问题(两节点之间的最短路径)1、Dijkstra算法:用邻接矩阵a表示带权有向图,d为从v0出发到图上其余各顶点可能达到的最短路径长度值,以v0为起点做一次dijkstra,便可以求出从结点v0到其他结点的最短路径长度代码:procedure dijkstra(v0:longint);//v0为起点做一次dijkstrabegin//a数组是邻接矩阵,a[i,j]表示i到j的距离,无边就为maxlongintfor i:=1 to n do d[i]:=a[v0,i];//初始化d数组(用于记录从v0到结点i的最短路径), fillchar(visit,sizeof(visit),false);//每个结点都未被连接到路径里visit[v0]:=true;//已经连接v0结点for i:=1 to n-1 do//剩下n-1个节点未加入路径里;beginmin:=maxlongint;//初始化minfor j:=1 to n do//找从v0开始到目前为止,哪个结点作为下一个连接起点(*可优化) if (not visit[j]) and (min>d[j]) then//结点k要未被连接进去且最小begin min:=d[j];k:=j;end;visit[k]:=true;//连接进去for j:=1 to n do//刷新数组d,通过k来更新到达未连接进去的节点最小值,if (not visit[j]) and (d[j]>d[k]+a[k,j]) then d[j]:=a[k,j]+d[k];end;writeln(d[n]);//结点v0到结点n的最短路。

最短路问题实际案例

最短路问题实际案例

最短路问题实际案例最短路问题是指在图中找出两个顶点之间的最短路径的问题,其中图可以是有向图或无向图,并且每条边可以有权重。

这个问题是在许多实际案例中都会遇到的。

以下是几个实际案例,其中涉及到最短路问题:1. 导航系统:导航系统是最常见的利用最短路问题的实例。

当用户输入起点和终点时,导航系统会计算出最短路径,并显示给用户。

这个过程中,导航系统需要考虑路程的时间或距离,同时还需要考虑道路的限速和交通情况等因素。

2. 物流配送:物流配送涉及到从一个地点到另一个地点的最短路径。

物流公司需要计算出从货物的起始点到目标点的最短路径,以最快速度将货物送达目的地。

在这个问题中,可能还会有其他限制条件,如运输工具的载重量、路段的通行能力等。

3. 电信网络:电信网络是一个复杂的网络,其中存在着许多节点和边,每个节点代表一个通信设备,边代表设备之间的通信连接。

在设计电信网络时,需要考虑到从一个节点到另一个节点的最短路径,以最小化通信的时延。

这个问题中,还会有其他因素,如网络拓扑的复杂性、网络流量的负载均衡等。

4. 交通规划:交通规划涉及到城市道路网络的设计和优化。

在设计城市交通规划时,需要考虑到不同节点之间的最短路径,以便在城市中建设高效的道路系统。

这个问题中,需要考虑到人口分布、交通流量、环境因素等复杂变量。

5. 谷歌地图:谷歌地图是一种广泛使用最短路径算法的应用。

当用户在谷歌地图上搜索起点和终点时,谷歌地图会计算出最短路径,并给出导航指引。

这个过程中,谷歌地图需要考虑到道路的限速、交通情况和实时路况等因素。

综上所述,最短路问题在许多实际案例中都有应用。

无论是导航系统、物流配送、电信网络、交通规划还是谷歌地图等,都需要计算出最短路径以满足需求。

因此,研究和解决最短路问题在实际应用中具有重要意义。

最短路问题

最短路问题

最短路问题何谓最短路?最短路问题考虑的是有向网络N=(V,A,W),其中弧(i,j)∈A 对应的权又称为弧长或费用。

对于其中的两个顶点s,t∈V,以s 为起点,t 为终点的有向路称为s-t 有向路,其所经过的所有弧上的权(或弧长、费用)之和称为该有向路的权(或弧长、费用)。

所有s-t 有向路中权最小的一条称为s-t 最短路。

ij w 如何得到最短路?最短路问题的线性规划描述如下:(,)m i ni j i j i j A w x ∈∑ (1):(,):(,)1,,..1,,0,,ij ji j i j A j j i A i s s t x x s i s t ∈∈=⎧⎪t −=−=⎨⎪≠⎩∑∑ (2) 0ij x ≥ (3) 其中决策变量表示弧(i,j)是否位于s-t 路上:当=1时,表示弧(i,j)位于s-t 路上,当=0时,表示弧(i,j)不在s-t 路上。

本来,应当是0-1变量,但由于约束(2)的约束矩阵就是网络的关联矩阵,它是全幺模矩阵,因此0-1变量可以松弛为区间[0,1]中的实数(当用单纯形法求解时,将得到0-1整数解)。

ij x ij x ij x ij x 值得注意的是,我们这里将变量直接松弛为所有非负实数。

实际上,如果可以取0-1以外的整数,则约束条件并不能保证对应于非零的弧所构成的结构(记为P)一定是一条路,因为这一结构可能含有圈。

进一步分析,我们总是假设网络本身不含有负圈,而任何正圈不可能使目标函数最小,因此上面的约束条件(2),(3)可以保证当达到最优解时,P 如果包含圈,该圈一定是零圈,我们从P 中去掉所有的零圈,就可以得到最短路。

ij x ij x ij x 无圈网络与正费用网络一般采用标号设定算法。

Bellman 方程(最短路方程)将约束条件(2)两边同时乘以-1,得到其对偶问题为:m ax()t s u u − (4)..,(,)j i ij s t u u w i j A −≤∀∈ (5)根据互补松弛条件,当x 和u 分别为原问题和对偶问题的最优解时:()0,(,i j j i i j )x u u w i j −−=∀∈A (6) 因此,当某弧(i,j)位于最短路上时,即对应的变量>0时,一定有ij x j i i u u w −=j 。

网络分析最短路和最大流问题共58页

网络分析最短路和最大流问题共58页
45、法律的制定是为了保证每一个人 自由发 挥自己 的才能 ,而不 是为了 束缚他 的才能 。—— 罗伯斯 庇尔
谢谢你的阅读
❖ 知识就是财富 ❖ 丰富你的人生
71、既然我已经踏上这条道路,那么,任何东西都不应妨碍我沿着这条路走下去。——康德 72、家庭成为快乐的种子在外也不致成为障碍物但在旅行之际却是夜间的伴侣。——西塞罗 73、坚持意志伟大的事业需要始终不渝的精神。——伏尔泰 74、路漫漫其修道远,吾将上下而求索。——屈原 75、内外相应,言行相称。——韩非
网络分析最短路和最大流问 题
41、实际上,我们想要的不是针对犯 罪的法 律,而 是针对 疯狂的 法律。 ——马 克·吐温 42、法律的力量应当跟随着公民,就 像影子 跟随着 身体一 样。— —贝卡 利亚 43、法律和制度必须跟上人类思想进 步。— —杰弗 逊 44、人类受பைடு நூலகம்于法律,法律受制于情 理。— —托·富 勒

最短路算法

最短路径在一个无权的图中,若从一个顶点到另一个顶点存在着一条路径,则称该路径长度为该路径上所经过的边的数目,它等于该路径上的顶点数减1。

由于从一个顶点到另一个顶点可能存在着多条路径,每条路径上所经过的边数可能不同,即路径长度不同,把路径长度最短(即经过的边数最少)的那条路径叫作最短路径或者最短距离。

对于带权的图,考虑路径上各边的权值,则通常把一条路径上所经边的权值之和定义为该路径的路径长度或带权路径长度。

从源点到终点可能不止一条路径,把带权路径长度最短的那条路径称为最短路径,其路径长度(权值之和)称为最短路径长度或最短距离。

最短路径算法Dijkstra算法:该算法是用于求解单源点最短路径的实用算法。

Dijkstra算法的基本思想如下:设置并逐步扩充一个集合S,存放已求出其最短路径的顶点,则尚未确定最短路径的顶点集合是V-S其中,V为网中所有顶点集合。

按最短路径长度递增的顺序逐个用V-S中的顶点加到S中,直到S中包含全部顶点,而V-S为空。

Dijkstra算法的具体步骤;(1)设源点为V1,则S中只包含顶点V1,令W=V-S,则W中包含除V1外图中所有顶点。

V1对应的距离值为0,即D[1]=0。

W中顶点对应的距离值是这样规定的:若图中有弧 <v1,vk>,则Vj顶点的距离为此弧权值,否则为一个无穷大的数;(2)从W中选择一个其距离值最小的顶点 vk,并加入到S中;(3)每往S中加入一个顶点vk后,就要对W中各个顶点的距离值进行一次修改。

若加进vk做中间顶点,使<v1,vk> + <vk+vj>的值小于<v1,vj> 值,则用<v1,vk> + <vk+vj>代替原来vj 的距离值;(4)重复步骤2和3,即在修改过的W中的选距离值最小的顶点加入到S 中,并修改W中的各个顶点的距离值,如此进行下去,知道S中包含图中所有顶点为之,即S=V。

2018-南京网络赛icpc-L题(分层最短路)

2018-南京⽹络赛icpc-L题(分层最短路)题意:给你n个点,m条边的有向带权图,然后你每次可以选<=k条边的边权变成0,问你1到n的最短路;解题思路:这道题基本上就是原题了呀,bzoj2763(⽆向图),解法就是拆点跑分层的最短路,⽐如这道题,你⽤了⼀次变为0,就相当于进⼊了下⼀个层次;我们把每个点都拆成k个层次点,每个相同层次的点按输⼊的边权连接,每个点可以向它能连接到的点的下⼀个层次连接⼀条边权为0的边;意思就是:输⼊x到y权值为w的边 for(int i=1;i<=m;i++){scanf("%lld%lld%lld",&x,&y,&w);for(int j=0;j<=k;j++){add(x+j*n,y+j*n,w);同⼀层次的点;if(j!=k)add(x+j*n,y+(j+1)*n,0);不同层次的点,可以向它能连接的下⼀个层次连⼀个边权为0;}}完整代码:#include<iostream>#include<algorithm>#include<cstdio>#include<cstring>#include<queue>#include<stack>#define ll long longusing namespace std;const int maxm=3000500;const ll inf=0x7f7f7f7f;const int maxn=100500;struct node{ll num;ll dist;node(ll _num,ll _dist):num(_num),dist(_dist){}friend bool operator<(node a,node b){return a.dist>b.dist;}};struct Edge{ll next;ll to;ll w;}edge[maxm*2];int head[maxm];ll dist[maxm];int cnt;int n,m,k;void add(ll u,ll v,ll w){edge[cnt].next=head[u];edge[cnt].to=v;edge[cnt].w=w;head[u]=cnt++;}void dij(int u){priority_queue<node>q;memset(dist,inf,sizeof(dist));dist[u]=0;q.push(node(u,dist[u]));while(!q.empty()){node now=q.top();//cout<<now.num<<" "<<now.dist<<endl;q.pop();int x=now.num;for(int i=head[x];i!=-1;i=edge[i].next){int v=edge[i].to;if(dist[v]>dist[x]+edge[i].w){dist[v]=dist[x]+edge[i].w;q.push(node(v,dist[v]));}}}}int main(){int tt;ll x,y,w;scanf("%d",&tt);while(tt--){memset(head,-1,sizeof(head));cnt=0; scanf("%d%d%d",&n,&m,&k);if(k>=m){printf("0\n");continue;}for(int i=1;i<=m;i++){scanf("%lld%lld%lld",&x,&y,&w);for(int j=0;j<=k;j++){add(x+j*n,y+j*n,w);if(j!=k)add(x+j*n,y+(j+1)*n,0);}}dij(1);ll ans=inf;for(int i=0;i<=k;i++){ans=min(ans,dist[n+i*n]);}printf("%lld\n",ans);}}。

网络优化 最短路问题


S (3) 设v 是使 l (v) 取最小值的
*
中的顶点,则令 S=S∪{ v
*
},
u v* (4) 若S φ ,转 2,否则,停止.
且e是未选边中的最小权边,直到选够n-1条边为止。
算法2 (破圈法)基本步骤: (1)从图G中任选—棵树T。 (2)加上一条弦e,T1十e中立即生成一个圈。去掉此中最大 权边,得到新树T2。以T2代T1.重复(2)再检查剩余的弦,直到 全部弦检查完毕为止。
固 定 起 点 的 最 短 路
最短路是一条路径,且最短路的任一段也是最短路. 假设在u0-v0的最短路中只取一条,则从u0到其 余顶点的最短路将构成一棵以u0为根的树.
2 2
2
Outline Outline
Outline
1. 最短路问题
本讲内容
1、图 论 的 基 本 概 念 2、最 短 路 问 题 及 其 算 法 3、最 短 路 的 应 用 4、作业
本讲目的
1、了解最短路的算法及其应用 2、会用Matlab软件求最短路
图论的基本概念
一、 图 的 概 念 1、图的定义 2、顶点的次数
V,E e E1 时, (1) 若 V1 (e)= (e),则称 G1 是 G 的子图. 1 E,且当 特别的,若 V1=V,则 G1 称为 G 的生成子图. (2) 设 V1 V,且 V1 ,以 V1 为顶点集、两个端点都在 V1 中的
图 G 的边为边集的图 G 的子图,称为 G 的由 V1 导出的子图,记为 G[V1] (3)设 E1 E, 且 E1 , 以 E1 为边集,E1 的端点集为顶点集的图 G 的子图, 称为 G 的由 E1 导出的子图 , 记为 G[E1].
v1 v2 v3 v4 0 2 7 v1 A= 2 0 8 3 v2 8 0 5 v 3 7 3 5 0 v 4

第三节 最短路问题


作业
195页
习题8
8.4题
( X , X ) { (V1 ,V4 ) ,(V2 ,V4 ) ,(V5 ,V4 ) ,(V5 ,V9 )} 1、 2、K14 K 24 8 K54 5 3 8 K59 1 3 4
3、 (V5 ,V9 ) V9 ( 4 ,
5)
第五轮: V1 (0,0) V2 (2,1) V5 (3,2) V9 (4,5) V7 (7,9) 1、 ( X , X ) { (V1 ,V4 ) ,(V2 ,V4 ) ,(V5 ,V4 ),(V9 ,V6 ),(V9 ,V7 ),(V9 ,V8 )} 2、 K14 K24 K54 8 3、 (V9 ,V7 ) V7 ( 7 ,
V1
(i , i )
V2
5
7
1
V4
6
2 2
V3
1
V5
第三步: 找出第二步中 K ij 最小的那条弧,给它的终 点以标号
(V1 ,V3 ) V3 (2,1)
8
如果有几个 K ij 都取最小值,就同时标号
以后每一轮都重复第二轮的三个步骤, 从而使某个顶点获得标号; 当终点获得标号后,计算结束; 然后逆向追踪获得最短路.
( X , X ) { (V1 ,V4 ) ,(V2 ,V4 ) ,(V5 ,V4 ) ,(V5 ,V9 )} 1、 2、K14 K 24 8 K54 3 5 8 K59 3 1 4
3、 (V5 ,V9 ) V9 ( 4 ,
5)
第三轮: V1 (0,0) V2 (2,1) V5 (3,2)
9)
1)
V4 (8,1) V1 V2 (2,1) V5 (3,2) V9 (4,5) V7 (7,9) V6 (10,9)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档