SPSS因子分析法-例子解释

合集下载

spss统计分析三大检验回归诊断因子分析知识

spss统计分析三大检验回归诊断因子分析知识

• 旋转后的各个因子 的含义更加突出。 每个公因子都有反 映几个方面的变动 情况。
• 第一个公因子反映 交大载荷的有外商、 国有、港澳台、股 份制、集体经济单 位;第二个有联营 经济单位;第三个 则是其他经济单位。
• 该表列出来采用回 归法估计得因子得 分系数。根据表中 的内容可写出因子 得分系数。
实例分析:全国各地区不同所有制单位平均 收入排名
• 下图是全国各地区不同所有制单位平均收入情况,具体包 括国有经济单位、集体经济单位、联营经济单位等7个部 分。利用主成分分析探讨各地区按所有制类别分类的排名。
• 进行因子分析前,可以 计算相关系数矩阵、巴 特李特球度检验和KMO 检验等方法来检验候选 数据是否适合采用因子 分析。
因子分析:主成分分析的内在原理和过程
• 方法概述:因子分析法就是从研究变量内部相关的依赖关系出发,把 一些具有错综复杂关系的变量归结为少数几个综合因子的一种多变量 统计分析方法。
• 基本思想:对原始的数据进行分类归并,将相关比较密切的变量分别 归类,归出多个综合指标,这些综合指标互不相关,即它们所综合的 信息互相不重叠。这些综合指标就称为因子或公共因子,就能相对容 易地以较少的几个因子反映原资料的大部分信息。
模型汇总即对方程拟合情况的描述, R方就是自变量所能解释的方差在 总方差中所占的百分比,值越大说 明模型的效果越好。案例计算的回 归模型中R方等于0.994,模型拟合 效果较好。
• 方差分析表是对 回归模型进行方 差分析的检验结 果,主要用于分 析整体模型的显 著性。可以看到
方差分析结果中F 统计量等于4123, 概率p,0.000小于 显著性水平0.05, 所以该模型是有 统计学意义的, 人均可支配收入 与人均消费性支 出之间的线性关

spss因子分析案例

spss因子分析案例

spss因子分析案例在进行SPSS因子分析时,我们通常遵循以下步骤:数据准备、因子提取、因子旋转、因子得分和结果解释。

下面是一个因子分析的案例,展示了如何使用SPSS软件进行这一统计分析。

首先,我们需要准备数据。

这通常涉及收集问卷调查数据,其中包含多个项目或变量,这些变量被认为是潜在因子的指标。

在SPSS中,数据应该以数据集的形式输入,每个变量代表一个问卷项目,每个案例代表一个受访者的回答。

接下来,我们进行因子提取。

在SPSS中,我们可以通过“分析”菜单选择“降维”然后选择“因子”来开始因子分析。

在因子分析对话框中,我们需要指定分析的变量,并决定提取因子的方法。

常见的提取方法包括主成分分析和最大似然法。

此外,我们还需要决定因子提取的标准,如特征值大于1的规则或基于特定比例的方差提取。

因子提取后,我们通常需要进行因子旋转。

旋转的目的是使因子结构更加清晰,便于解释。

SPSS提供了多种旋转方法,如正交旋转(如Varimax)和斜交旋转(如Promax)。

旋转后,每个变量的因子载荷(即变量与因子的相关系数)将被重新估计。

然后,我们可以计算因子得分。

因子得分是每个受访者在每个因子上的估计得分,它可以帮助我们了解每个受访者在潜在因子上的位置。

在SPSS中,可以通过“保存”选项来保存因子得分,以便进一步分析。

最后,我们需要解释因子分析的结果。

这包括解释每个因子的含义,以及哪些变量与每个因子最相关。

我们可以通过查看因子载荷矩阵来完成这一步骤。

通常,载荷值较高的变量被认为是该因子的良好指标。

在实际应用中,因子分析可以帮助我们识别数据中的潜在结构,简化数据集,并为进一步的分析提供基础。

例如,在市场研究中,因子分析可以用来识别消费者行为的潜在维度,从而帮助企业更好地理解其客户群体。

通过上述步骤,我们可以使用SPSS软件有效地进行因子分析,从而揭示数据背后的潜在结构,并为决策提供支持。

SPSS因子分析法-例子解释

SPSS因子分析法-例子解释

因子分析的基本概念和步骤一、因子分析的意义在研究实际问题时往往希望尽可能多地收集相关变量,以期望能对问题有比较全面、完整的把握和认识。

例如,对高等学校科研状况的评价研究,可能会搜集诸如投入科研活动的人数、立项课题数、项目经费、经费支出、结项课题数、发表论文数、发表专著数、获得奖励数等多项指标;再例如,学生综合评价研究中,可能会搜集诸如基础课成绩、专业基础课成绩、专业课成绩、体育等各类课程的成绩以及累计获得各项奖学金的次数等。

虽然收集这些数据需要投入许多精力,虽然它们能够较为全面精确地描述事物,但在实际数据建模时,这些变量未必能真正发挥预期的作用,“投入”和“产出”并非呈合理的正比,反而会给统计分析带来很多问题,可以表现在:计算量的问题由于收集的变量较多,如果这些变量都参与数据建模,无疑会增加分析过程中的计算工作量。

虽然,现在的计算技术已得到了迅猛发展,但高维变量和海量数据仍是不容忽视的。

变量间的相关性问题收集到的诸多变量之间通常都会存在或多或少的相关性。

例如,高校科研状况评价中的立项课题数与项目经费、经费支出等之间会存在较高的相关性;学生综合评价研究中的专业基础课成绩与专业课成绩、获奖学金次数等之间也会存在较高的相关性。

而变量之间信息的高度重叠和高度相关会给统计方法的应用带来许多障碍。

例如,多元线性回归分析中,如果众多解释变量之间存在较强的相关性,即存在高度的多重共线性,那么会给回归方程的参数估计带来许多麻烦,致使回归方程参数不准确甚至模型不可用等。

类似的问题还有很多。

为了解决这些问题,最简单和最直接的解决方案是削减变量的个数,但这必然又会导致信息丢失和信息不完整等问题的产生。

为此,人们希望探索一种更为有效的解决方法,它既能大大减少参与数据建模的变量个数,同时也不会造成信息的大量丢失。

因子分析正式这样一种能够有效降低变量维数,并已得到广泛应用的分析方法。

因子分析的概念起源于20世纪初Karl Pearson和Charles Spearmen等人关于智力测验的统计分析。

SPSS数据的因子分析

SPSS数据的因子分析

每个因子的载荷系
总人口
Component
1
2
.581
.806
数没有很明显的差 别,所以不好命名.
中等学校平均校龄
.767
-.545
总雇员数
.672
.726
专业服务项目数
.932
-.104
中等房价
.791
-.558
为了对因子进行命名
Extraction Method: Principal Component Analysi,s.可以进行旋转,使
.968
-.006
第一主因子对中等学校平均校龄,专 业服务项目,中等房价有绝对值较大 的载荷(代表福利条件因子); 第二主因子对总人口和总雇员数有较 大的载荷(代表人口因子).
Extraction Method: Principal Component Analysis. Rotation Met hod: Varimax with Kaiser Normalization.
选择的变量有:多子率、综合节育率、初中以上文化程 度比例、城镇人口比例、人均国民收入。下表是1990年中国 30个省、自治区、直辖市的数据。
2019/12/20
21
zf
多子率(%) 综合节育率(%) 初中以上文化程度比例(%)
0.94
89.89
64.51
2.58
92.32
55.41
13.46
90.71
2019/12/20
15
zf
(3)因子旋转
通过正交旋转或斜交旋转使提取出的因子具有可解释性。
(4)计算因子得分
求解各样本在各因子上的得分,为进一步分析奠定基础。
2019/12/20

SPSS因子分析报告实例操作步骤

SPSS因子分析报告实例操作步骤

SPSS因子分析实例操作步骤实验目的:引入2003~2013年全国的农、林、牧、渔业,采矿业,制造业电力、热力、燃气及水生产和供应业,建筑业,批发和零售业,交通运输、仓储和邮政业7个产业的投资值作为变量,来研究其对全国总固定投资的影响。

实验变量:以年份,合计(单位:千亿元),农、林、牧、渔业,采矿业,制造业电力、热力、燃气及水生产和供应业,建筑业,批发和零售业,交通运输、仓储和邮政业作为变量。

实验方法:因子分析法软件:spss19.0操作过程:第一步:导入Excel数据文件1.open data document——open data——open;2. Opening excel data source——OK.第二步:1.数据标准化:在最上面菜单里面选中Analyze——Descriptive Statistics——OK (变量选择除年份、合计以外的所有变量).2.降维:在最上面菜单里面选中Analyze——Dimension Reduction——Factor ,变量选择标准化后的数据.3.点击右侧Descriptive,勾选Correlation Matrix选项组中的Coefficients和KMO and Bartlett’s text of sphericity,点击Continue.4.点击右侧Extraction,勾选Scree Plot和fixed number with factors,默认3个,点击Continue.5.点击右侧Rotation,勾选Method选项组中的Varimax;勾选Display选项组中的Loding Plot(s);点击Continue.6.点击右侧Scores,勾选Method选项组中的Regression;勾选Display factor score coefficient matrix;点击Continue.7.点击右侧Options,勾选Coefficient Display Format选项组中所有选项,将Absolute value blow改为0.60,点击Continue.8.返回主对话框,单击OK.输出结果分析:1.描述性统计量Descriptive StatisticsN Minimum Maximum Mean Std. Deviation农、林、牧、渔业11 3.27 9.73 7.6645 1.97515采矿业11 .6 9.5 5.008 2.7092制造业11 .44 7.07 2.6900 2.22405电力、热力、燃气及水生产和11 3.36 15.05 10.3545 3.22751供应业建筑业11 1.79 23.51 7.8955 6.18302批发和零售业11 2.10 18.52 9.1018 5.50553交通运输、仓储和邮政业11 .82 8.39 2.7891 2.20903Valid N (listwise) 11该表提供分析过程中包含的统计量,表格显示了样本容量以及11个变量的最小值、最大值、平均值、标准差。

SPSS软件应用-因子分析

SPSS软件应用-因子分析

SPSS软件应用-因子分析一、数据来源:各地区年平均收入.sav二、基本结果本例中,由于涉及的变量较多,直接进行地区间的比较分析较为烦琐,因此,首先考虑采用因子分析方法,减少变量个数,之后再进行比较和综合评价。

1.考察原有变量是否适合进行因子分析首先考察收集到的原有变量之间是否存在一定的线性关系,是否适合采用因子分析提取因子。

这里,借助变量的相关系数矩阵、反映像相关矩阵、巴特利特球度检验和KMO检验方法进行分析。

分析结果如表1所示。

同时,由于数据存在缺失值,采用均值替代法处理缺失值。

KMO 和 Bartlett 的检验(1b)取样足够度的 Kaiser-Meyer-Olkin 度量。

.882Bartlett 的球形度检验近似卡方182.913 df 21 Sig. .000 相关矩阵(1a)国有经济单位集体经济单位联营经济单位股份制经济单位外商投资经济单位港澳台经济单位其他经济单位相关国有经济单位 1.000 .825 .595 .773 .742 .786 .574 集体经济单位.825 1.000 .716 .740 .824 .849 .654联营经济单位.595 .716 1.000 .689 .598 .676 .482股份制经济单位.773 .740 .689 1.000 .765 .849 .571外商投资经济单位.742 .824 .598 .765 1.000 .898 .698港澳台经济单位.786 .849 .676 .849 .898 1.000 .747 其他经济单位.574 .654 .482 .571 .698 .747 1.000由表1(a)可以看到:大部分的相关系数都较高,各变量呈较强的线性关系,能够从中提取公共因子,适合进行因子分析。

由表1(b)可知:巴特利球度检验统计量关键值为182.913,相应的概率P-值接近0。

如果显著性水平α为0.05,由于概率P-值小于显著性水平α,则应拒绝原假设,认为相关系数矩阵与单位阵有显著差异。

spss因子分析案例

spss因子分析案例

spss因子分析案例SPSS因子分析是一种用于探索或验证潜在结构的数据分析方法。

它将一组观测变量分解为几个潜在变量(或因子),以便更好地理解这些变量之间的关系。

假设我们有一个数据集,其中包含了一些心理测量量表的数据。

我们对这些测量量表进行因子分析,以了解是否可以将它们归类为几个互相关联的潜在因子。

我们将使用SPSS进行因子分析。

首先,我们打开SPSS,并加载数据集。

然后,我们选择'Analyze'菜单下的'Dimension Reduction',再选择'Factor'。

在'Factor'对话框中,我们将选择要进行因子分析的测量量表变量,并将它们添加到'Variables'框中。

然后,我们单击'Extraction'选项卡。

在'Extraction'选项卡中,我们需要选择一个因子抽取方法。

常用的方法包括主成分分析和最大似然估计。

在本例中,我们选择最大似然估计。

然后,我们单击'Rotation'选项卡。

因子旋转是为了使因子之间更易解释。

我们可以选择'Varimax'或'Promax'旋转方法。

在本例中,我们选择'Varimax'。

接下来,我们单击'Summary'选项卡,然后单击'Continue'。

最后,我们单击'OK'按钮开始进行因子分析。

SPSS将计算因子分析,并提供一个结果表。

在结果表中,我们可以看到每个测量量表变量在每个因子上的载荷值。

载荷值表示变量与因子之间的关联强度。

我们还可以看到每个因子的解释方差比例。

这个比例表示每个因子解释了多大比例的变量的方差。

我们希望尽可能多的方差被解释,以便更好地理解数据。

此外,结果表还提供了每个因子的特征值。

特征值表示因子的重要性,越大的特征值表示该因子在解释数据中起到更重要的作用。

基于SPSS软件的因子分析法及实证分析

基于SPSS软件的因子分析法及实证分析

基于SPSS软件的因子分析法及实证分析基于SPSS软件的因子分析法及实证分析引言:随着社会的发展和数据的大规模积累,研究者们面临着海量的数据,如何从中获取有效的信息成为一个亟待解决的问题。

因子分析(Factor Analysis)作为一种数据分析方法,广泛应用于心理学、社会学、教育学、市场营销等领域。

本文将介绍基于SPSS软件的因子分析法以及实证分析的基本原理和步骤。

一、因子分析法概述因子分析法是一种通过统计方法对变量进行降维的分析技术。

它的目的是通过寻找共同的变异性,将一组相关的变量转化为一组较少的潜在因子。

这使得复杂的数据集可以被简化为更容易理解和分析的几个潜在因子。

二、因子分析法的基本原理1. 主成分分析(Principal Component Analysis,PCA)主成分分析是因子分析的一种方法,旨在寻找数据中的最主要的一些因素。

它通过对协方差矩阵进行特征分解,得到特征值和特征向量。

特征值表示对应的特征向量的重要程度,特征向量表示潜在因子与原始变量之间的关系。

2. 公因子分析(Common Factor Analysis,CFA)公因子分析是另一种常用的因子分析方法。

它假设观测变量受到共同的潜在因子影响,同时还存在独立的特殊因素。

公因子分析通过最大似然估计或最小方差法估计因子载荷矩阵,找出与潜在因子最相关的观测变量。

三、基于SPSS软件的因子分析步骤1. 数据准备采集研究数据后,首先需要将数据导入SPSS软件,并保证数据的可靠性和完整性。

2. 数据检查与整理对数据进行检查,确保数据的完整性和一致性。

如有缺失值或异常值,可以选择删除或进行数据插补等处理。

3. 因子分析模型选择根据具体问题和数据特点,选择适合的因子分析模型,如主成分分析或公因子分析。

4. 因子提取通过SPSS软件进行因子提取。

在主成分分析中,可以根据特征值-特征向量矩阵选择特征值大于1的主成分,将其作为因子。

在公因子分析中,可以根据因子载荷矩阵确定合适的因子个数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

因子分析的基本概念和步骤一、因子分析的意义在研究实际问题时往往希望尽可能多地收集相关变量,以期望能对问题有比较全面、完整的把握和认识。

例如,对高等学校科研状况的评价研究,可能会搜集诸如投入科研活动的人数、立项课题数、项目经费、经费支出、结项课题数、发表论文数、发表专著数、获得奖励数等多项指标;再例如,学生综合评价研究中,可能会搜集诸如基础课成绩、专业基础课成绩、专业课成绩、体育等各类课程的成绩以及累计获得各项奖学金的次数等。

虽然收集这些数据需要投入许多精力,虽然它们能够较为全面精确地描述事物,但在实际数据建模时,这些变量未必能真正发挥预期的作用,“投入”和“产出”并非呈合理的正比,反而会给统计分析带来很多问题,可以表现在:计算量的问题由于收集的变量较多,如果这些变量都参与数据建模,无疑会增加分析过程中的计算工作量。

虽然,现在的计算技术已得到了迅猛发展,但高维变量和海量数据仍是不容忽视的。

变量间的相关性问题收集到的诸多变量之间通常都会存在或多或少的相关性。

例如,高校科研状况评价中的立项课题数与项目经费、经费支出等之间会存在较高的相关性;学生综合评价研究中的专业基础课成绩与专业课成绩、获奖学金次数等之间也会存在较高的相关性。

而变量之间信息的高度重叠和高度相关会给统计方法的应用带来许多障碍。

例如,多元线性回归分析中,如果众多解释变量之间存在较强的相关性,即存在高度的多重共线性,那么会给回归方程的参数估计带来许多麻烦,致使回归方程参数不准确甚至模型不可用等。

类似的问题还有很多。

为了解决这些问题,最简单和最直接的解决方案是削减变量的个数,但这必然又会导致信息丢失和信息不完整等问题的产生。

为此,人们希望探索一种更为有效的解决方法,它既能大大减少参与数据建模的变量个数,同时也不会造成信息的大量丢失。

因子分析正式这样一种能够有效降低变量维数,并已得到广泛应用的分析方法。

因子分析的概念起源于20世纪初Karl Pearson和Charles Spearmen等人关于智力测验的统计分析。

目前,因子分析已成功应用于心理学、医学、气象、地址、经济学等领域,并因此促进了理论的不断丰富和完善。

因子分析以最少的信息丢失为前提,将众多的原有变量综合成较少几个综合指标,名为因子。

通常,因子有以下几个特点:↓因子个数远远少于原有变量的个数原有变量综合成少数几个因子之后,因子将可以替代原有变量参与数据建模,这将大大减少分析过程中的计算工作量。

↓因子能够反映原有变量的绝大部分信息因子并不是原有变量的简单取舍,而是原有变量重组后的结果,因此不会造成原有变量信息的大量丢失,并能够代表原有变量的绝大部分信息。

↓因子之间的线性关系并不显著由原有变量重组出来的因子之间的线性关系较弱,因子参与数据建模能够有效地解决变量多重共线性等给分析应用带来的诸多问题。

↓因子具有命名解释性通常,因子分析产生的因子能够通过各种方式最终获得命名解释性。

因子的命名解释性有助于对因子分析结果的解释评价,对因子的进一步应用有重要意义。

例如,对高校科研情况的因子分析中,如果能够得到两个因子,其中一个因子是对科研人力投入、经费投入、立项项目数等变量的综合,而另一个是对结项项目数、发表论文数、获奖成果数等变量的综合,那么,该因子分析就是较为理想的。

因为这两个因子均有命名可解释性,其中一个反映了科研投入方面的情况,可命名为科研投入因子,另一个反映了科研产出方面的情况,可命名为科研产出因子。

总之,因子分析是研究如何以最少的信息丢失将众多原有变量浓缩成少数几个因子,如何使因子具有一定的命名解释性的多元统计分析方法。

二、因子分析的基本概念1、因子分析模型因子分析模型中,假定每个原始变量由两部分组成:共同因子(common factors )和唯一因子(unique factors )。

共同因子是各个原始变量所共有的因子,解释变量之间的相关关系。

唯一因子顾名思义是每个原始变量所特有的因子,表示该变量不能被共同因子解释的部分。

原始变量与因子分析时抽出的共同因子的相关关系用因子负荷(factor loadings )表示。

因子分析最常用的理论模式如下:j m jm j j j j U F a F a F a F a Z ++⋅⋅⋅+++=332211(j=1,2,3…,n ,n 为原始变量总数)可以用矩阵的形式表示为U AF Z +=。

其中F 称为因子,由于它们出现在每个原始变量的线性表达式中(原始变量可以用j X 表示,这里模型中实际上是以F 线性表示各个原始变量的标准化分数j Z ),因此又称为公共因子。

因子可理解为高维空间中互相垂直的m 个坐标轴,A 称为因子载荷矩阵,)...3,2,1,...3,2,1(m i n j a ji ==称为因子载荷,是第j 个原始变量在第i 个因子上的负荷。

如果把变量j Z 看成m 维因子空间中的一个向量,则ji a 表示j Z 在坐标轴i F 上的投影,相当于多元线性回归模型中的标准化回归系数;U 称为特殊因子,表示了原有变量不能被因子解释的部分,其均值为0,相当于多元线性回归模型中的残差。

其中,(1)j Z 为第j 个变量的标准化分数;(2)i F (i=1,2,…,m )为共同因素;(3)m 为所有变量共同因素的数目;(4)j U 为变量j Z 的唯一因素;(5)ji a 为因素负荷量。

2、因子分析数学模型中的几个相关概念因子载荷(因素负荷量factor loadings )所谓的因子载荷就是因素结构中,原始变量与因素分析时抽取出共同因素的相关。

可以证明,在因子不相关的前提下,因子载荷ji a 是变量j Z 和因子i F 的相关系数,反映了变量j Z 与因子i F 的相关程度。

因子载荷ji a 值小于等于1,绝对值越接近1,表明因子i F 与变量j Z 的相关性越强。

同时,因子载荷ji a 也反映了因子i F 对解释变量j Z 的重要作用和程度。

因子载荷作为因子分析模型中的重要统计量,表明了原始变量和共同因子之间的相关关系。

因素分析的理想情况,在于个别因素负荷量ji a 不是很大就是很小,这样每个变量才能与较少的共同因素产生密切关联,如果想要以最少的共同因素数来解释变量间的关系程度,则j U 彼此间或与共同因素间就不能有关联存在。

一般说来,负荷量为0.3或更大被认为有意义。

所以,当要判断一个因子的意义时,需要查看哪些变量的负荷达到了0.3或0.3以上。

↓变量共同度(共同性,Communality )变量共同度也就是变量方差,就是指每个原始变量在每个共同因子的负荷量的平方和,也就是指原始变量方差中由共同因子所决定的比率。

变量的方差由共同因子和唯一因子组成。

共同性表明了原始变量方差中能被共同因子解释的部分,共同性越大,变量能被因子说明的程度越高,即因子可解释该变量的方差越多。

共同性的意义在于说明如果用共同因子替代原始变量后,原始变量的信息被保留的程度。

因子分析通过简化相关矩阵,提取可解释相关的少数因子。

一个因子解释的是相关矩阵中的方差,而解释方差的大小称为因子的特征值。

一个因子的特征值等于所有变量在该因子上的负荷值的平方总和。

变量j Z 的共同度2h 的数学定义为:∑==mi ji a h 122,该式表明变量j Z 的共同度是因子载荷矩阵A 中第j 行元素的平方和。

由于变量j Z 的方差可以表示成122=+u h ,因此变量j Z 的方差可由两个部分解释:第一部分为共同度2h ,是全部因子对变量j Z 方差解释说明的比例,体现了因子全体对变量j Z 的解释贡献程度。

变量共同度2h 越接近1,说明因子全体解释说明了变量j Z 的较大部分方差,如果用因子全体刻画变量j Z ,则变量j Z 的信息丢失较少;第二部分为特殊因子U 的平方,反应了变量j Z 方差中不能由因子全体解释说明的比例,2u 越小则说明变量j Z 的信息丢失越少。

总之,变量d 共同度刻画了因子全体对变量j Z 信息解释的程度,是评价变量j Z 信息丢失程度的重要指标。

如果大多数原有变量的变量共同度均较高(如高于0.8),则说明提取的因子能够反映原有变量的大部分信息(80%以上)信息,仅有较少的信息丢失,因子分析的效果较好。

因子,变量共同度是衡量因子分析效果的重要依据。

↓因子的方差贡献(特征值eigenvalue )因子的方差贡献(特征值)的数学定义为:212∑==n j ji i a S ,该式表明,因子i F 的方差贡献是因子载荷矩阵A 中第i 列元素的平方和。

因子i F 的方差贡献反映了因子i F 对原有变量总方差的解释能力。

该值越高,说明相应因子的重要性越高。

因此,因子的方差贡献和方差贡献率是衡量因子重要性的关键指标。

为了便于说明,以三个变量抽取两个共同因素为例,三个变量的线性组合分别为: 12121111U F a F a Z ++=22221212U F a F a Z ++=32321313U F a F a Z ++=素负荷量的平方和),也就是个别变量可以被共同因素解释的变异量百分比,这个值是个别变量与共同因素间多元相关的平方。

从共同性的大小可以判断这个原始变量与共同因素之间关系程度。

而各变量的唯一因素大小就是1减掉该变量共同性的值。

(在主成分分析中,有多少个原始变量便有多少个“component ”成分,所以共同性会等于1,没有唯一因素)。

至于特征值是每个变量在某一共同因素之因素负荷量的平方总和(一直行所有因素负荷量的平方和)。

在因素分析之共同因素抽取中,特征值大的共同因素会最先被抽取,其次是次大者,最后抽取的共同因素之特征值最小,通常会接近0(在主成分分析中,有几个题项,便有几个成分,因而特征值的总和刚好等于变量的总数)。

将每个共同因素的特征值除以总题数,为此共同因素可以解释的变异量,因素分析的目的,即在因素结构的简单化,希望以最少的共同因素,能对总变异量作最大的解释,因而抽取的因素越少越好,但抽取因素之累积解释的变异量则越大越好。

3、社会科学中因素分析通常应用在三个层面:(1)显示变量间因素分析的组型(pattern )(2)侦测变量间之群组(clusters ),每个群组所包括的变量彼此相关很高,同构型较大,亦即将关系密切的个别变量合并为一个子群。

(3)减少大量变量数目,使之称为一组涵括变量较少的统计自变量(称为因素),每个因素与原始变量间有某种线性关系存在,而以少数因素层面来代表多数、个别、独立的变量。

因素分析具有简化数据变量的功能,以较少层面来表示原来的数据结构,它根据变量间彼此的相关,找出变量间潜在的关系结构,变量间简单的结构关系称为“成份”(components )或“因素”(factors ).三、因素分析的主要方式围绕浓缩原有变量提取因子的核心目标,因子分析主要涉及以下五大基本步骤:1、因子分析的前提条件由于因子分析的主要任务之一是对原有变量进行浓缩,即将原有变量中的信息重叠部分提取和综合成因子,进而最终实现减少变量个数的目的。

相关文档
最新文档