矩阵乘法的运算规律

合集下载

矩阵乘法的ppt课件

矩阵乘法的ppt课件

分步矩阵乘法
总结词
将矩阵乘法拆分成多个步骤,逐步进行计算。
详细描述
分步矩阵乘法是一种将矩阵乘法拆分成多个步骤,逐步进行计算的方法。这种方法可以 降低计算复杂度,提高计算效率。同时,通过逐步计算,可以更好地理解矩阵乘法的运
算过程。
04
矩阵乘法的应用
在线性代数中的应用
线性方程组的求解
矩阵乘法可以用于求解线性方程 组,通过将系数矩阵与增广矩阵 相乘,得到方程的解。
线性最小二乘法
矩阵乘法可以用于求解线性最小二乘问题,通过将系数矩阵与观测 矩阵相乘,得到最小二乘解。
插值和拟合
矩阵乘法可以用于插值和拟合数据,通过将系数矩阵与观测矩阵相 乘,得到插值或拟合函数。
在计算机图形学中的应用
3D模型变换
01
矩阵乘法在计算机图形学中广泛应用于3D模型变换,包括平移、
旋转和缩放等操作。
矩阵乘法的PPT课件
目 录
• 矩阵乘法的基本概念 • 矩阵乘法的性质 • 矩阵乘法的计算方法 • 矩阵乘法的应用 • 矩阵乘法的注意事项
01矩阵乘Βιβλιοθήκη 的基本概念定义矩阵乘法
矩阵乘法是一种数学运算,通过将一个矩阵与另一个 矩阵相乘,得到一个新的矩阵。
矩阵的定义
矩阵是一个由数字组成的矩形阵列,行和列都有一定 的数量。
矩阵的元素
矩阵中的每个元素都有一个行索引和一个列索引,用 于标识其在矩阵中的位置。
矩阵乘法的规则
1 2
矩阵乘法的条件
两个矩阵A和B可以进行乘法运算,当且仅当A的 列数等于B的行数。
矩阵乘法的步骤
将A的列向量与B的行向量对应相乘,然后将得 到的结果相加,得到新的矩阵C的元素。
3

矩阵的运算及其运算规则

矩阵的运算及其运算规则

矩阵的运算及其运算规则一、矩阵的加法与减法1、运算规则设矩阵,,则简言之,两个矩阵相加减,即它们相同位置的元素相加减!注意:只有对于两个行数、列数分别相等的矩阵(即同型矩阵),加减法运算才有意义,即加减运算是可行的.2、运算性质(假设运算都是可行的)满足交换律和结合律交换律;结合律.二、矩阵与数的乘法1、运算规则数乘矩阵A,就是将数乘矩阵A中的每一个元素,记为或.特别地,称称为的负矩阵.2、运算性质满足结合律和分配律结合律:(λμ)A=λ(μA);(λ+μ)A =λA+μA.分配律:λ(A+B)=λA+λB.典型例题例已知两个矩阵满足矩阵方程,求未知矩阵.解由已知条件知三、矩阵与矩阵的乘法1、运算规则设,,则A与B的乘积是这样一个矩阵:(1) 行数与(左矩阵)A相同,列数与(右矩阵)B相同,即.(2) C的第行第列的元素由A的第行元素与B的第列元素对应相乘,再取乘积之和.典型例题例设矩阵计算解是的矩阵.设它为想一想:设列矩阵,行矩阵,和的行数和列数分别是多少呢是3×3的矩阵,是1×1的矩阵,即只有一个元素.课堂练习1、设,,求.2、在第1道练习题中,两个矩阵相乘的顺序是A在左边,B在右边,称为A左乘B或B右乘A.如果交换顺序,让B在左边,A在右边,即A右乘B,运算还能进行吗?请算算试试看.并由此思考:两个矩阵应当满足什么条件,才能够做乘法运算.3、设列矩阵,行矩阵,求和,比较两个计算结果,能得出什么结论吗?4、设三阶方阵,三阶单位阵为,试求和,并将计算结果与A比较,看有什么样的结论.解:第1题.第2题对于,.求是有意义的,而是无意义的.结论1只有在下列情况下,两个矩阵的乘法才有意义,或说乘法运算是可行的:左矩阵的列数=右矩阵的行数.第3题是矩阵,是的矩阵..结论2在矩阵的乘法中,必须注意相乘的顺序.即使在与均有意义时,也未必有=成立.可见矩阵乘法不满足交换律.第4题计算得:.结论3方阵A和它同阶的单位阵作乘积,结果仍为A,即.单位阵在矩阵乘法中的作用相当于数1在我们普通乘法中的作用.典型例题例设,试计算和.解.结论4两个非零矩阵的乘积可以是零矩阵.由此若,不能得出或的结论.例利用矩阵的乘法,三元线性方程组可以写成矩阵的形式=若记系数、未知量和常数项构成的三个矩阵分别为,,,则线性方程组又可以简写为矩阵方程的形式:.2、运算性质(假设运算都是可行的)(1) 结合律.(2) 分配律(左分配律);(右分配律).(3) .3、方阵的幂定义:设A是方阵,是一个正整数,规定,显然,记号表示个A的连乘积.四、矩阵的转置1、定义定义:将矩阵A的行换成同序号的列所得到的新矩阵称为矩阵A的转置矩阵,记作或.例如,矩阵的转置矩阵为.2、运算性质(假设运算都是可行的)(1) (2) (3)(4) ,是常数.典型例题例利用矩阵验证运算性质:解;而所以.定义:如果方阵满足,即,则称A为对称矩阵.对称矩阵的特点是:它的元素以主对角线为对称轴对应相等.五、方阵的行列式1、定义定义:由方阵A的元素所构成的行列式(各元素的位置不变),称为方阵A的行列式,记作或.2、运算性质(1) (行列式的性质)(2) ,特别地:(3) (是常数,A的阶数为n)思考:设A为阶方阵,那么的行列式与A的行列式之间的关系为什么不是,而是?不妨自行设计一个二阶方阵,计算一下和.例如,则.于是,而.思考:设,有几种方法可以求?解方法一:先求矩阵乘法,得到一个二阶方阵,再求其行列式.方法二:先分别求行列式,再取它们的乘积.。

矩阵的乘法运算

矩阵的乘法运算

C
0 1
0 3
求 AC、BC
解:
AC
3 2
10 1 1
0 3
1 1
3 3
BC
5 9
10 1 1
0 3
1 1
3 3
此处
8
方程组的矩阵表示:
a11
a21 a31
a12 a22 a32
a13 a23 a33
x1 x2 x3
a11 x1 a21 x1 a31 x1
a12 x2 a22 x2 a32 x2
小结:
1. 只有当第一个矩阵的列数等于第二个矩阵的行 数时,两个矩阵才能相乘.
2. 矩阵相乘不满足交换律,即一般来说
AB BA.
3. 矩阵相乘不满足消去律,即一般来说
由 AB AC 且A 0,不能推出B C.
14
并把此乘积记作 C AB .
例如:
2
注意: 要使C=AB有意义,则A的列数必须等于B的行 数,且矩阵C的第i行第j列元素正好是A的第i行与B的 第j列对应元素乘积之和。
例如
不存在.
3
注意:
1. 乘积矩阵的第i行第j列元素等于左矩阵的第i行元 素与右矩阵的第j列对应元素乘积之和. 2. 只有当左矩阵的列数等于右矩阵的行数时,矩阵的 乘积才有意义. 3. 两个矩阵的乘积仍然是一个矩阵,且乘积矩阵的 行数等于左矩阵的行数,乘积矩阵的列数等于右矩 阵的列数.
,
b1
b
b2 b3
则方程组(1)可表示为 Ax b.
9
又如:
对方程组
a11x1 a12 x2 a13 x3 b1 a21x1 a22 x2 a23 x3 b2
(2)

矩阵乘法运算规则

矩阵乘法运算规则

矩阵乘法运算规则简介矩阵乘法是线性代数中的一个重要运算,可以用于解决各种实际问题。

本文将介绍矩阵乘法的运算规则。

矩阵乘法的定义给定两个矩阵A和B,假设A的大小为m×n,B的大小为n×p,那么它们的乘积C的大小为m×p。

矩阵C的每个元素c[i][j]是矩阵A的第i行与矩阵B的第j列对应元素的乘积之和。

矩阵乘法的运算规则1. 维度要求:乘法要求前一个矩阵的列数等于后一个矩阵的行数。

即若矩阵A的大小为m×n,矩阵B的大小为n×p,则矩阵乘法可行。

2. 乘法顺序:矩阵乘法不满足交换律,即A×B和B×A的结果一般是不相同的。

乘法需要按照先后顺序进行。

3. 结果计算:矩阵乘法的结果C的第i行第j列元素c[i][j]的计算公式为:c[i][j] = a[i][1] × b[1][j] + a[i][2] × b[2][j] + ... + a[i][n] ×b[n][j],其中a和b分别是矩阵A和B的对应元素。

4. 结合性:矩阵乘法满足结合律,即(A×B)×C = A×(B×C),可以按任意顺序进行括号的添加。

5. 单位矩阵:单位矩阵是对角线上的元素为1,其余元素为0的方阵。

单位矩阵与任何矩阵相乘,结果均为原矩阵本身。

示例假设有两个矩阵A和B:A = [[1, 2, 3], [4, 5, 6]]B = [[7, 8], [9, 10], [11, 12]]根据矩阵乘法的规则,我们可以计算矩阵A与矩阵B的乘积C:C = A × BC = [[1×7+2×9+3×11, 1×8+2×10+3×12], [4×7+5×9+6×11,4×8+5×10+6×12]]C = [[58, 64], [139, 154]]结论矩阵乘法是一种重要的线性代数运算,它的运算规则包括维度要求、乘法顺序、结果计算、结合性和单位矩阵等。

矩阵乘法的运算规律

矩阵乘法的运算规律


1 2 2 A , 4 5 8
B 18 6,
1 4 T A 2 5 ; 2 8
18 B . 6
T
由于n维列向量可以看成n1矩阵,因此常记n维列向量
(a1 , a2 ,, an )T

(a1 , a2 ,, an )
则(3.2)式可写成矩阵形式 相应的导出组可以写成
AX B .
(3.3)
AX O
1.矩阵乘法一般不满足交换律。也就是说,AB有意义时,
BA不一定有意义。即使和都有意义它们不一定相等。
例8 设矩阵
a1 a2 A a n
B (b1 , b2 ,, bn )
2 4 22 2 2 2 4 . 3 6 32
a11 a12 a13 b1 2 b1 b2 b3 a21 a22 a23 b2 a a a b 31 32 33 3
第三章 矩 阵
§3.1 矩阵的运算
一、矩阵的加法
定义3.1 如果 A (aij ) 与 B (bij ) 都是m×n矩阵,并且 它们的对应元素相等,即
ai j bi j (i 1,2,, m; j 1,2,, n),
那末就称矩阵A与矩阵B相等,记作
A=B
1、定义3.2
设有两个 m n矩阵 A a ij , B bij , 那末矩阵 A 与 B 的和记作 A B,规定为
Ak Al Ak l , ( Ak )l Akl ,
其中k、l为正整数.又因矩阵乘法一般不满足交换律,所以
对于两个n阶方阵A与B,一般说来
( AB)k Ak B k .

矩阵乘法及求逆运算最终版

矩阵乘法及求逆运算最终版

逆矩阵求解方法一——伴随矩阵法 A1 1 A* A
逆矩阵求解方法二——初等变换法
( A E) 行(E A1)
逆矩阵求解方法三——因式分解法
若 A k 0 , 即 ( I A ) 可 逆 , 且 有 ( I - A ) 1 I A A 2 A K 1 我 们 通 过 上 式 , 求 出 A 1
0 0,Aii是 矩 阵 。 (i1,2, n)
Ann
其求逆的方法:
可以证明:如果A11,A22, ,Ann都可逆,则准对角矩阵也可逆,且
A11 0
0
A22
0
0
0 0
1
A0111
0 A1
22
Ann
0
0
0
0
Ann1
4 0 0 0
例.已知0 3 2
0
,求A1。
0 1 5 0
0 0 0 5
0 0
0
1
5
逆矩阵求解方法七——恒等变形
有些计算命题表面上与求逆矩阵无关,但实质上只有求出其
逆矩阵之后,才能解决问题。而求其逆矩阵常对所给矩阵进行恒 等变形,且常变为两矩阵乘积等于单位矩阵的等式。
1
3
例. 已知A6I,求A11,其中A 2 2
3 1
2 2
解:恒等变形,得: A 6 I • A 6 A 6 • A 6 A • A 1 1 I
( 2) 初 等 矩 阵 求 逆 公 式 :
E i j1E ij
E i1(k)E i(1 k)
E i j1(k)E ij(k)
(3)对角线及其上方元素全为1的上三角矩阵的逆矩阵
1 1 A0 1
0 0
1 1 0
1 1

矩阵乘法条件(一)

矩阵乘法条件(一)

矩阵乘法条件(一)矩阵乘法条件什么是矩阵乘法矩阵是数学中一种重要的数据结构,也是线性代数中的基础概念。

我们可以将矩阵想象成一个由数值构成的矩形表格,其中每一个数值都称为矩阵的元素。

矩阵乘法是指将两个矩阵相乘的操作。

它不同于矩阵的加法和减法,因为在乘法中,两个矩阵的对应元素之间不是简单相加或相减,而是经过一定的计算规则得到新的矩阵。

矩阵乘法条件要进行矩阵乘法,必须满足以下条件:•第一个矩阵的列数必须等于第二个矩阵的行数。

否则,无法进行乘法运算,结果将是一个无意义的矩阵。

•两个矩阵的行数和列数并不需要相同。

在矩阵乘法中,并没有要求参与运算的两个矩阵的维度相同。

简而言之,只有当第一个矩阵的列数等于第二个矩阵的行数时,才能进行矩阵乘法运算。

矩阵乘法运算规则矩阵乘法运算规则如下:1.假设有一个m行n列的矩阵A,和一个n行p列的矩阵B,那么它们的乘积C是一个m行p列的矩阵。

2.乘积矩阵C的元素C[i][j]是通过矩阵A的第i行与矩阵B的第j列对应元素相乘后再求和得到的。

3.矩阵A的第i行与矩阵B的第j列对应元素相乘的结果,可以表示为A[i][k] * B[k][j],其中k为矩阵A的列数或矩阵B的行数。

矩阵乘法示例为了更好地理解矩阵乘法的条件和运算规则,以下是一个示例:给定两个矩阵A和B:A = [[1, 2, 3], [4, 5, 6]]B = [[7, 8], [9, 10], [11, 12]]根据矩阵乘法的条件,我们可以得知矩阵A的列数为3,矩阵B 的行数为3,满足相等条件,可以进行矩阵乘法运算。

根据矩阵乘法的运算规则,我们可以得到乘积矩阵C的维度为2行2列。

那么C的元素C[i][j]可以通过以下计算得到:C[0][0] = 17 + 29 + 311 C[0][1] = 18 + 210 + 312 C[1][0] = 47 + 59 + 611 C[1][1] = 48 + 510 + 612计算得到的乘积矩阵C为:C = [[58, 64], [139, 154]]这就是矩阵乘法的运算结果。

矩阵的乘法两次运算

矩阵的乘法两次运算

矩阵的乘法两次运算
矩阵的乘法是线性代数中的一种重要运算,它是将两个矩阵按行和列进行相乘,得到一个新的矩阵。

具体来说,矩阵的乘法是将第一个矩阵的每一行与第二个矩阵的每一列对应相乘,并将结果相加,得到新矩阵的一个元素。

然后,对第一个矩阵的每一行重复这个过程,直到遍历完所有行,就可以得到新矩阵的所有元素。

例如,如果有两个矩阵$A$和$B$,其中$A$是$m\times n$矩阵,$B$是$n\times p$矩阵,那么它们的乘积$C=AB$是一个$m\times p$矩阵,其中$C$的元素$c_{ij}$是由$a_{ij}b_{jk}$相加而得到的,其中$i$表示$A$的行索引,$j$表示$B$的列索引,$k$表示$B$的元素索引。

矩阵的乘法满足结合律,即$A(BC)=(AB)C$。

此外,矩阵的乘法还满足分配律,即$A(B+C)=AB+AC$和$(B+C)A=BA+CA$。

需要注意的是,矩阵的乘法不满足交换律,即$AB\neq BA$。

这是因为矩阵的行和列的顺序是不同的,因此在计算乘积时需要特别注意两个矩阵的相乘顺序。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
并把此乘积记作 C AB .
例1
C 2 1
4 2
222 3
4
622
16 8
?
32 16 22
例2 设
1 A 1
0
0 1 5
1 3 1
2 0 4
B
0 1 3 1
3 2 1 2
4 1 1
1

A
aij
,
34
B bij 43,
C
cij
.
33
与反对称阵之和.
证明 设C A AT
则CT
A AT
T
AT
A
C,
所以C为对称矩阵.
设B A AT , 则BT A AT T AT A B,
所以B为反对称矩阵.
A A AT A AT C B ,
2
2 22
命题得证.
定义 行列式 A 的各个元素的代数余子式Aij 所
构成的如下矩阵
A11
A
A12
A1n
A21 A22 A2n
An1 An2 Ann
称为矩阵 A 的伴随矩阵.
性质 AA A A A E.
证明 设 A aij , 记 AA bij , 则
bij ai1 Aj1 ai2 Aj2 ain Ajn A ij ,
3
3 2
1 3 2 2
3 1
10.
1
2、矩阵乘法的运算规律
1 ABC ABC ;
2 AB C AB AC, B C A BA CA;
3 AB AB AB (其中 为数);
4 AE EA A;
5
若A是 n 阶矩阵,则 Ak
Ak AAA 并且 Am A
,
求 ABT .
1
解法1
AB 2 1
0 3
21
1 4 2
7 2 0
1 3
AB T
0 14
1
3
17 13. 10
0 14 3, 17 13 10
解法2
ABT BT AT
1 4 2 2 1 0 17 7 2 0 0 3 14 13.
1 3 1 1 2 3 10
故 AA A ij A ij A E.
同理可得
AA n Akiakj Aij A ij A E.
k1
4、共轭矩阵
定义
当 A aij 为复矩阵时,用 aij 表示 aij 的共轭 复数,记 A aij , A 称为 A 的共轭矩阵.
运算性质
(设A, B 为复矩阵, 为复数,且运算都是可行的):
1 1
0
A3 A2 A 0 2 2 0 1
0 0 2 0 0
3
0
0
k
Ak
0
0
32 3
3 32 0 3
由此归纳出
kk 1 k
kk 1k2
2
kk 1
k 2
0
k
用数学归纳法证明
当 k 2 时,显然成立. 假设 k n 时成立,则 k n 1时,
例 A 1 2 2, 4 5 8
1 4
AT
2
5 ;
2 8
B 18 6,
BT 18. 6
转置矩阵的运算性质
1 AT T A;
2 A BT AT BT ; 3 AT AT ; 4 ABT BT AT .
例5 已知
1 7 1
A 2 1
0 3
1, 2
B 4
2
2 0
3
说明 只有当两个矩阵是同型矩阵时,才能进 行加法运算.
12 3 5 1 8 9 例如 1 9 0 6 5 4
3 6 8 3 2 1
12 1 3 8 5 9 13 11 4 1 6 9 5 0 4 7 4 4.
3 3 6 2 8 1 6 8 9
1 A B A B; 2 A A; 3 AB AB.
五、小结
加法
数与矩阵相乘
矩 阵
矩阵与矩阵相乘
运 转置矩阵
算 方阵的行列式
对称阵与伴随矩阵 共轭矩阵
注意
(1)只有当两个矩阵是同型矩阵时,才能 进行加法运算.
(2)只有当第一个矩阵的列数等于第二个 矩阵的行数时,两个矩阵才能相乘,且矩阵相乘 不满足交换律.
三、矩阵与矩阵相乘
1、定义
设 A aij 是一个m s 矩阵,B bij 是一个
s n 矩阵,那末规定矩阵A与矩阵B的乘积
是一个m n 矩阵 C cij ,其中
s
cij ai1b1 j ai 2b2 j aisbsj aikbkj k 1 i 1,2, m; j 1,2, ,n,
A 2 0, 0 2
B 1 1, 1 1
则有 AB 2 2, 2 2
BA 2 2
2 2
AB BA.
例3 计算下列乘积:
1
22 1
2
3

1
2 2
1
2 1
2 2 1
2 2 2 2 2 2
4 4.
3
3 1 3 2 3 6
2
b1
b2
b3
a11 a21
数与矩阵A的乘积记作A或A , 规定为
a11 a12
A
A
a21
a22
am1 am1
a1n
a2n
.
amn
2、数乘矩阵的运算规律 (设 A、B为 m n 矩阵, ,为数)
1 A A;
2 A A A;
3 A B A B.
矩阵相加与数乘矩阵合起来,统称为矩阵的线 性运算.
一、矩阵的加法
1、定义
设有两个m n矩阵 A aij , B bij , 那末矩阵
A 与 B1
b21
am1 bm1
a12 b12 a22 b22
am2 bm2
a1n b1n a2n b2n
amn bmn
证明 HT E 2XX T T ET 2 XX T T
E 2 XX T H , H是对称矩阵.
HHT H 2 E 2XX T 2 E 4XXT 4 XXT XXT E 4XXT 4X XT X XT
E 4XX T 4XX T E.
例7 证明任一 n 阶矩阵 A 都可表示成对称阵
b3
a11b12 a22b22 a33b32 2a12b1b2 2a13b1b3 2a23b2b3 .
1 0
例4
设A
0
1 求Ak .
0 0
1 0 1 0

A2 0 1 0 1
0 0 0 0
2 2 1 0 2 2 .
0
0
2
2 2
2、方阵的行列式
定义 由 n 阶方阵 A 的元素所构成的行列式, 叫做方阵 A 的行列式,记作 A 或 det A.
例 A 2 6
3 8
则A2
3 2.
68
运算性质 1 AT A;
2 A n A;
3 AB A B; AB BA .
3、对称阵与伴随矩阵
定义 设 A 为 n 阶方阵,如果满足A AT,即
(3)矩阵的数乘运算与行列式的数乘运算 不同.
思考题
设A与B为n阶方阵,问等式
A2 B2 A BA B
成立的充要条件是什么?
思考题解答
答 A BA B A2 BA AB B2, 故 A2 B2 A BA B 成立的充要条件为
AB BA.
aij a ji i , j 1,2, ,n
那末 A 称为对称阵.
例如
12 A 6
6 8
1 0
为对称阵.
1 0 6
说明 对称阵的元素以主对角线为对称轴对应相
等. 如果 AT A 则矩阵A称为反对称的.
例6 设列矩阵 X x1, x2 , , xn T满足 X T X 1,
E为n阶单位矩阵, H E 2XX T ,证明H是对称矩 阵,且HH T E.

1
C AB 1
0
0 1 5
1 3 1
402
0 1 3 1
3 2 1 2
4 1 1
1
5 6 7
10 2 6.
2 17 10
注意 只有当第一个矩阵的列数等于第二个矩阵 的行数时,两个矩阵才能相乘.
1 2 3
例如
3 5
2 8
1 9
1 6
6 0
8 1
不存在.
1 2
a12 a22
a13 b1 a23 b2
a31 a32 a33 b3

b1
b2
b3
a11 a21
a31
=( a11b1 a21b2 a31b3
a12 a13 b1 a22 a23 b2 a32 a33 b3
a12b1 a22b2 a32b3
b1 a13b1 a23b2 a33b3) b2
2、 矩阵加法的运算规律
1 A B B A;
2 A B C A B C .
a11
3
A
a21
am1
a12 a22 am1
a1n
a2n
aij
,
amn
称为矩阵A的负矩阵.
4 A A 0, A B A B.
二、数与矩阵相乘
1、定义
n
An1
An A
0
nn1 n
nn 1n2
2
nn1
0
1
0 1 ,
0
0
n
0
0
n1
0
0
n 1n
n1
0
n 1n n1
相关文档
最新文档