作业三 存储器管理(1)

合集下载

计算机应用基础试题及答案「填空题」

计算机应用基础试题及答案「填空题」

计算机应用基础试题及答案「填空题」一、填空题(每题2分,共40分)1. 计算机系统由________和________两大部分组成。

答案:硬件系统软件系统2. 计算机硬件系统包括五大部件:________、________、________、________和________。

答案:运算器控制器存储器输入设备输出设备3. 计算机软件分为________和________两大类。

答案:系统软件应用软件4. 操作系统的功能主要包括________、________、________、________和________。

答案:处理器管理存储器管理设备管理文件管理作业管理5. 计算机网络按传输介质分类,可分为________网络和________网络。

答案:有线网络无线网络6. 在Windows操作系统中,文件名由________和________两部分组成。

答案:主文件名扩展名7. 在Excel中,若要将单元格指针从当前单元格向下移动,可以使用________键。

答案:Enter8. 在Word中,若要实现文字的居中对齐,可以选择________菜单下的________命令。

答案:格式对齐9. 在PowerPoint中,要切换到幻灯片浏览视图,可以点击________菜单下的________命令。

答案:视图幻灯片浏览10. 在Internet中,IP地址分为________类。

答案:A、B、C、D、E11. 在网页浏览器中,地址栏中输入的URL通常以________开头。

答案:http://12. 计算机病毒的传播途径主要有________、________和________。

答案:磁盘传播网络传播邮件传播13. 数据库管理系统(DBMS)的主要功能包括________、________、________、________和________。

答案:数据定义数据操纵数据查询数据控制数据维护14. 在SQL语言中,用来创建表的关键字是________。

计算机操作系统作业3(含答案).

计算机操作系统作业3(含答案).

一、单项选择题1.联想存储器在计算机系统中是用于______的。

A.存储文件信息B.与主存交换信息C.内存地址变换D.内存管理信息2.作业在执行中发生了缺页中断,经操作系统处理后,应该执行的指令是______。

A.被中断的前一条B.被中断的后一条C.作业的第一条D.被中断的指令在请求分页存储管理中,当指令的执行所需要的内容不在内存中时,发生缺页中断,当缺页调入内存后,应执行被中断指令。

另:缺页中断作为中断与其它中断一样要经历如保护CPU环境,分析中断原因,转入缺页中断处理程序进行处理,恢复CPU环境等几个步骤,但缺页中断又是一种特殊的中断,它与一般中断相比,有着明显的区别,主要表现在下面两个方面:(1)缺页中断是在指令执行期间产生和处理中断信号的。

(2)一条指令的执行期间,可能产生多次缺页中断。

3.实现虚拟存储器的目的是______。

A.实现存储保护B.实现程序浮动C.扩充外存容量D.扩充内存容量4.在段页式存储系统中,一个作业对应______。

A.多个段表B.一个段表,一个页表C.一个段表,多个页表D.多个段表,多个页表5.在虚拟页式存储管理方案中,完成将页面调入内存的工作的是______。

A.缺页中断处理B.页面淘汰过程C.工作集模型应用D.紧缩技术利用6.采用分页式内存管理时,重定位的工作是由______完成的。

A.操作系统B.用户C.地址转换机构D.内存空间分配程序7.在分页式内存管理系统中可能出现的问题是______。

A.颠簸B.不能共享C.外部碎片D.动态链接8.在下列有关分页式内存管理的叙述中正确的是______。

A.程序和数据是在开始执行前一次性和装入的B.产生缺页中断一定要淘汰一个页面C.一个被淘汰的页面一定要写回外存D.在页面中有“访问位”和“修改位”等消息9. 在可变式分配方案中,最佳适应算法是将空白区在空白区表中按______次序排列。

A.地址递增B.地址递减C.容量递增D.容量递减10. 在可变分区分配方案中,将空白分区按地址递增次序排列是要采用______。

操作系统第17讲 习题三new

操作系统第17讲 习题三new

A,B(1)提高系统吞吐量(2)提高存储空
间的利用率(3)降低存储费用(4)提高换入换出
的速度。
10
东北大学秦皇岛分校计算机与通信工程学院
第四章 存储器管理
5、对重定位存储管理方式,应(A),当程序执行时,
是由(B)与(A)中的(C)相加得到(D),用(D)
来访问内存。
A(1)在整个系统中设置一个重定位寄存器;(2)
Ⅰ. 修改页表 Ⅱ.磁盘I/O Ⅲ.分配页框
A.仅Ⅰ、Ⅱ B.仅Ⅱ C.仅Ⅲ D.Ⅰ、Ⅱ和Ⅲ
21
东北大学秦皇岛分校计算机与通信工程学院
第四章 存储器管理
10.当系统发生抖动(thrashing)时,可用采取
的有效措施是()
Ⅰ. 撤销部分进程
Ⅱ.增加磁盘交换区的容量
Ⅲ.提高用户进程的优先级
A.仅Ⅰ B.仅Ⅱ C.仅Ⅲ D.仅Ⅰ、Ⅱ
空闲区大小递减
8
东北大学秦皇岛分校计算机与通信工程学院
第四章 存储器管理
3、在回收内存时能出现下述几种情况(1)释放区与插
入点前一分区F1相邻,此时应(A);(2)释放区与
插入点后一分区F2相临界,此时应(B);(3)释放
区不与F1和F2相邻接,此时应(C)。
A,B,C:(1)为回收分区建立一分区表项,填上分
第四章 存储器管理
1、在动态分区式内存管理中,倾向于优先使用低
地址部分的空闲区的算法是(A);能使内存空间
中空闲分区分布得较均匀的算法是(B);每次分
配时,把即能满足需要,又能最小的空间区分配给
进程的算法是(C)
A,B,C:(1)最佳适应算法;(2)最坏适
应算法;(3)首次适应算法(4)循环首次适应算

操作系统复习存储器管理

操作系统复习存储器管理

第一章 存储器管理4.1 存储器的层次结构—存储器应容量大,便宜,速度跟上处理器4.1.1 多级存储器结构通常有三层,细分为六层,如图4-1, 越往上,速度越快,容量越小,价格越贵; 寄存器和主存又称可执行存储器,进程可直接用指令访问,辅存只能用I/O 访问;4.1.2 主存储器与寄存器1.主存储器---内存,保存进程运行时的程序和数据;CPU与外围设备交换的信息一般也依托于主存储器地址空间;为缓和访存速度远低于CPU 执行指令的速度,在计算机系统中引入了寄存器和高速缓存;2.寄存器---与CPU 协调工作,用于加速存储器的访问速度,如用寄存器存放操作数,或用地址寄存器加快地址转换速度等;4.1.3 高速缓存和磁盘缓存1.高速缓存---根据程序执行的局部性原理将主存中一些经常访问的信息程序、数据、指令等存放在高速缓存中,减少访问主存储器的次数,可大幅度提高程序执行速度;2.磁盘缓存---将频繁使用的一部分磁盘数据和信息,暂时存放在磁盘缓存中,可减少访问磁盘的次数;它依托于固定磁盘,提供对主存储器存储空间的扩充,即利用主存中的存储空间,来暂存从磁盘中读/写入的信息;4.2 程序的装入和链接多道程序运行,需先创建进程;而创建进程第一步是将程序和数据装入内存;将源程序变为可在内存中执行的程序,通常都要经过以下几个步骤:编译---若干个目标模块;链接---链接目标模块和库函数,形成装入模块;装入---图 4-2 对用户程序的处理步骤寄存器高速缓存主存磁盘缓存磁盘可移动存储介质CPU 寄存器主存辅存第一步第二步第三步内存4.2.1 程序的装入——无需连接的单目标模块装入理解装入方式1. 绝对装入方式Absolute Loading Mode ---只适用单道程序环境如果知道程序的内存位置,编译将产生绝对地址的目标代码,按照绝对地址将程序和数据装入内存;由于程序的逻辑地址与实际内存地址完全相同,故不须对程序和数据的地址进行修改;绝对地址:可在编译时给出或由程序员直接赋予;若由程序员直接给出,不利于程序或数据修改,因此,通常是在程序中采用符号地址,然后在编译或汇编时转换为绝对地址;2. 可重定位装入方式Relocation Loading Mode ---适于多道程序环境多道程序环境下,编译程序不能预知目标模块在内存的位置;目标模块的起始地址是0,其它地址也都是相对于0计算的;此时应采用可重定位装入方式,根据内存情况,将模块装入到内存的适当位置,如图4-3 作业装入内存时的情况 ;3.动态运行时装入方式Dynamic Run-time Loading ---适于多道程序环境可重定位装入方式并不允许程序运行时在内存中移动位置;但是,在运行过程中它在内存中的位置可能经常要改变,此时就应采用动态运行时装入方式;动态运行时的装入程序,在把装入模块装入内存后,并不立即把装入模块中的相对地址转换为绝对地址,而是把这种地址转换推迟到程序真正执行时才进行;因此,装入内存后的所有地址都仍是相对地址;问题:程序装入内存后修改地址的时机是什么4.3 连续分配方式4.3.3 动态分区分配——根据进程需要动态分配内存1. 分区分配中的数据结构1 空闲分区表—用若干表目记录每个空闲分区的分区序号、分区始址及分区的大小等数据项;2 空闲分区链--为实现对空闲分区的分配和链接,在每分区起始部分,设置前向指针,尾部则设置一后向指针;为检索方便,在分区前、后向指针中,重复设置状态位和分区大小表目;当分0内存空间区被分配后,把状态位由“0”改为“1”时,前、后向指针失去意义;图 4-5 空闲链结构2. 分区分配算法P1231首次适应算法first-fit —空闲分区链以地址递增次序链接 每次按分区链的次序从头查找,找到符合要求的第一个分区;2 循环首次适应算法—FF 算法的变种从上次找到的空闲分区位置开始循环查找,找到后,修改起始查找指针; 3 最佳适应算法—空闲分区按容量从小到大排序 把能满足要求的、最小的空闲分区分配给作业 4 最坏适应算法——空闲分区按容量从大到小排序 挑选最大的空闲区分给作业使用;5) 快速适应算法—根据容量大小设立多个空闲分区链表3. 分区分配操作1.分配内存请求分区u.size; 空闲分区m.size; m.size-u.size ≤size,说明多余部分太小, 不再切割,将整个分区分配给请求者;否则从该分区中划分一块请求大小的内存空间,余下部分仍留在空闲分区链;如图4-6 内存分配流程;2.回收内存1 回收区与插入点的前一空闲分区F1相邻:合并,修改F1大小;2 回收区与后一空闲分区F2相邻:合并,修改首地址和大小;3 回收区同时与前、后两个分区邻接:合并,修改F1大小,取消F2;4 回收区不邻接:新建表项,填写首地址和大小,并插入链表;如图前向指针N +20N 个字节可用后向指针N +2图 4-6 内存分配流程4.3.6 可重定位分区分配1.动态重定位的引入例:在内存中有四个互不邻接的小分区,容量分别为10KB 、30KB 、14KB 和26KB;若现有一作业要获得40KB 的内存空间,因连续空间不足作业无法装入;可采用的一种解决方法是:通过移动内存中作业的位置,以把原来多个分散的小分区拼接成一个大分区的方法,称为“拼接”或“紧凑;由于用户程序在内存中位置的变化,在每次“紧凑”后,都必须对移动了的程序或数据进行重定位;图 4-8 紧凑的示意4.3.7 对换即中级调度1. 对换Swapping 的引入(a ) 紧凑前(b ) 紧凑后“活动阻塞”进程占用内存空间;外存上的就绪作业不能进入内存运行;所谓“对换”,是指把内存中暂时不能运行的进程或者暂时不用的程序和数据,调出到外存上,以便腾出足够的内存空间;再把已具备运行条件的进程或所需要的程序和数据,调入内存;对换是提高内存利用率的有效措施;根据对换单位可分为:进程对换、页面对换和分段对换;为了能实现对换,系统应具备以下三方面功能:对换空间的管理、进程的换出与换入2. 进程的换出与换入1进程的换出选择阻塞且优先级最低的进程,将它的程序和数据传送到磁盘对换区上;回收该进程所占用的内存空间,并对该进程的进程控制块做相应的修改;2进程的换入找出“就绪” 但已换出到磁盘上时间最久的进程作为换入进程,将之换入,直至已无可换入的进程;4.4 基本分页存储管理方式前面的连续分配方案会形成许多“碎片”,“紧凑”方法可以解决碎片但开销大;是否允许进程离散装入 离散单位不同,称分页式存储和分段式存储;不具备对换功能称为“基本分页式”,支持虚拟存储器功能称为“请求基本分页式”;4.4.1 页面与页表1. 页面1 页面和物理块---将进程的逻辑地址空间分成若干个大小相等的片,称为页面,并为各页编号;相应地把内存空间分成与页面相同大小的若干个存储块,称为物理块,也同样编号;分配时,将进程中的页装入到物理块中,最后一页经常装不满一块而形成 “页内碎片”;2 页面大小---页面的大小应选择适中;页面太小,内存碎片减小,利用率高;但页表过长,占大量内存;页面较大,页表长度小;但页内碎片大;因此,页面的大小应选择得适中,且页面大小应是2的幂,通常为512 B~8 KB;2. 地址结构分页地址中的地址结构如下:31 12 11 0它含有两部分:页号P12~31位,最多有1M 页和页内位移量W0~11位,每页的大小4KB ; 对某特定机器,其地址结构是一定的;若给定一个逻辑地址空间中的地址为A,页面的大小为L,则页号P 和页内地址d 可按下式求得:MODL A d L A INT P ][=⎥⎦⎤⎢⎣⎡=3. 页表---实现从页号到物理块号的地址映射用户程序0 页1 页2 页3 页4 页5 页…n 页页表内存4.4.2 地址变换机构任务:将逻辑地址转换为物理地址;页内地址变换:因页内地址与物理地址一一对应, 可直接转换;页号变换:页表可实现从逻辑地址中页号到内存中物理块号的变换; 1.基本的地址变换机构a. 页表功能可由一组专门的寄存器实现原理;b. 页表大多驻留内存,系统中只设置一页表寄存器来存放页表在内存的始址和页表长度实际操作;c. 进程未执行时,页表始址和长度存放在PCB 中;执行时才将这两个数据装入页表寄存器中过程;图 4-12 分页系统的地址变换机构2. 具有快表的地址变换机构a. 仅用页表寄存器时,CPU 每存取一数据要两次访问内存页表-地址变换-数据;b. 为提高地址变换速度,可在地址变换机构中增设一具有并行查寻能力的特殊高速缓冲寄存器用以存放当前访问的那些页表项,称为“快表”;c. ->在CPU 给出逻辑地址,将页号P 送入快表 ->页号匹配,读物理块号后送物理地址寄存器->无匹配页号,再访问内存中页表,把从页表项中读出的物理块号送地址寄存器;同时,再将此页表项存入到快表中;->如快表已满,则OS 须找到一换出页表项换出; 为什么增加“快表”为了提高地址变换速度,可在地址变换机构中增设一个具有并行查寻能力的特殊高速缓冲寄存器,又称为“联想寄存器”Associative Memory,或称为“快表 “快表”有何缺点越界中断图 4-13 具有快表的地址变换机构4.5 基本分段存储管理方式4.5.1 分段存储管理方式的引入为什么引入推动内存从固定分配到动态分配直到分页存储,主要动力是内存利用率,而引入分段存储管理方式,主要是为了满足用户和程序员的下述一系列需要:1方便编程---把作业按逻辑关系划分为若干段,每段有自己的名字和长度,并从0开始编址;LOAD 1,A|<D>; STORE 1,B|<C>2 信息共享---段是信息的逻辑单位;为实现共享,存储管理应与用户程序分段的组织方式相适应;3 信息保护---对信息的逻辑单位进行保护,应分段管理;4 动态增长---分段存储能解决数据段使用过程中动态增长;5 动态链接---运行过程中动态调入以段为单位的目标程序;4.5.2 分段系统的基本原理1. 分段作业划分为若干段,如图4-16,每个段用段号来代替段名,地址空间连续;段的长度由逻辑信息长度决定,因而各段长度不等;其逻辑地址由段号段名和段内地址所组成,结构如下: 31 16 15 0该地址结构中,允许一个作业最多有64K 个段,每个段的最大长度为64KB;编译程序能自页表寄存器逻辑地址L 物理地址动根据源程序产生若干个段;2.段表,其中每段占一个表项,中;图4-16 利用段表实现地址映射3.分页和分段的主要区别1 页是信息的物理单位,分页是为提高内存的利用率,是为满足系统管理的需要;段则是信息的逻辑单位,分段是为了能更好地满足用户的需要;2 页的大小固定且分页由系统硬件实现;而段的长度不固定,通常由编译程序根据信息的性质来划分;3 分页的作业地址空间是一维的,程序只需一个地址记忆符;而分段的作业地址空间是二维的,程序员既需给出段名,又需给出段内地址;4.5.3 信息共享可重入代码纯代码:允许多个进程同时访问的代码;绝对不允许可重入代码在执行中改变,因此,不允许任何进程修改它;4.5.4 段页式存储管理方式1.基本原理---,,,4KB;作业空间内存空间子程序段数据段(a)段号(S)段内页号(P)页内地址(W)(b)主程序段图4-21 利用段表和页表实现地址映射4.6 虚拟存储器的基本概念前面各种存储器管理方式共同点:它们要求将一个作业全部装入内存后方能运行,于是出现了下面这样两种情况:1 有的作业很大,其所要求的内存空间超过了内存总容量,作业不能全部被装入内存,致使该作业无法运行;2 有大量作业要求运行,但由于内存容量不足以容纳所有这些作业,只能将少数作业装入内存让它们先运行,而将其它大量的作业留在外存上等待;4.5.1 虚拟存储器的引入1.常规存储器管理方式的特征1 一次性;将作业全部装入内存后方能运行,此外有许多作业在每次运行时,并非其全部程序和数据都要用到;一次性装入,造成了对内存空间的浪费;2 驻留性;作业装入内存后一直驻留,直至运行结束;尽管因故等待或很少运行,都仍将继续占用宝贵的内存资源;现在要研究的问题是:一次性及驻留性在程序运行时是否必需;2.局部性原理早在1968年, Denning.P就曾指出:1 程序执行时,除了少部分的转移和过程调用指令外,在大多数情况下仍是顺序执行的;2 过程调用将会使程序的执行轨迹由一部分区域转至另一部分区域,但经研究看出,过程调用的深度在大多数情况下都不超过5;3 程序中存在许多循环结构,这些虽然只由少数指令构成, 但是它们将多次执行;4 程序中还包括许多对数据结构的处理, 如对数组进行操作,它们往往都局限于很小的范围内;局限性主要表现在下述两个方面:1 时间局限性-由于循环操作的存在;如果程序中的指令或数据一旦执行,则不久以后可能再次访问;2 空间局限性-由于程序的顺序执行;程序在一段时间内所访问的地址,可能集中在一定的范围之内;3. 虚拟存储器定义---基于局部性原理程序运行前,仅须将要运行的少数页面或段装入内存便可启动,运行时,如果需要访问的页段尚未调入内存缺页或缺段,用OS提供请求调页段功能调入;如果此时内存已满,则还须再利用页段的置换功能,将内存中暂时不用的页段调至外存,腾出足够的内存空间后,再将要访问的页段调入;所谓虚拟存储器,是指具有请求调入功能和置换功能,能从逻辑上扩充内存容量的一种存储器系统;其逻辑容量由内存容量和外存容量之和所决定,其运行速度接近于内存,成本接近于外存;4.6.3 虚拟存储器的特征1)多次性---一个作业被分成多次调入内存运行,最初装入部分程序和数据,运行中需要时,再将其它部分调入;2)对换性---允许在作业的运行过程中进行换进、换出;换进和换出能有效地提高内存利用率;3)虚拟性---从逻辑上扩充内存容量,使用户所看到远大于实际内存容量;这是虚拟存储器最重要的特征和最重要的目标;4)离散性---是以上三个特性的基础,在内存分配时采用离散分配的方式;备注:虚拟性是以多次性和对换性为基础的,而多次性和对换性又必须建立在离散分配的基础上;4.7 请求分页存储管理方式4.6.1 请求分页中的硬件支持---页表、缺页中断和地址变换请求分页系统是在分页的基础上,增加了“请求调页”和“页面置换”功能,每次调入和换出基本单位都是长度固定的页,实现比请求分段简单;1.页表机制---将用户地址空间中的逻辑地址变换为内存空间中的物理地址,因只将部分调入内存,需增设若干项;在请求分页系统中的每个页表项如下所示:1 状态位P:该页是否已调入内存,供访问时参考;2 访问字段A:记录一段时间内本页被访问的频率,供选择换出页时参考;3 修改位M:页在调入内存后是否被修改过,供置换页面时参考;4 外存地址:指出该页在外存上的地址,即物理块号,供调入该页时参考;4.7.2 内存分配策略和分配算法1.最小物理块数的确定是指能保证进程正常运行所需的最小物理块数,当系统为进程分配的物理块数少于此值时,进程将无法运行;进程应获得的最少物理块数与计算机的硬件结构有关;对于某些简单的机器,所需的最少物理块数为2,分别用于存放指令和数据,间接寻址时至少要有三块;对于某些功能较强的机器,因其指令本身、源地址和目标地址都可能跨两个页面,至少要为每个进程分配6个物理块,以装入这些页面;2. 物理块的分配策略请求分页系统的两种内存分配策略:即固定和可变分配策略;两种置换策略:即全局置换和局部置换;可组合出以下三种策略;1 固定分配局部置换Fixed Allocation, Local Replacement--每进程分配一定数目的物理块,在整个运行期间都不再改变,换入换出都限于这些物理块;每个进程物理块难以确定,太多太少都不好2 可变分配全局置换Variable Allocation, Global Replacement --每进程分配一定数目的物理块,OS 保持一空闲物理块队列;进程缺页时,摘下一空闲块,并将该页装入;3 可变分配局部置换Variable Allocation, Local Replacemen --每进程分配一定数目的物理块;进程缺页时,只允许从该进程内存页中选出一页换出;若缺页中断频繁,再为该进程分配若干物理块,直至缺页率减少;若缺页率特低,则减少该进程的物理块数,应保证缺页率无明显增加;3. 物理块分配算法1 平均分配算法--将所有可供分配的物理块,平均分配给各个进程; 例如,有100个物理块,5个进程,每进程可分20个物理块;未考虑到各进程本身的大小;2 按比例分配算法--根据进程的大小按比例分配物理块;共n 个进程,每进程页面数为si,则页面数的总和为:设可用的物理块为m,每进程分到的物理块数为bi,有:3 考虑优先权的分配算法--为了照顾重要、紧迫的作业尽快完成,为它分配较多的空间;通常采取:把可供分配的物理块分成两部分:一部分按比例分给各进程;另一部分根据优先权分给各进程;有的系统是完全按优先权来分配;4.7.3 调页策略1. 何时调入页面1 预调页策略缺页前 :页面存放连续,用预测法一次调入多个相邻页,预测成功率仅为50%;2 请求调页策略缺页时:运行中,发现不在内存,立即请求,由OS 调入;2. 从何处调入页面请求分页系统中外存分为两部分:文件区和对换区;这样,当发生缺页请求时,系统应从何处将缺页调入内存:1 系统拥有足够的对换区,可以全部从对换区调入所需页面;在进程运行前,须将有关的文件拷贝到对换区;2 系统缺少足够的对换区,这时凡是不会被修改的文件,都直接从文件区调入,由于它们未被修改而不必换出;但对于可能被修改的部分,换出时调到对换区,以后需要时,再从对换区调入;3 UNIX 方式;凡是未运行过的页面,都应从文件区调入;曾运行过但已换出的页面,放在∑==ni iS S 1m SS b ii ⨯=对换区,下次应从对换区调入;4.8 页面置换算法当进程运行时,所访问的页面不在内存而需要将他们调入内存,但内存无空闲时,需要选择一页面换出到对换区,选择算法即页面置换算法;算法评价:页面置换频率低,调出页面将不会或很少访问;4.8.1 最佳置换算法和先进先出置换算法1. 最佳Optimal 置换算法由Belady 于1966年提出的一种理论上的算法;原理:其所选择的被淘汰页面,将是以后永不使用的, 或是在最长未来时间内不再被访问的页面;特点:通常可获得最低的缺页率,但由于进程运行不可预知而无法实现,用来评价其他算法;假定系统为某进程分配了三个物理块,并考虑有以下的页面号引用串:7,0,1,2,0,3,0,4,2,3,0,3,2,1,2,0,1,7,0,1进程运行时,先将7,0,1三页装入内存;当进程要访问页面2时,将会产生缺页中断,此时OS 根据最佳置换算法,将选择页面7予以淘汰;共发生6次页面置换;图 4-25 利用最佳页面置换算法时的置换图 2. 先进先出FIFO 页面置换算法---总是置换最先进入内存的页面;用FIFO 算法共发生12次页面置换;该算法与进程的实际运行规律不相符,有些页面经常被访问全局变量,常用函数;图 4-26 利用FIFO 置换算法时的置换图4.8.2 最近最久未使用Least Recently Used LRU 置换算法1. LRU置换算法 ---在无法预测各页面将来使用情况下,利用“最近过去”作为“最近将来”的近似选择最近最久未使用的页面予以淘汰;用LRU 算法共发生9次页面置换;引用率70770170122010320304243230321201201770101页框(物理块)203图 4-27 LRU 页面置换算法2. LRU 置换算法的硬件支持LRU 算法比较好,但为了快速知道哪一页是最近最久未使用的页面,需要硬件支持:寄存器或栈;1 寄存器为了记录某进程在内存中各页的使用情况,须为每个页面配置一个移位寄存器,可表示为:原理:进程访问某物理块时,先将寄存器的Rn-1位设成1;此时,定时信号将每隔一定时间将寄存器右移一位;若将n 位寄存器的数看做是一整数,那么,具有最小数值的寄存器所对应的页面,就是最近最久未使用的页面;例:某进程在内存中有8个页面,为每页面配置一8位寄存器时的LRU 访问情况,如图4-28图 4-28 某进程具有8个页面时的LRU 访问情况2 栈--利用栈来保存当前使用的各页面的页面号;原理:每当进程访问某页面时,便将该页面的页面号从栈中移出,将它压入栈顶;因此,栈顶始终是最新被访问页面的编号,而栈底则是最近最久未使用页面的页面号;假定现有一进程所访问的页面的页面号序列为:4,7,0,7,1,0,1,2,1,2,6随着进程的访问,栈中页面号的变化情况如图4-29所示;在访问页面6时发生了缺页,此时页面4是最近最久未被访问的页,应将它置换出去;LRU 算法较好,但要求较多硬件支持, 实际使用接近LRU算法-Clock 算法;图引用率70770170122010323104430230321013201770201页框2304204230230127127011474074704170401741074210741207421074621074-29 用栈保存当前使用页面时栈的变化情况。

操作系统练习

操作系统练习

(1) 计算机系统是由和两部分内容所组成的。

为了使计算机系统能协调一致地工作,就需要由对系统中的资源进行管理。

(2) 操作系统中引入多道程序设计技术以后,宏观上并行、微观上串行。

同时存在于内存中并处于运行状态的多道作业从宏观上看是,微观上看是。

(3) 操作系统就是有效地管理计算机系统中的各种,合理地组织计算机的,以方便用户的一组构成的集合。

(4) 所谓操作系统的不确定性,是指在操作系统控制下多道作业的和每个作业是不确定的。

(5) 从资源管理的角度出发,作为管理计算机系统资源、控制程序运行的操作系统,其功能可以简单归纳为、、、、。

(6) 为了便于构造安全可靠的操作系统,现代计算机硬件都提供了两种处理机状态。

这两种状态分别是和。

(7) 现代操作系统具有4 个主要特征:、、和。

(8) 操作系统是加在上的第一层软件,它的功能与运行直接依赖于硬件环境,与硬件的关系尤为密切,和是实现多道程序设计技术的基础。

2. 综合题(1) 什么是操作系统?操作系统的基本特征是什么?(2) 操作系统在计算机系统中处于什么地位?具有哪些功能?(3) 操作系统具有哪些基本类型?(4) 操作系统提供哪些接口?它们的作用是什么?(5) 操作系统的结构在发展过程中发生了哪些变化?(6) 什么是通道?通道的作用是什么?(7) 什么是管态和目态?为什么设置管态和目态?(8) 假设在内存中有三道程序A、B、C,并按A、B、C 的优先次序运行,其中A 程序的运行记录:计算30ms,I/O 操作40ms,计算10ms;B 程序的运行记录:计算60ms, I/O 操作30ms,计算10ms;C 程序的运行记录:计算20ms,I/O 操作40ms,计算20ms。

试画出按多道程序运行的时间关系图(调度程序的时间忽略不计),完成这三道程序共花多少时间?比单道运行节省多少时间?1. 选择题(1) 作业由( )3 部分组成。

A. 程序、数据和作业说明书B. 程序、算法和作业说明书C. 程序、JCB 和作业说明书D. 程序、函数和作业说明书(2) 作业调度程序是从( )状态的队列中选取适当的作业投入运行。

计算机操作系统习题(存储器管理)

计算机操作系统习题(存储器管理)

19、请求分页存储管理中,若把页面尺寸增加一 倍,在程序顺序执行时,则一般缺页中断次数会 ( B )。 A.增加 B.减少 C.不变 D.可能增加 也可能减少 20、碎片是指( D )。 A、存储分配完后所剩的空闲区 B、没有被使用的存储区 C、不能被使用的存储区 D、未被使用,而又暂时不能使用的存储区
E、利用交换技术扩充内存时,设计时必须考虑的 问题是:如何减少信息交换量、降低交换所用的时 间; F、在现代操作系统中,不允许用户干预内存的分 配; G、采用动态重定位技术的系统,目标程序可以不 经任何改动,而装入物理内存; H、页式存储管理中,一个作业可以占用不连续的 内存空间,而段式存储管理,一个作业则是占用连 续的内存空间。
11、 文件的存储器是分成大小相等的 物理块 ,并以它为单位交换信息。 12、 从资源分配的角度看,可以把设备分为独 占设备和共享设备。打印机属于 独占 设备,而磁 盘属于 共享 设备。 13、 虚拟设备是通过 SPOOLing 技术 把 独占 设备变成能为若干用户 共享 的设备。 14、 通道是一个独立于 cpu 的专管 的处理机,它控制 与内存之间的信息交换。
空闲区表项按( A.地址从大到小 )进行排列。 B.地址从小到大
C.尺寸从大到小
主要受( )的限制。
D.尺寸从小到大
32.在提供虚拟存储的系统中,用户的逻辑地址空间 A.内存空闲块的大小 B.外存的大小 C.计算机编址 范围 D.页表大小
33.在页式管理中,页表的始址存放在(D )
A.内存中 B.存储页面表中 C.联想存储器中 D.寄存器中 34.在段页式存储管理中,其虚拟地址空间是( ) A.一维 B.二维 C.三维 D.层次
3. 在存储器管理中,页面是信息的________单 位,分段是信息的________单位。页面大小由 _________确定,分段大小由_________确定。 5、从用户的源程序进入系统到相应程序的机器上 运行,所经历的主要处理阶段有____________, ____________,____________, ____________和____________。

操作系统复习题及其答案

2.设某分时系统采用时间片轮转发实施进程调度,进程有三种基本状态:执行、就绪和等待。试说明:
(1)进程进行下列状态变化的典型原因:
执行→等待→就绪→执行→就绪
(2)该系统中引起进程调度的三种主要原因。
3.有5个待运行的作业A、B、C、D、E,它们的运行时间分别为10,6,2,4和8个时间单位,其提交时间完全相同,其优先级分别为3,2,5,1,4。其中5级为最高优先级,对于下列调度算法,计算其平均周转时间。①轮转调度算法(时间片为2个时间单位)②优先级调度
(1)有多少位用来指定二级索引?
(2)一级页表中有多少项?
(3)二级页表中有多少项?
.√
11.√
21.×
2.×
12.×
22.√
3.√
13.×
23.√
4.√
14.√
24.×
5.√
15.√
25.√
6.×
16.×
26.√
7.×
17.×
27.×
8.×
18.×
[2]
13.由于用户的响应时间要求,因此要求设置大的时间片长度。
[2]
14.采用LRU置换算法时,当驻留集增大时,页故障率一定不会增加。
[1]
15.进程在运行过程中,请问和释放资源顺序不当,同样可以引起死锁。
[1]
16.系统处于不安全状态时一定发生了死锁。
[2]
17.当系统同时具备了死锁的四个必要条件时就肯定会产生死锁。
(4)开放性:指的是产品和技术之间相互连接和协作的能力。
3.(1)处理机管理(2)存储器管理(3)设备管理(4)文件管理(5)用户接口
4.答:先来先服务调度算法:按照进程到达的先后顺序,先来的先接受服务

第4章存储器管理-题库及参考答案

第4章存储器管理-选择题参考答案一、选择题1.【2011统考】在虚拟内存管理中,地址变换机构将逻辑地址变换为物理地址,形成该逻辑地址的阶段是()A.编辑B.编译C.链接D.装载2.下面关于存储管理的叙述中,正确的是()A.存储保护的目的是限制内存的分配B.在内存为M、有N个用户的分时系统中,每个用户占M/N的内存空间C.在虚拟内存系统中,只要磁盘空间无限大,作业就能拥有任意大的编址空间D.实现虚拟内存管理必须有相应硬件的支持3.在使用交换技术时,若一个进程正在(),则不能交换出主存。

A.创建B.I/O操作C.处于临界段D.死锁4.在存储管理中,采用覆盖与交换技术的目的是()A.节省主存空间B.物理上扩充主存容量C.提高CPU效率D.实现主存共享5.【2009统考】分区分配内存管理方式的主要保护措施是()A.界地址保护B.程序代码保护C.数据保护D.保护6.【2010统考】某基于动态分区存储管理的计算机,其主存容量为.55MB(初始为空),采用最佳适配算法,分配和释放的顺序为;分配15MB,分配30MB,释放15MB,分配8MB,分配6MB,此时主存中最大空闲分区的大小是()A.7MBB.9MBC.10MBD.15MB7.段页式存储管理中,地址映射表是()A.每个进程一张段表,两张页表B.每个进程的每个段一张段表,一张页表C.每个进程一张段表,每个段一张页表D.每个进程一张页表,每个段一张段表8.内存保护需要由()完成,以保证进程空间不被非法访问A.操作系统B.硬件机构C.操作系统和硬件机构合作D.操作系统或者硬件机构独立完成9.存储管理方案中,()可采用覆盖技术A.单一连续存储管理B.可变分区存储管理C.段式存储管理D.段页式存储管理10.在可变分区分配方案中,某一进程完成后,系统回收其主存空间并与相邻空闲区合并,为此需修改空闲区表,造成空闲区数减1的情况是()A.无上邻空闲区也无下邻空闲区B.有上邻空闲区但无下邻空闲区C.有下邻空闲区但无上邻空闲区D.有上邻空闲区也有下邻空闲区 11.设内存的分配情况如图所示。

存储器管理

第四章存储器管理第0节存储管理概述一、存储器的层次结构1、在现代计算机系统中,存储器是信息处理的来源与归宿,占据重要位置。

但是,在现有技术条件下,任何一种存储装置,都无法从速度、容量、是否需要电源维持等等多方面,同时满足用户的需求。

实际上它们组成了一个速度由快到慢,容量由小到大的存储装置层次。

图4-1 计算机系统存储器层次示意图2、各种存储器•寄存器、高速缓存Cache:容量很小、非常快速、昂贵、需要电源维持、CPU可直接访问;•内存RAM:容量在若干KB、MB、GB,中等速度、中等价格、需要电源维持、CPU可直接访问;•磁盘高速缓存:一般设于主存中;•多种类型的磁盘:容量在数MB或数GB,低速、价廉、不需要电源维持、CPU不可直接访问;由操作系统协调这些存储器的使用。

二、存储管理(主存管理)的目的1、尽可能地方便用户;提高主存储器的使用效率,使主存储器在速度、规模和成本之间获得较好的权衡。

(注意CPU和主存储器,这两类资源管理的区别)2、存储管理的主要功能:•地址重定位•主存空间的分配与回收•主存空间的保护和共享•主存空间的扩充三、逻辑地址与物理地址1、逻辑地址(相对地址,虚地址):用户源程序经过编译/汇编、链接后,程序内每条指令、每个数据等信息,都会生成自己的地址。

●一个用户程序的所有逻辑地址组成这个程序的逻辑地址空间(也称地址空间)。

这个空间是以0为基址、线性或多维编址的。

2、物理地址(绝对地址,实地址):是一个实际内存(字节)单元的编址。

●计算机内所有内存单元的物理地址组成系统的物理地址空间,它是从0开始的、是一维的;●将用户程序被装进内存,一个程序所占有的所有内存单元的物理地址组成该程序的物理地址空间(也称存储空间)。

四、地址映射(变换、重定位)当程序被装进内存时,通常每个信息的逻辑地址和它的物理地址是不一致的,需要把(程序中的)逻辑地址转换为对应的物理地址----地址映射;例如指令LOAD L,2500 /*将2500号单元内的数据送入寄存器L*/ ----P123图4-3 作业装进内存时的情况地址映射分静态和动态两种方式。

《存储器管理》PPT课件


地址转换过程是:
CPU获得的逻辑地址首先与下限寄存器 的值相加,产生物理地址;然后与上限寄存 器的值比较。 1、若大于上限寄存器的值,产生“地址越界” 中断信号,由相应的中断处理程序处理; 2、若不大于上限寄存器的值,则该物理地址 就是合法地址,它对应于内存中的一个存储 单元。
案例分析
【例3-1】在某系统中采用固定分区分配管理 方式,内存分区(单位字节)情况如图3-10a所 示。现有大小为1KB、9KB、33 KB、121KB 的多个作业要求进人内存,试画出它们进入 内存后的空间分配情况,并说明内存浪费有 多大?
内存的在系统中的地位
CPU
内存
I/O 系统
外设
内存在计算机系统中的地位
3.1.1 存储体系
存储器存取 时间减少 存储器存取 速度加快 每位存储器 成本增加 存储器容量 减少 外 存 高速缓存器
程序和数据 可以被CPU 直接存取 内 存
程序和数据必 须先移到内存, 才能被CPU访问
三级存储器结构
存储器管理
单一连续分配仅适用于 单道程序设计环境,处 理机、主存都不能得到 充分的利用。
操作系统
32 KB
作业 分配给用户作 业的空间 未用
64 KB
1 60 KB
浪费
单一连续分配
特点:
( 1 )管理简单。它把主存分为两个区,用户区一 次只能装入一个完整的作业,且占用一个连续的 存储空间。它需要很少的软硬件支持,且便于用 户了解和使用。 ( 2 )在主存中的作业不必考虑移动的问题,并且 主存的回收不需要任何操作。 ( 3 )资源利用率低。不管用户区有多大,它一次 只能装入一个作业,这样造成了存储空间的浪费, 使系统整体资源利用率不高。 (4)这种分配方式不支持虚拟存储器的实现。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

作业三:存储器管理(1)
一、选择题
1、段式和页式存储管理的地址结构很类似,但是它们有实质上的不同,以下错误的是()
A.页式的逻辑地址是连续的,段式的逻辑地址可以不连续
B.页式的地址是一维的,段式的地址是二维的
C.分页是操作系统进行的,分段是用户确定的
D.页式采用静态重定位方式,段式采用动态重定位方式
2、段页式管理中,地址映像表是()
A.每个进程一张段表,一张页表B.进程的每个段一张段表,一张页表
C.每个进程一张段表,每个段一张页表D.每个进程一张页表,每个段一张段表4.离散存储管理的主要特点是( ) 。

A.不要求将作业装入到内存的连续区域
B.不要求将作业同时全部装入到内存的连续区域
C.不要求进行缺页中断处理
D.不要求进行页面置换
5、计算机系统的二级存储包括()
A.CPU寄存器和主存缓冲区B.超高速缓存和内存储器
C.ROM和RAM D.主存储器和辅助存储器
6、某页式存储管理系统中,地址寄存器长度为24位,其中页号占14位,则主存的分块大小是()字节
A.210B.10 C.214 D.224
7 、在无快表的段页式存储管理系统中,为获得一条指令需要访问内存( )次
A.1 B.2 C.3D.4
二、简要解释
1、重定位
2、内部碎片和外部碎片
三、计算题
1、已知主存容量为512KB,其中操作系统代码占低址部分126KB,有作业序列如下:
作业1 要求 80KB;
作业2 要求 56KB;
作业3 要求 120KB;
作业1 完成
作业3 完成
作业4 要求 156KB;
作业5 要求 80KB;
试用最佳适应算法处理上述作业序列;并做以下工作:
(1)画出作业1,2,3进入系统后的内存分布情况;
(2)画出作业1,3完成后内存分布情况;
(3)画出作业4,5进入系统后的内存分布情况;
2、在采用分页存储管理系统中,地址结构长度为18位,其中11至17位表示页号,0到10位表示页内位移。

若有一作业的各页依次放入2,3,7号物理块中,请问:
(1)主存容量最大可为多少K?分为多少块?每块多大?
(2)逻辑地址1500应在几号页内?对应的物理地址为多少?
3、设有一页式存储管理系统,向用户提供的逻辑地址空间最大为16页,每页2048B,内存总共有8个存储块。

试问逻辑地址至少应为多少位?内存空间有多大?
4、某计算机有64位虚地址空间,页大小是2048B.每个页表项长为4B。

因为所有页表都必须包含在一页中,故使用多级页表,问一共需要多少级?
5、某系统采用段页式存储管理,其逻辑地址结构和某作业的段表、页表结构如下图所示。

请计算该作业中逻辑地址135468对应的物理地址(用十进制表示)。

相关文档
最新文档