智能自扫描键盘扩展芯片 - ----+ SI-EN +----

智能自扫描键盘扩展芯片 - ----+ SI-EN +----
智能自扫描键盘扩展芯片 - ----+ SI-EN +----

键盘与LED显示实验

实验三键盘及LED显示实验 一、实验内容 利用8255可编程并行接口控制键盘及显示器,当有按键按下时向单片机发送外部中断请求(INT0,INT1),单片机扫描键盘,并把按键输入的键码一位LED显示器显示出来。 二、实验目的及要求 (一)实验目的 通过该综合性实验,使学生掌握8255扩展键盘和显示器的接口方法及C51语言的编程方法,进一步掌握键盘扫描和LED显示器的工作原理;培养学生一定的动手能力。 (二)实验要求 1.学生在实验课前必须认真预习教科书与指导书中的相关内容,绘制流程图,编写C51语言源程序,为实验做好充分准备。 2.该实验要求学生综合利用前期课程及本门课程中所学的相关知识点,充分发挥自己的个性及创造力,独立操作完成实验内容,并写出实验报告。 三、实验条件及要求 计算机,C51语言编辑、调试仿真软件及实验箱50台套。 四、实验相关知识点 1.C51编程、调试。 2.扩展8255芯片的原理及应用。 3.键盘扫描原理及应用。 4.LED显示器原理及应用。

5.外部中断的应用。 五、实验说明 本实验仪提供了8位8段LED 显示器,学生可选用任一位LED 显示器,只要按地址输出相应的数据,就可以显示所需数码。 显示字形 1 2 3 4 5 6 7 8 9 A b C d E F 段 码 0xfc 0x60 0xda 0xf2 0x66 0xb6 0xbe 0xe0 0xfe 0xf6 0xee 0x3e 0x9c 0x7a 0x9e 0x8e 六、实验原理图 01e 1d 2dp 3 c 4g 56 b 78 9 a b c g d dp f 10a b f c g d e dp a 11GND3a b f c g d e dp 12 GND4 a b f c g d e dp GND1GND2DS29 LG4041AH 234 567 89A B C D E F e 1d 2dp 3 c 4g 56 b 78 9 a b c g d dp f 10a b f c g d e dp a 11GND3a b f c g d e dp 12 GND4 a b f c g d e dp GND1 GND2DS30 LG4041AH 1 2 3 4 5 6 7 8 JP4112345678 JP4712345678JP42 SEGA SEGB SEGC SEGD SEGE SEGG SEGF SEGH SEGA SEGB SEGC SEGD SEGE SEGG SEGF SEGH A C B 12345678 JP92D 5.1K R162 5.1K R163VCC VCC D034D133D232D331D430D529D628D727PA04PA13PA22PA31PA440PA539PA638PA737PB018PB119PB220PB321PB422PB523PB624PB725PC014PC115PC216PC317PC413PC512PC611PC7 10 RD 5WR 36A09A18RESET 35CS 6 U36 8255 D0D1D2D3D4D5D6D7WR RD RST A0A1PC5PC6PC7 PC2PC3PC4PC0PC1CS 12345678JP56 12345678JP53 12345678 JP52 PA0PA1PA2PA3PA4PA5PA6PA7PB0PB1PB2PB3PB4PB5PB6PB7 (8255 PB7)(8255 PB6)(8255 PB5)(8255 PB4)(8255 PB3)(8255 PB2)(8255 PB1)(8255 PB0) (8255 PC7)(8255 PC6)(8255 PC5)(8255 PC4)(8255 PC3)(8255 PC2)(8255 PC1)(8255 PC0) (8255 PA0) (8255 PA1) (8255 PA2) (8255 PA3) (8255 PA4) (8255 PA5) (8255 PA6) (PA7) I N T 0(P 3.2) I N T 0(P 3.3) 七、连线说明

矩阵按键识别技术

矩阵按键识别技术 矩阵按键部份由16个轻触按键按照4行4列排列,连接到JP50端口。将行线所接的单片机的I/O口作为输出端,而列线所接的I/O口则作为输入。这样,当按键没有按下时,所有的输出端都是高电平,代表无键按下。行线输出是低电平,一旦有键按下,则输入线就会被拉低,这样,通过读入输入线的状态就可得知是否有键按下了。 相关原理: 程序运行照片:

接线方法: 1、用一条8PIN数据排线,把矩阵按键部份的JP50,接到CPU部份的P1口JP44. 2、接8位数码管的数据线。将数码管部份的数据口 JP5接到CPU部份的P0口JP51. 3、接8位数码管的显示位线。将数码管部份的显示位口 JP8接到CPU部份的P2口JP52. ;本程序实现扫描按键显示功能. ;分别按16个键盘显示分别显示数字123A456B789C*0#D ;键盘口P1,数码管显示第二位p21, 数码管段位p0口 确定矩阵式键盘上何键被按下,介绍一种“行扫描法”。行扫描法又称为逐行(或列)扫描查询法,是一种最常用的按键识别方法. 程序流程图:

8031单片机的P1口用作键盘I/O口,键盘的列线接到P1口的低4位,键盘的行线接到P1口的高4位。列线P1.0-P1.3设置为输入线,行线P1.4-P.17设置为输出线。4根行线和4根列线形成16个相交点。 1、检测当前是否有键被按下。检测的方法是P1.4-P1.7输出全“0”,读取 P1.0-P1.3的状态,若P1.0-P1.3为全“1”,则无键闭合,否则有键闭合。 2、去除键抖动。当检测到有键按下后,延时一段时间再做下一步的检测判断。 3、若有键被按下,应识别出是哪一个键闭合。方法是对键盘的行线进行扫描。P1.4-P1.7按下述4种组合依次输出: 在每组行输出时读取P1.0-P1.3,若全为“1”,则表示为“0”这一行没有键闭合,否则有键闭合。由此得到闭合键的行值和列值,然后可采用计算法或查表法将闭合键的行值和列值转换成所定义的键值。 4、为了保证键每闭合一次CPU仅作一次处理,必须去除键释放时的抖动。 汇编语言参考程序: org 0000h ajmp main org 0080h main: mov dptr,#tab ;将表头放入DPTR lcall key ;调用键盘扫描程序 movc a,@a+dptr ;查表后将键值送入ACC mov p0,a ;将Acc值送入P0口

扫描矩阵键盘简介以及其FPGA设计思路

扫描键盘的设计思想和代码技巧非常值得学习。 首先扫描键盘可以节省FPGA 的引脚资源,例如一个4x4的扫描键盘有16个按键,如果不用扫描方式而是直接把16跟控制线接入FPGA ,就要16个引脚,而用扫描方式只需要4+4=8个引脚。尤其是随着键盘的增大,比如8x9=72的键盘,用扫描方式只需要17个引脚。 要想了解扫描键盘的原理,首先要知道矩阵键盘的电路结构。 如上图所示,矩阵键盘的某一个按钮按下会使对应的一条行线和列线导通,为了便于分析扫描过程做如下简化: 3.3v Row0 Row1 Row2 Row3 Col 0 Col 1 Col 2 Col 3 Row0 Row1 Row2 Row3 Col 0 Col 1 Col 2 Col 3 3 5 A E D C 2 B 9 8 F 4 6 0 1 7 接高电平 由FPGA 输出给键盘高低电平的组合,即是扫描码 键盘行线 高低电平的变化输入给FPGA

扫描键盘的工作状态分为两种: 第一种状态是判断是否有键按下,该状态下四根列线对应的电平状态是{col 0,col 1,col 2,col 3}=0000 。四根行线左端都接高电平,没有键被按下时,四根行线右端的状态是{row0,row1,row2,row3}=1111 。假如上图中按键3被按下了,也就是说row0和col 0接通了。那么四根行线右端的状态将会是{row0,row1,row2,row3}=0111 。也就是说,在第一种状态下,只要键盘行线输入FPGA的状态不是1111,就说明有键被按下了。马上进入第二状态。 第二种状态是判断具体哪个键被按下了。该状态下四根行线左端接高电平不变,四根列线对应的电平状态不断变化,由FPGA的输出的扫描码控制四根列线的电平状态。由第一状态的行线输入已经可以确定按键所处的行了。接下来只要再确定按键所处的列就可以确定到底哪个键被按下了。 如何根据行线的输入确定按键所处的列,奥妙就在于扫描码了。让列线以1000、0100、0010、0001的电平状态不断循环。假设上一状态确定按键处于row0行,那么随着扫描的进行,行线输入的变化规律如下表: 1000 0100 0010 0001 1000 0100 0010 0001 1000 0100 0010 0001 扫描 码 Row0 1 0 0 0 1 0 0 0 1 0 0 0 Row1 1 1 1 1 1 1 1 1 1 1 1 1 Row2 1 1 1 1 1 1 1 1 1 1 1 1 Row3 1 1 1 1 1 1 1 1 1 1 1 1 观察上表可以发现,在row0是1的时候与之对应的扫描码可以体现出按键所在列。 一个随之而来的设计思路是在第一状态确定按键所在行,然后在第二状态捕捉特定行是高电平的时候所对应的扫描码。 但是这里有一个不可避免的实际问题,那就是机械键盘的抖动!这种抖动主要体现在两个方面:第一,我们手指按某个键的时候可能由于接触面积大无意中碰到周围的键。第二,在按着一个键的时候由于力度不均或者接触不良,行线和列线并不能时刻保持接通的状态。下图来自网络上,描述的是单片机的机械键盘,借用一下。

CPU控制的键盘扫描实验

CPU键盘扫描实验 电路图如下: 要求按下s1键时,p3口的8位LED正向流水点亮;按下s2键时,p3口的8位LED反向流水点亮;按下s3键时,p3口的8位LED 熄灭;按下s4键时,p3口的8位LED闪烁。 程序代码: #include unsigned char tab[ ]={0xfe,0xfd,0xfb,0xf7,0xef,0xdf,0xbf,0x7f}; //段码表 sbit S1=P1^4; //将S1位定义为P1.4引脚 sbit S2=P1^5; //将S2位定义为P1.5引脚 sbit S3=P1^6; //将S3位定义为P1.6引脚 sbit S4=P1^7; //将S4位定义为P1.7引脚 /*流水灯延时*/ void delay0() { unsigned char i,j; for(i=0;i<250;i++) for(j=0;j<250;j++) ;

} /*软件消抖延时*/ void delay1() { unsigned char i,j; for(i=0;i<100;i++) for(j=0;j<100;j++) ; } /*正转*/ void zheng() { int i; for(i=0;i<8;i++) {P3=tab[i]; delay0();} } /*反转*/ void fan() { int i; for(i=7;i>=0;i--) {P3=tab[i]; delay0();} } /*关闭*/ void close() { P3=0xff; } /*闪烁*/ void shan() { P3=0xff; delay0(); P3=0x00; delay0();

4乘4矩阵键盘输入数码管显示四位数

综合课程设计三相步进电机控制器电路的设计 学生姓名__________

指导教师_________ 课程设计任务书 一、设计说明 步进电机是工业过程控制及仪表控制中的主控元件之一,作为执行元件其特点为能够快速起启停、精度高且能直接接收数字量,由于这些特点使其在定位场合得到了广泛的应用。 设计一个三相步进电机控制器,使其能够控制步进电机的工作状态,如步进电机正、反转,步进电机的工作方式等。 用键盘设定步进电机的工作频率,工作方式,并用数码管显示设定值,可以通过按键来更换显示内容。用示波器观测三相的输出波形,并用数码管显示电路的工作状态。 二、技术指标 步进电机的工作频率为:<10kHz 三、设计要求 1.进行方案论证,提出一个合理的设计方案并进行理论设计; 2.对所设计的方案部分进行调试; 3.在选择器件时,应考虑成本。 4.设计测量调试电路。 四、实验要求 1.根据技术指标制定实验方案;验证所设计的电路。 2.进行实验数据处理和分析。 五、推荐参考资料 1?谢自美?电子线路设计?实验?测试.[M]武汉:华中理工大学出版社,2000 年 2. 阎石. 数字电子技术基础. [M] 北京:高等教育出版社,2006年 3. 童诗白、华成英.模拟电子技术基础. [M] 北京:高等教育出版社,2006年 4..付家才. 电子实验与实践. [M] 北京:高等教育出版社,2004年 5.沙占友、李学芝著.中外数字万用表电路原理与维修技术. [M] 北京:人民 邮电出版社,1993年

六、按照要求撰写课程设计报告成绩评定表

一、概述 本次毕设的题目是:三相步进电机控制电路的设计。本次毕设使用80C51单片机作为主控芯片,利用ULN2003A集成电路作为三相步进电机的驱动电路,采用单极性驱动方式,使三相步进电机能在(1)三相单三拍,(2)三相双三拍, (3)三相六拍三种工作方式下正常工作;能实现的功能有:启动/停止控制、方向控制;速度控制;用LED数码管显示工作方式。键盘输入工作频率。本次课程设计采用80C51单片机作为主控芯片,程序采用C语言来编写,驱动电路采用ULN2003A集成电路,显示采用 7SEG-MPX4-CC卩四位共阴数码管,P0接段码,并用8只1K欧左右电阻上拉。P2的4位10 口接位选码。正转,数码管显示1。反转,数码管显示2.不转,数码管显示0.采用Proteus软件进行仿真。在Keil uVsuon3编程环境下编程和编译生成HEX文件,导入到 80C51单片机,实现对各个模块的控制,实现我们所需要的功能。 本次课程是对毕业设计的基础设计,即实现4x4键盘输入,数码管显示输入数字的设计。 二、方案论证 1步进电机驱动方案选择 方案1 :使用功率三极管等电子器件搭建成功率驱动电路来驱动电机的运行。这种方案的驱动电路的优点是使用电子器件联接,电路比较简单,但容易受 干扰,信号不够稳定,缺点是器件较大而不便电路的集成,使用时很不方便,联接时容易出错误。 方案2:使用专门的电机驱动芯片ULN2003A来驱动电机运行。驱动芯片的优点是便于电路的集成,且驱动电路简单,驱动信号很稳定,不易受外界环境的干扰,因而设计的三相步进电机控制系统性能更好。 通过对两种方案的比较,我选择方案2使用ULN2003A S机驱动芯片来作为驱动。 2数码管显示方案选择 方案1:把所需要显示的数据通过专用的七段显示译码器(例如7448)的转换输出给LED显示屏。优点是输出比较简单,可以简化程序,但增加了芯片的费用,电路也比较复杂。 方案2:通过程序把所要的数据转化为七段显示的数据,直接通过单片机接 口来显示,其优点是简化了电路,但增加了软件编写的负担。 通过对两种方案进行比较,我选择通过软件编写来输出显示信号,即单片机直接和显示器相连。 3控制状态的读取 方案1:把按键接到单片机的中断口,若有按键按下,单片机接收到中断信 号,再通过软件编写的中断程序来执行中断,优点是接线简单,简化了电路,但软件编写较为复杂,不易掌握。

单片机矩阵键盘扫描程序

#include #include #define uint unsigned int #define uchar unsigned char sbit E=P2^7; //1602使能引脚 sbit RW=P2^6; //1602读写引脚 sbit RS=P2^5; //1602数据/命令选择引脚 uint keyflag ; //键盘正在读取标志位,如果Keyflag为1 ,表示正在读取键盘,停止其他功能; char x,y,m,n,c; //Keyflag为0,读取键盘结束,恢复其他功能 char flag1=0; //频率范围10~1000Hz uchar Hrate = 0; //一个周期内高点平占据时间 uchar Lrate = 0; //一个周期内低电平占据时间 uint FREQ0; //定时器T0的计数变量// uint FREQ1; //定时器T1的计数变量// sbit P2_1=P2^0; //设置P2.1,作为信号输出口// uint disbuf[3]; uint figure=0; int sum2=0; int sum1=0; int flag=0; uint count=0; uint max=0; uint disbuf_temp=0; /******************************************************************** * 名称: 1602显示延时函数delay() * 功能: 延时,延时时间大概为5US。

* 输出: 无 ***********************************************************************/ void delay() { _nop_(); _nop_(); _nop_(); _nop_(); _nop_(); } /******************************************************************** * 名称: bit Busy(void) * 功能: 这个是一个读状态函数,读出函数是否处在忙状态 * 输入: 输入的命令值 * 输出: 无 ***********************************************************************/ bit Busy(void) { bit busy_flag = 0; RS = 0; RW = 1; E = 1; delay(); busy_flag = (bit)(P0 & 0x80); E = 0; return busy_flag; } /******************************************************************** * 名称: wcmd(uchar del) * 功能: 1602命令函数 * 输入: 输入的命令值 * 输出: 无 ***********************************************************************/ void wcmd(uchar del) { while(Busy()); RS = 0; RW = 0; E = 0; delay(); P0 = del; delay(); E = 1;

实验报告七-键盘扫描及显示实验

信息工程学院实验报告 课程名称:微机原理与接口技术 实验项目名称:键盘扫描及显示实验 实验时间: 班级: 姓名: 学号: 一、实 验 目 的 1. 掌握 8254 的工作方式及应用编程。 2. 掌握 8254 典型应用电路的接法。 二、实 验 设 备 了解键盘扫描及数码显示的基本原理,熟悉 8255 的编程。 三、实 验 原 理 将 8255 单元与键盘及数码管显示单元连接,编写实验程序,扫描键盘输入,并将扫描结果送数码管显示。键盘采用 4×4 键盘,每个数码管显示值可为 0~F 共 16 个数。实验具体内容如下:将键盘进行编号,记作 0~F ,当按下其中一个按键时,将该按键对应的编号在一个数码管上显示出来,当再按下一个按键时,便将这个按键的编号在下一个数码管上显示出来,数码管上可以显示最近 6 次按下的按键编号。 键盘及数码管显示单元电路图如图 7-1 和 7-2 所示。8255 键盘及显示实验参考接线图如图 7-3 所示。 图 7-1 键盘及数码管显示单元 4×4 键盘矩阵电路图 成 绩: 指导老师(签名):

图 7-2 键盘及数码管显示单元 6 组数码管电路图 图 7-3 8255 键盘扫描及数码管显示实验线路图 四、实验内容与步骤 1. 实验接线图如图 7-3 所示,按图连接实验线路图。

图 7-4 8255 键盘扫描及数码管显示实验实物连接图 2.运行 Tdpit 集成操作软件,根据实验内容,编写实验程序,编译、链接。 图 7-5 8255 键盘扫描及数码管显示实验程序编辑界面 3. 运行程序,按下按键,观察数码管的显示,验证程序功能。 五、实验结果及分析: 1. 运行程序,按下按键,观察数码管的显示。

4X4扫描式矩阵键盘课程设计

4X4扫描式矩阵键盘课程设计 课程设计名称: 4_4扫描式矩阵键盘设计 姓名:DUKE 班级:电子1008班 学号:10086 成绩: 日期:2014年1月6日

摘要 随着21世纪的到来,电子信息行业将是人类社会的高科技行业之一,式设施现代化的基础,也是人类通往科技巅峰的直通路。电子行业的发展从长远来看很重要,但最主要的还是科技问题。 矩阵式键盘提高效率进行按键操作管理有效方法,它可以提高系统准确性,有利于资源的节约,降低对操作者本身素质的要求。是它能准时、实时、高效地显示按键信息,以提高工作效率和资源利用率。 矩阵式键盘乃是当今使用最为广泛的键盘模式,该系统以N个端口连接控制N*N个按键,显示在LED数码管上。单片机控制依据这是键盘显示系统,该系统可以对不同的按键进行实时显示,其核心是单片机和键盘矩阵电路部分,主要对按键与显示电路的关系、矩阵式技术及设备系统的硬件、软件等各个部分进行实现。 4*4矩阵式键盘采用AT89C51单片机为核心,主要由矩阵式键盘电路、译码电路、显示电路等组成,软件选用C语言编程。单片机将检测到的按键信号转换成数字量,显示于LED显示器上。该系统灵活性强,易于操作,可靠性高,将会有更广阔的开发前景。

目录 第一章:系统功能要求-------------------------------------------------------- 1.1 4*4 矩阵式键盘系统概述------------------------------------------------ 1.2 本设计任务和主要内容--------------------------------------------------- 第二章:方案论证--------------------------------------------------------------- 第三章:系统硬件电路的设计------------------------------------------------ 3.1 单片机控制系统原理----------------------------------------------------- 3.2 原理图绘制说明---------------------------------------------------------- 3.3 画出流程图---------------------------------------------------------------- 3.4 原理图绘制--------------------------------------------------------------- 第四章:系统程序的设计------------------------------------------------------ 4.1 程序的编写步骤----------------------------------------------------------- 4.2 编写的源程序-------------------------------------------------------------- 第五章:调试及性能分析------------------------------------------------------ 第六章:心得体会--------------------------------------------------------------- 参考文献----------------------------------------------------------------------------

数码管显示4×4键盘矩阵按键

9数码管显示4×4键盘矩阵按键 #include #define uchar unsigned char #define uint unsigned int sbit BEEP = P3^7; uchar code DSY_CODE[]= { 0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90,0x88,0x83,0xc6,0xa1,0x86,0x8e,0x00 }; uchar Pre_KeyNO = 16,KeyNO = 16; void DelayMS(uint ms) { uchar t; while(ms--) { for(t=0;t<120;t++); } }

void Keys_Scan() { uchar Tmp; P1 = 0x0f; DelayMS(1); Tmp = P1 ^ 0x0f; switch(Tmp) { case 1: KeyNO = 0; break; case 2: KeyNO = 1; break; case 4: KeyNO = 2; break; case 8: KeyNO = 3; break; default: KeyNO = 16; } P1 = 0xf0; DelayMS(1); Tmp = P1 >> 4 ^ 0x0f; switch(Tmp) { case 1: KeyNO += 0; break; case 2: KeyNO += 4; break; case 4: KeyNO += 8; break; case 8: KeyNO += 12; } } void Beep() { uchar i; for(i=0;i<100;i++) { DelayMS(1); BEEP = ~BEEP; } BEEP = 1; } void main() { P0 = 0x00; while(1) { P1 = 0xf0; if(P1 != 0xf0)

矩阵键盘扫描实验

实验矩阵键盘扫描实验 一、实验要求 利用4X4 16位键盘和一个7段LED构成简单的输入显示系统,实现键盘输入和LED 显示实验。 二、实验目的 1、理解矩阵键盘扫描的原理; 2、掌握矩阵键盘与51单片机接口的编程方法。 三、实验电路及连线 Proteus实验电路

1、主要知识点概述: 本实验阐述了键盘扫描原理,过程如下:首先扫描键盘,判断是否有键按下,再确定是哪一个键,计算键值,输出显示。 2、效果说明: 以数码管显示键盘的作用。点击相应按键显示相应的键值。 五、实验流程图

1、Proteus仿真 a、在Proteus中搭建和认识电路; b、建立实验程序并编译,加载hex文件,仿真; c、如不能正常工作,打开调试窗口进行调试 参考程序: ORG 0000H AJMP MAIN ORG 0030H MAIN: MOV DPTR,#TABLE ;将表头放入DPTR LCALL KEY ;调用键盘扫描程序 MOVC A,@A+DPTR ;查表后将键值送入ACC MOV P2,A ;将ACC值送入P0口 LJMP MAIN ;返回反复循环显示 KEY: LCALL KS ;调用检测按键子程序 JNZ K1 ;有键按下继续 LCALL DELAY2 ;无键按调用延时去抖 AJMP KEY ;返回继续检测按键 K1: LCALL DELAY2 LCALL DELAY2 ;有键按下延时去抖动 LCALL KS ;再调用检测按键程序 JNZ K2 ;确认有按下进行下一步 AJMP KEY ;无键按下返回继续检测 K2: MOV R2,#0EFH ;将扫描值送入R2暂存MOV R4,#00H ;将第一列值送入R4暂存 K3: MOV P1,R2 ;将R2的值送入P1口 L6: JB P1.0,L1 ;P1.0等于1跳转到L1 MOV A,#00H ;将第一行值送入ACC AJMP LK ;跳转到键值处理程序 L1: JB P1.1,L2 ;P1.1等于1跳转到L2 MOV A,#04H ;将第二行的行值送入ACC AJMP LK ;跳转到键值理程序进行键值处理 L2: JB P1.2,L3 ;P1.2等于1跳转到L3

矩阵键盘的工作原理和扫描确认方式

9.3.1 矩阵键盘的工作原理和扫描确认方式 来源:《AVR单片机嵌入式系统原理与应用实践》M16华东师范大学电子系马潮 当键盘中按键数量较多时,为了减少对I/O 口的占用,通常将按键排列成矩阵形式,也称为行列键盘,这是一种常见的连接方式。矩阵式键盘接口见图9-7 所示,它由行线和列线组成,按键位于行、列的交叉点上。当键被按下时,其交点的行线和列线接通,相应的行线或列线上的电平发生变化,MCU 通过检测行或列线上的电平变化可以确定哪个按键被按下。 图9-7 为一个 4 x 3 的行列结构,可以构成12 个键的键盘。如果使用 4 x 4 的行列结构,就能组成一个16 键的键盘。很明显,在按键数量多的场合,矩阵键盘与独立式按键键盘相比可以节省很多的I/O 口线。 矩阵键盘不仅在连接上比单独式按键复杂,它的按键识别方法也比单独式按键复杂。在矩阵键盘的软件接口程序中,常使用的按键识别方法有行扫描法和线反转法。这两种方法的基本思路是采用循环查循的方法,反复查询按键的状态,因此会大量占用MCU 的时间,所以较好的方式也是采用状态机的方法来设计,尽量减少键盘查询过程对MCU 的占用时间。 下面以图9-7 为例,介绍采用行扫描法对矩阵键盘进行判别的思路。图9-7 中,PD0、PD1、PD2 为3 根列线,作为键盘的输入口(工作于输入方式)。PD3、PD4、PD5、PD6 为4根行线,工作于输出方式,由MCU(扫描)控制其输出的电平值。行扫描法也称为逐行扫描查询法,其按键识别的过程如下。 √将全部行线PD3-PD6 置低电平输出,然后读PD0-PD2 三根输入列线中有无低电平出现。只要有低电平出现,则说明有键按下(实际编程时,还要考虑按键的消抖)。如读到的都是高电平,则表示无键按下。 √在确认有键按下后,需要进入确定具体哪一个键闭合的过程。其思路是:依

LED数码管显示矩阵键盘按键的设计

任务九设计说明2 一、电路原理及仿真图: 二、程序设计: #include #define uchar unsigned char uchar display[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0 x07,0x7f,0x6f,0x77,0x7c,0x39,0x5e,0x79,0x71,0 x40}; uchar key; void get(){ uchar a; P1=0x0f; //按下按钮// a=P1^0x0f; switch(a) //确定行// { case 1:key=0;break; case 2:key=4;break; case 4:key=8;break; case 8:key=12;break; case 0:key=16;} P1=0xf0; a=P1^0xf0; switch(a) //确定列//{ case 16:key=key+3;break; case 32:key=key+2;break; case 64:key=key+1;break;

case 128:key=key+0;}} void main(){ P0=display[16]; get(); P0=display[key]; } 程序完成两个功能,首先扫描键盘,检测是否有按键按下并计算键值。 然后如果有按键按下则驱动数码管显示相应键值,否则显示”-“符号。 三、设计说明 如电路原理图所示,图中矩阵键盘和P3端口连接,共阳极数码管的段选端和单片机的P0口连接,位选直接接到高电平,使得数码管始终处于选通状态。系统启动后,单片机逐行扫描键盘,当没有按键按下时,驱动数码管显示“-”符号,当检测到有按键按下时,单片机将相应键值对应的数码编码送至P0端口,驱动数码管以十六进制方式显示被按下的按键的键值。四、遇到的问题 首先遇到的问题是系统启动后数码管没有任何显示,仔细查看仿真现象后发现P0口始终为高阻状态,于是怀疑是数码管极性错误。再检查数码管型号后发现果然使用了共阴极数码管,于是换成共阳极数码管后终于有了显示。其次是希望键值从键盘的左下角起始,即左下角键值为0。但由于对键盘的扫描方向理解的不是很透彻,导致调试了很多次,键值排列顺序都不尽人意。不过最终还是达到了设计要求。

51单片机矩阵键盘扫描程序

/*----------------------------------------------- 名称:矩阵键盘依次输入控制使用行列逐级扫描 论坛:https://www.360docs.net/doc/62259025.html, 编写:shifang 日期:2009.5 修改:无 内容:如计算器输入数据形式相同从右至左使用行列扫描方法 ------------------------------------------------*/ #include //包含头文件,一般情况不需要改动,头文件包含特殊功能寄存器的定义 #define DataPort P0 //定义数据端口程序中遇到DataPort 则用P0 替换 #define KeyPort P1 sbit LATCH1=P2^2;//定义锁存使能端口段锁存 sbit LATCH2=P2^3;// 位锁存 unsigned char code dofly_DuanMa[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f, 0x77,0x7c,0x39,0x5e,0x79,0x71};// 显示段码值0~F unsigned char code dofly_WeiMa[]={0xfe,0xfd,0xfb,0xf7,0xef,0xdf,0xbf,0x7f};//分别对应相应的数码管点亮,即位码 unsigned char TempData[8]; //存储显示值的全局变量 void DelayUs2x(unsigned char t);//us级延时函数声明 void DelayMs(unsigned char t); //ms级延时 void Display(unsigned char FirstBit,unsigned char Num);//数码管显示函数 unsigned char KeyScan(void);//键盘扫描 unsigned char KeyPro(void); void Init_Timer0(void);//定时器初始化 /*------------------------------------------------ 主函数 ------------------------------------------------*/ void main (void) { unsigned char num,i,j; unsigned char temp[8]; Init_Timer0(); while (1) //主循环 { num=KeyPro();

实验三 键盘扫描控制

实验三4*4键盘扫描显示控制 一、实验目的 实现一4×4键盘的接口,并在两个数码管上显示键盘所在的行与列。即将8255单元与键盘及数码管显示单元连接,编写实验程序扫描键盘输入,并将扫描结果送数码显示,键盘采用4×4键盘,每个数码管值可以为0到F,16个数。将键盘进行编号记作0—F当按下其中一个按键时将该按键对应的编号在一个数码管上显示出来,当按下下一个按键时便将这个按键的编号在下一个数码管上显示出来,且数码管上可以显示最近6次按下按键的编号。 二、实验要求 1、接口电路设计:根据所选题目和所用的接口电路芯片设计出完整的接口电路,并进行电路连接和调试。 2、程序设计:要求画出程序框图,设计出全部程序并给出程序设计说明。 三、实验电路

四、实验原理说明 图2 数码管引脚图 图1为AT89C51引脚图,说明如下: VCC:供电电压。 GND:接地。 P0口:P0口为一个8位漏级开路双向I/O口,每脚可吸收8TTL门电流。当P1口的管脚第一次写1时,被定义为高阻输入。P0能够用于外部程序数据存储器,它可以被定义为数据/地址的第八位。在FIASH编程时,P0 口作为原码输入口,当FIASH进行校验时,P0输出原码,此时P0外部必须被拉高。 P1口:P1口是一个内部提供上拉电阻的8位双向I/O口,P1口缓冲器能接收输出4TTL门电流。P1口管脚写入1后,被内部上拉为高,可用作输入,P1口被外部下拉为低电平时,将输出电流,这是由于内部上拉的缘故。在FLASH 编程和校验时,P1口作为第八位地址接收。 P2口:P2口为一个内部上拉电阻的8位双向I/O口,P2口缓冲器可接收,输出4个TTL门电流,当P2口被写“1”时,其管脚被内部上拉电阻拉高,且作为输入。并因此作为输入时,P2口的管脚被外部拉低,将输出电流。这是由于内部上拉的缘故。P2口当用于外部程序存储器或16位地址外部数据存储器进行存取时,P2口输出地址的高八位。在给出地址“1”时,它利用内部上拉优势,当对外部八位地址数据存储器进行读写时,P2口输出其特殊功能寄存器的内容。P2口在FLASH编程和校验时接收高八位地址信号和控制信号。 P3口:P3口管脚是8个带内部上拉电阻的双向I/O口,可接收输出4个TTL门电流。当P3口写入“1”后,它们被内部上拉为高电平,并用作输入。作为输入,由于外部下拉为低电平,P3口将输出电流(ILL)这是由于上拉的缘故。P3口同时为闪烁编程和编程校验接收一些控制信号。 ALE/PROG:当访问外部存储器时,地址锁存允许的输出电平用于锁存地址

矩阵键盘控制12864显示最经典程序

#include //这个程序的功能:用4*4的矩阵键盘(接P3口)按键盘k1——k16中的任何一个键ki #include //12864液晶上显示数字i-1 (液晶数据口接P0) #define uint unsigned int//键盘扫描的思想是将行设置为低,列设置为高,来读取P3口的值,就能知道是哪个按键按下了 #define uchar unsigned char #define LCDdata P0 sbit E = P2^7; sbit RW = P2^6; sbit RS = P2^5; void init(); void delayms(uint x); void displaykey(); void write_com(uchar com);//写命令 void write_data(uchar date);//写数据 uchar temp; //--------------主函数----------------- void main() { init();// P3=0xfe;//P3=0xfd;//P3=0xfb;//P3=0xf7; while(1) { displaykey(); } } //-------------液晶初始化---------------- void init() { write_com(0x01); write_com(0x02); write_com(0x06); write_com(0x0e); } //------------毫秒延时--------------- void delayms(uint x) { uchar i; while(x--) {

键盘扫描显示实验原理及分析报告

键盘扫描显示实验原理及分析报告 一、实验目的-------------------------------------------------------------1 二、实验要求-------------------------------------------------------------1 三、实验器材-------------------------------------------------------------1 四、实验电路-------------------------------------------------------------2 五、实验说明-------------------------------------------------------------2 六、实验框图-------------------------------------------------------------2 七、实验程序-------------------------------------------------------------3 八、键盘及LED显示电路---------------------------------------------14 九、心得体会------------------------------------------------------------- 15 十、参考文献--------------------------------------------------------------15

单片机实验报告——矩阵键盘数码管显示

单片机实验报告 信息处理实验 实验二矩阵键盘 专业:电气工程及其自动化 指导老师:高哲 组员:明洪开张鸿伟张谦赵智奇 学号:152703117 \152703115\152703118\152703114室温:18 ℃日期:2017 年10 月25日

矩阵键盘 一、实验内容 1、编写程序,做到在键盘上每按一个键(0-F)用数码管将该建对应的名字显示出来。按其它键没有结果。 二、实验目的 1、学习独立式按键的查询识别方法。 2、非编码矩阵键盘的行反转法识别方法。 3、掌握键盘接口的基本特点,了解独立键盘和矩阵键盘的应用方法。 4、掌握键盘接口的硬件设计方法,软件程序设计和贴士排错能力。 5、掌握利用Keil51软件对程序进行编译。 6、会根据实际功能,正确选择单片机功能接线,编制正确程序。对实验结果 能做出分析和解释,能写出符合规格的实验报告。 三、实验原理 1、MCS51系列单片机的P0~P3口作为输入端口使用时必须先向端口写入“1”。 2、用查询方式检测按键时,要加入延时(通常采用软件延时10~20mS)以消除抖动。 3、识别键的闭合,通常采用行扫描法和行反转法。行扫描法是使键盘上某一行线为低电平,而其余行接高电平,然

后读取列值,如读列值中某位为低电平,表明有键按下,否则扫描下一行,直到扫完所有行。 行反转法识别闭合键时,要将行线接一并行口,先让它工作在输出方式,将列线也接到一个并行口,先让它工作于输入方式,程序使CPU通过输出端口在各行线上全部送低电平,然后读入列线值,如此时有某键被按下,则必定会使某一列线值为0。然后,程序对两个并行端口进行方式设置,使行线工作于输入方式,列线工作于输出方式,并将刚才读得的列线值从列线所接的并行端口输出,再读取行线上输入值,那么,在闭合键所在行线上的值必定为0。这样,当一个键被接下时,必定可以读得一对唯一的行线值和列线值。 由于51单片机的并口能够动态地改变输入输出方式,因此,矩阵键盘采用行反转法识别最为简便。 行反转法识别按键的过程是:首先,将4个行线作为输出,将其全部置0,4个列线作为输入,将其全部置1,也就是向P1口写入0xF0;假如此时没有人按键,从P1口读出的值应仍为0xF0;假如此时1、4、7、0四个键中有一个键被按下,则P1.6被拉低,从P1口读出的值为0xB0;为了确定是这四个键中哪一个被按下,可将刚才从P1口读出的数的低四位置1后再写入P1口,即将0xBF写入P1口,使P1.6为低,其余均为高,若此时被按下的键是“4”,则P1.1被拉低,从P1口读出的值为0xBE;这样,当只有一个键被按下时,每一个键只有唯一的反转码,事先为12个键的反转码建一个表,通过查表就可知道是哪个键被按下了。

相关文档
最新文档