二次函数复习经典课件

合集下载

二次函数复习ppt课件

二次函数复习ppt课件
点坐标是(1/2,1) ; (2)若抛物线y = a (x+m) 2+n 开口向下,顶点在第四象限,则 a <刀
3.求下列二次函数的开口方向,对称轴,顶点坐标.
y=x2 - 2x + 3 y= -2x2 - 4x - 6
解:y=x2-2x+1+2 =(x-1)2+2
y
o
x
a <0,b 0<,c 0. =
y
5.抛物线y=ax2+bx+c(a≠0)的图象经过原点,
且它的顶点在第三象限,则a、b、c满足
的条件是:a >0,b 0>,c 0. =
o
x
6.二次函数y=ax2+bx+c中,如果a>0,b<0,c<0,
那么这个二次函数图象的顶点必在第 四象限
y 先根据题目的要求画出函数的草图,再根据 图象以及性质确定结果(数形结合的思想)
二次函数复习
6.二次函数的应用
1. 如图,在一面靠墙的空地上用长为24米的篱笆,围成中间隔有 二道篱笆的长方形花圃,设花圃的宽AB为x米,面积为S平方米。
(1)求S与x的函数关系式及自变量的取值范围; (2)当x取何值时所围成的花圃面积最大,最大值是多少?
解:(1) ∵ AB为x米、篱笆长为24米
x
7.已知二次函数的图像如图所示,下列结论: ⑴a+b+c=0 ⑵a-b+c﹥0 ⑶abc ﹥0 ⑷ b=2a 其中正确的结论的个数是( D) A 1个 B 2个 C 3个 D 4个
y
-1 0 1
x
要点:寻求思路时,要着重观察抛物线的开口方 向,对称轴,顶点的位置,抛物线与x轴、y轴的 交点的位置,注意运用数形结合的思想。

22.1.1 二次函数 课件(共15张PPT)

22.1.1 二次函数  课件(共15张PPT)

新课导入
你 观 察 过 公 园 的 拱 桥 吗?
篮球入框,公 园里的喷泉, 雨后的彩虹都 会形成一条曲 线.这些曲线 能否用函数关 系式表示?
知识讲解
1.二次函数的定义
探究归纳
1 1
1
3
此式表示了种植面积y与边长x之间的关系,对于x的每一个值,y都有唯一 确定的一个对应值,即y是x的函数.
知识讲解
第 二十二章 二次函数
第二十二章 二次函数
22.1 二次函数的图象和性质 22.1.1 二次函数
温故知新
1. 函数的定义 一般地,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确 定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数.
2. 一次函数与正比例函数
3.一元二次方程的一般形式
30(1+x)2
30(1+x)2
30(1+x)
此式表示了两年后的产量y与计划增产的倍数x之间的关系,对于x的每一个值,y 都有唯一确定的一个对应值,即y是x的函数.
知识讲解
上述三个问题中的函数解析式具有哪些共同特征呢?
知识讲解
归纳总结
二次函数的定义:
注意
知识讲解
2.二次函数的应用 例1
不一定是,缺少 a≠0的条件
中y=0时得到的。
与前面我们学过的一元二 有什么联系和区别?
且a≠0; 可以看成是函数
区别:前者是函数,后者是方程;等式另一边前者是y,后 者是0。
随堂训练
B C
随堂训练
4.矩形的周长为16 cm,它的一边长为x(cm),面积为y(cm2). (1)求y与x之间的函数解析式及自变量x的取值范围; (2)求当x=3时矩形的面积.

二十二-二次函数复习课PPT课件

二十二-二次函数复习课PPT课件

一般式: 解: 设所求的二次函数为 y=a(x+1)(x-1)
y=ax2+bx+c
由条件得:
y
两根式: y=a(x-x1)(x-x2)
点M( 0,1 )在抛物线上
所以:a(0+1)(0-1)=1
x o
顶点式: y=a(x-h)2+k
得: a=-1 故所求的抛物线解析式为 y=- (x+1)(x-1)
.
23
4.求抛物线解析式的三种方法
例题精讲
例1.已知一个二次函数的图象过点(-1,10)、
(1,4)、(2,7)三点,求这个函数的解析式?
一般式: 解: 设所求的二次函数为 y=ax2+bx+c
y=ax2+bx+c
两根式: y=a(x-x1)(x-x2)
由条件得: a-b+c=10 a+b+c=4 4a+2b+c=7
有两个相等的

x1=x2=
b 2a
没有实数根
O
x
19
基础练习:
1.不与x轴相交的抛物线是(D )
A y=2x2 – 3
B y= - 2 x2 + 3
C y= - x2 – 3x D y=-2(x+1)2 - 3
2.若抛物线y=ax2+bx+c,当 a>0,c<0时,图象与x
轴交点情况是( C )
(1)抛物线经过(2,0)(0,-2)(-1,0)三
点。
yx2 x2
(2)抛物线的顶点坐标是(6,-2),且与X轴
的一个交点的横坐标是8。
y1(x6 )221x26x 1 6

二次函数阶段专题复习课件

二次函数阶段专题复习课件

二次函数阶段专题复习课件xx年xx月xx日•二次函数的概念与性质•二次函数的图像与变换•二次函数的应用与综合•二次函数的解析方法与技巧目•二次函数阶段测试题及解析•二次函数阶段复习总结与展望录01二次函数的概念与性质二次函数是指形如`y = ax^2 + bx + c`(其中a、b、c为常数,且a≠0)的函数。

总结词二次函数的一般形式是`y = ax^2 + bx + c`,其中a、b、c为常数,且a≠0。

a称为二次项系数,b称为一次项系数,c为常数项。

详细描述定义与表达式总结词二次函数的开口方向由a决定,顶点坐标由公式`(-b/2a, (4ac - b^2) / 4a)`获得。

详细描述a>0时,开口向上;a<0时,开口向下。

顶点坐标为二次函数的对称轴与y轴的交点,可以通过公式`(-b/2a, (4ac - b^2) / 4a)`获得。

开口方向与顶点坐标总结词二次函数具有轴对称性,其对称轴为x = -b/2a,且在对称轴两侧存在最值。

详细描述二次函数y=ax^2+bx+c的对称轴为x=-b/2a。

当a>0时,函数在x=-b/2a处取得最小值;当a<0时,函数在x=-b/2a处取得最大值。

轴对称与最值02二次函数的图像与变换总结词了解图像形状与特征详细描述通过观察二次函数的图像,可以发现它具有一些特殊的形状和特征。

例如,开口方向、对称轴、顶点等。

这些特征可以用来判断函数的性质和解决问题。

图像的绘制与特征总结词掌握平移与伸缩变换规律详细描述通过平移和伸缩二次函数的图像,可以得到更多具有不同形状和特征的函数图像。

平移主要通过改变函数的解析式实现,而伸缩则可以通过改变函数中的系数实现。

图像的平移与伸缩变换总结词理解对称与旋转变换概念详细描述二次函数的图像具有一些对称性和旋转性质。

例如,对于一些函数,通过沿坐标轴对折或者旋转一定角度,可以得到其他函数的图像。

这些变换可以帮助我们发现函数之间的联系和规律。

二次函数(复习课)课件

二次函数(复习课)课件
详细描述
伸缩变换包括横向伸缩和纵向伸缩。横向伸缩是指将图像在x轴方向上进行放大或缩小,纵向伸缩是指将图像在y轴方向上进行放大或缩小。具体来说,对于函数y=ax^2+bx+c,若图像在x轴方向上放大k倍,则新的函数为y=a(kx)^2+b(kx)+c;若图像在y轴方向上放大k倍,则新的函数为y=a(x)+b(x)/k+ck。通过这两种伸缩变换,我们可以得到原函数的放缩版函数。
02
二次函数的解析式
总结词
二次函数的一般形式是 $y = ax^2 + bx + c$,其中 $a neq 0$。
详细描述
一般式是二次函数的基本形式,它包含了二次函数的最高次项、一次项和常数项。通过一般式可以明确地看出函数的开口方向和开口大小,由系数 $a$ 决定。
VS
二次函数的顶点形式是 $y = a(x - h)^2 + k$,其中 $(h, k)$ 是函数的顶点坐标。
总结词
实际应用问题
总结词
与其他函数的综合
总结词
与几何图形的结合
01
02
03
04
05
06
总结词
详细描述
总结词与图像关系
这类问题需要探讨二次函数的系数与图像之间的关系,如开口大小、对称轴位置等。
一题多解法
这类问题通常有多种解法,需要灵活运用二次函数的性质和图像,寻找最简便的解法。
详细描述
二次函数具有对称性,其对称轴为直线$x = -frac{b}{2a}$。此外,二次函数的开口方向由系数$a$决定,当$a > 0$时,开口向上;当$a < 0$时,开口向下。顶点坐标为$left(-frac{b}{2a}, fleft(-frac{b}{2a}right)right)$。

九年级数学《二次函数总复习》课件

九年级数学《二次函数总复习》课件

与时间x(min)成正比例.药物燃烧后,y与x成反比例(如所
示),现测得药物8min燃毕,此时室内空气中每立方米的药
量为6mg,请根据题中所提供的信息,解答下列问题:
(1)药物燃烧时,y关于x 的函数关系式为: ________, 自
变量x 的取值范围是:_______,药物燃烧后y关于x的函
数关系式为_______.
四边形OEBF的面积为2,则k的值是____。
y
C
E
O
B
F x
A
x
•(-3,0)
A
•(1,0)
0
E
B
x
• ••
DF
⑩如图,在坐标系内有一点G,G关于X轴对称点G‘,
若四边形AGBG’是正方形,求过A、B、G三点的抛
物线。
•G‘ y
• • • (-3,0)
A
(1,0) H0 B x
• G
当堂检测
1、 二次函数的图象如图所示,则在下列各不等式 中成立的个数是____________
C o
B
A(1,m) x
(4)连接BC,求三角形 ⊿ COB的面积;
例2、已知反比例函数 y =
k x
的图象经过点A(1,4)
(1 )①求此反比例函数 的解析式;
②并判断点B(-4,-1)是否在此函数图像上。
(2)根据图像得, 若y ﹥ 1, 则x的取值范围-----------
y 4 A(1,4)
例5:已知二次函数y=ax2+bx+c如图,
(1)①判断a,b,c正负。 ② a+b+c 0, a-b+c 0,b-2a 0。
(2) 已知二次函数y=ax2+bx+c如图,且过C(0, 3)

二次函数复习(共36张PPT)

二次函数复习(共36张PPT)

y=ax2+bx+c的图 方程ax2+bx+c=0
象和x轴交点
的根
b2-4ac
有两个交点
方程有两个不相等的 b2-4ac>0
实数根
只有一个交点
方程有两个相等的 b2-4ac=0
实数根
没有交点
方程没有实数根 b2-4ac<0
函数的图象
y
.
. ox
y
o
x
y
o
x
根据下列表格中二次函数y=ax2+bx+c的自变量与函数 值的对应值,判断方程ax2+bx+c =0
(4)函数的自变量x的取值范围:任意实数
当二次函数表示某个实际问题时,还必须根据题意确定自变量的取值范
围.
二次函数的一般形式:
• 函数y=ax2+bx+c
– 其中a、b、c是常数 – 切记:a≠0 – 右边一个x的二次多项式(不能是分式或根式)
二次函数的特殊形式:
当b=0时, y=ax2+c 当c=0时, y=ax2+bx 当b=0,c=0时, y=ax2
向上
直线X=-h
(-h,k)
a < 0 向下
图象的平移规律:
对于抛物线y=a(x+h)2+k的平移有以下规律: (1)、平移不改变 a 的值; (2)、h决定图象沿x轴方向左右平移,左+右— (3)、k决定图象沿y轴方向上下平移,上+下—
知识运用
(坐1标)是抛物线,图(y0象=,0过)x32 第2的开口向一象、,限对上二称;轴是
二次函数 开 口 方 向 对 称 轴 顶 点 坐 标
y = ax 2
a > 0 向上 直线X=0 a < 0 向下 (或y轴)

二次函数初三ppt课件ppt课件ppt课件

二次函数初三ppt课件ppt课件ppt课件
二次函数初三ppt课件ppt 课件ppt课件
contents
目录
• 二次函数的基本概念 • 二次函数的性质 • 二次函数的应用 • 二次函数的解析式 • 二次函数与一元一次方程的关系 • 综合练习与提高
01 二次函数的基本 概念
二次函数的定义
总结词
二次函数是形如$y=ax^2+bx+c$的 函数,其中$a$、$b$、$c$为常数 ,且$a neq 0$。
详细描述
二次函数的一般形式是 $y=ax^2+bx+c$,其中$a$、$b$、 $c$是常数,且$a neq 0$。这个定义 表明二次函数具有一个自变量$x$,一 个因变量$y$,并且$x$的最高次数为 2。
二次函数的表达式
总结词
二次函数的表达式可以因形式多样而变化,但一般包括三个部分:常数项、一 次项和二次项。
02 二次函数的性质
二次函数的开口方向
总结词
二次函数的开口方向取决于二次 项系数a的正负。
详细描述
如果二次项系数a大于0,则抛物 线开口向上;如果二次项系数a小 于0,则抛物线开口向下。
二次函数的顶点
总结词
二次函数的顶点坐标为(-b/2a, c-b^2/4a)。
详细描述
二次函数的顶点是抛物线的最低点或最高点,其坐标为(-b/2a, c-b^2/4a),其中 a、b、c分别为二次项、一次项和常数项的系数。
解一元二次方程的方法包括公式法和 因式分解法等。
利用二次函数解决一元一次方程问题
当一元一次方程有重根时,可以通过构建二次函数来求解。
构建二次函数的方法是将一元一次方程转化为二次函数的形 式,然后利用二次函数的性质找到根。
06 综合练习与提高
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

巩固练习2
已 知 某 二 次 函 数 的 顶 点 坐 标 为 (1, 1 ) , 且 过
0 点 ( 2, ) 试 确 定 它 的 函 数 解 析 式 。
解 : ∵ 二 次 函 数 的 顶 点 为 (1, 1 )
∴ 可 设 二 次 函 数 解 析 式 为 y a ( x 1)
2
10 又Βιβλιοθήκη 函 数 过 点 ( 2, )二、二次函数的图象和性质
• 首先把y=ax2+bx+c化成 y=a(x-h)2+k的形式, 然后对图象和性质进行归纳: 1. 所有二次函数的图象都是一条抛物线;当a>0,抛物线
的开口向上,当a<0时,抛物线的开口向下

2. 当 | a | 的值越大时,开口越小,函数值 y 变化越快。
当 | a | 的值越小时,开口越大,函数值 y 变化越慢。
巩固练习1
已 知 某 二 次 函 数 图 象 上 有 ( 1, ) , 1, ) , 2 , ) 三 3 ( 3 ( 6 个点,求它的函数解析式。
解:设函数解析式为 y ax 2 bx c
3 3 6 由已知,函数图象上有 ( 1, ) ,(1, ) ,( 2 , ) 三个点, 得
a b c 3 a b c 3 4a 2b c 6
解这个方程组,得
a 1
,b 0 , c 2
∴函数解析式为 y x 2 2
2. 过顶点和一普通点的二次函数解析式的确定
由于抛物线 y a ( x h ) 2 k 顶点坐标是 ( h, k ) , 反之,已知顶点坐标为 ( h, k ) ,则可设函数解析式为 2 y a(x h) k 。 4 【例题】已知某抛物线的顶点坐标 ( 3, ) 且过点 (1, ) ,求它的函数解析式。 8 4 解:∵顶点坐标是 ( 3, ) 2 ∴可设函数解析式为 y a ( x 3 ) 4 8 又过点 (1, ) ∴ 8 a (1 3 ) 2 4 解得 a 1 ∴函数解析式为 y ( x 3 ) 2 4 即 y x 2 6 x 13
(C)
y x
2
2x 3
3
x
巩固练习3
• 如图,抛物线经过下列各点,试求它的函数解析式。 解: 设函数的解析式为:y=a(x-x1)(x-x2), 则 x1=-1, x2=3, 于是 y=a(x+1)(x-3). y ∵抛物线过y 轴上的点(0,-2), ∴把这点坐标代入上面式子,得 -2=-3a ∴ a=2/3. -1 0 ∴ 所求函数解析式为: -2 y=2/3· (x+1)(x-3).
c>0
c=0
c<0
三、解析式的确定(待定系数法) 提示:如果已知的是 三个普通点,则一般采 1. 已知三个普通点确定函数解析式
用二次函数的一般式。 1 4 【例】已知某二次函数的图象过 ( 1,0 ) , (1, ) , ( 2 , ) 三点,求这个函数的解析式。 7
解:设所求函数解析式为 y a x 2 b x c
y a(x b 2a )
2
4ac b 4a
2
6. 当a>0, △>0时,抛物线y=ax2+bx+c与x 轴有两个不相 同的交点,一元二次方程ax2+bx+c=0有两个不相等的 实 数 根 x 1 、 x 2 ( x 1 < x 2 ) , 当 x< x 1 或 x > x 2 时 , y > 0 , 即
8. 当a>0, △=0时,抛物线y=ax2+bx+c与x 轴有两 个相同的交点,即顶点在x 轴上,一元二次方程 ax2+bx+c=0有两个相等的实数根x1、x2(x1=x2 ),
当x≠x1(或x≠x2)时,y>0,即ax2+bx+c>0 ; 当
x=x1=x2时,y =0;无论 x 取任何实数,都不可能
26二次函数复习
一、二次函数的定义
1. 形如y=ax2+bx+c(其中a、b、c是常数,且
a≠0 )的函数,叫做二次函数。
2. 二次函数的一般式:y=ax2+bx+c(a≠0)。
3. 二次函数顶点式: y=a(x-h)2+k(a≠0)。
4. 二次函数的两点式:y=a(x-x1)(x-x2)(a≠0)。
有ax2+bx+c<0.
y>0
9. 当a<0, △=0时,抛物线y=ax2+bx+c与x 轴有两个 相同的交点,即顶点在x 轴上,一元二次方程 ax2+bx+c=0有两个相等的实数根x1、x2(x1=x2 ),
当x≠x 1 (或x≠x 2 )时,y<0,即ax 2 +bx+c<0 ; 当
x=x1=x2时,y =0;无论 x 取任何实数,都不可能
ax
2
+bx+c>0
;
当x
1
<x<x
2
时,y<0,
即ax2+bx+c<0. 7. 当a<0, △>0时,抛物线y=ax2+bx+c与x 轴有两个不相 同的交点,一元二次方程ax2+bx+c=0有两个不相等的 实数根x1、x2(x1<x2),当x1<x<x2时,y>0,即 ax2+bx+c>0 即ax2+bx+c<0. ;当x<x1或x>x2时,y<0,
元二次方程ax2+bx+c=0无实数根,无论x
取何值,都有y<0 .
无论 x 取何值,都不可能有y≥0。
y<0
12. y=ax2+bx+c(a≠0)与 y 轴的交点的坐标 为(0,c) . 由此可得: 当c >0时,抛物线与y 轴相交于正半轴; 当c =0时,抛物线过原点; 当c <0时,抛物线与y 轴相交于负半轴。
y 最 大 (或 最 小 ) k
5. y=ax2+bx+c的顶点坐标是
线x
b 2a
,当 x

b 2a
时,y 有最大(或最小)值。
4ac b 4a
2
b 4ac b , 2a 4a
2
,对称轴是直

y 最 大 (或 最 小 值 )
把一般式 y=ax2+bx+c 配成顶 点式为:
1 4 7 由已知函数图象过 ( 1,0 ) , (1, ) , ( 2 , ) 三点得
a b c 10 a b c 4 4a 2b c 7
解这个方程组得 a 2 , b 3 , c 5 ∴所求得的函数解析式为 y 2 x 2 3 x 5 。
即 y 2 3 x
2
3
x
4 3
x 2
巩固练习4
二次函数 y=ax2+bx+c 的图象如图所示,试 用 “ >、< 、=” 填空: (1)a < 0,b < 0, c > 0; (2)a+b+c < 0; y (3)a-b+c > 0; (4) △ > 0; 1
(5)
b ac
> 0.
-1
3. 当 a > 0 时,在对称轴的左侧,y 随 x 的增大而减小,
在对称轴的右侧,y 随 x 的增大而增大;当 a < 0 时,
在对称轴的左侧,y 随 x 的增大而增大,在对称轴的
右侧,y 随 x 的增大而减小。
4. y=a(x-h)2+k 的顶点坐标是(h, k) , 对称轴是直线 x㎝
=h,当x=h时,y 有最大(或最小)值,即
0 1
x
再见!
有ax2+bx+c>0.
y<0
10. 当a>0, △<0时,抛物线y=ax2+bx+c与x 轴 无交点,即全部图象在x 轴的上方,一元二 次方程ax2+bx+c=0无实数根,无论x 取何值, 都有y>0;
无论 x 取何值,都不可能有y≤0。
y>0
11.当a<0, △<0时,抛物线y=ax2+bx+c与x 轴无交点,即全部图象在x 轴的下方,一
∴ 0 a ( 2 1) 1
2
解得 a 1 ∴ 二 次 函 数 的 解 析 式 为 y ( x 1) 即 y x
2
2
1
2x
3. 过x轴上的两点及任意一点确定解析式 时,用交点式 y=a(x-x1)(x-x2)
【例】 已知函数的图象如图所示,求函数解析式。
解: 设函数的解析式为:y=a(x-x1)(x-x2), 则 x1=-1, x2=3, 于是 y=a(x+1)(x-3). y ∵抛物线过y 轴上的点(0,3), ∴把这点坐标代入上面式子,得 3 3=-3a ∴ a=-1. -1 0 ∴ 所求函数解析式为: y=-1(x+1)(x-3). 即 y= - x2+2x+3 .
相关文档
最新文档