2014最新人教版二次函数复习课件

合集下载

二次函数复习ppt课件

二次函数复习ppt课件
点坐标是(1/2,1) ; (2)若抛物线y = a (x+m) 2+n 开口向下,顶点在第四象限,则 a <刀
3.求下列二次函数的开口方向,对称轴,顶点坐标.
y=x2 - 2x + 3 y= -2x2 - 4x - 6
解:y=x2-2x+1+2 =(x-1)2+2
y
o
x
a <0,b 0<,c 0. =
y
5.抛物线y=ax2+bx+c(a≠0)的图象经过原点,
且它的顶点在第三象限,则a、b、c满足
的条件是:a >0,b 0>,c 0. =
o
x
6.二次函数y=ax2+bx+c中,如果a>0,b<0,c<0,
那么这个二次函数图象的顶点必在第 四象限
y 先根据题目的要求画出函数的草图,再根据 图象以及性质确定结果(数形结合的思想)
二次函数复习
6.二次函数的应用
1. 如图,在一面靠墙的空地上用长为24米的篱笆,围成中间隔有 二道篱笆的长方形花圃,设花圃的宽AB为x米,面积为S平方米。
(1)求S与x的函数关系式及自变量的取值范围; (2)当x取何值时所围成的花圃面积最大,最大值是多少?
解:(1) ∵ AB为x米、篱笆长为24米
x
7.已知二次函数的图像如图所示,下列结论: ⑴a+b+c=0 ⑵a-b+c﹥0 ⑶abc ﹥0 ⑷ b=2a 其中正确的结论的个数是( D) A 1个 B 2个 C 3个 D 4个
y
-1 0 1
x
要点:寻求思路时,要着重观察抛物线的开口方 向,对称轴,顶点的位置,抛物线与x轴、y轴的 交点的位置,注意运用数形结合的思想。

二次函数复习课第一课时PPT

二次函数复习课第一课时PPT
二次函数复习课第一课时 PPT
本节课为二次函数复习课的第一课时,将重点回顾二次函数的定义及基本形 式,并介绍二次函数的图像特征和性质。
二次函数的图像特征
对称性
二次函数的图像以顶点为对称轴对称。
顶点坐标
顶点坐标为(x,y),其中y为二次函数的最 小值(当开口向上时)或最大值(当开口 向下时)。
开口方向
焦点
焦点是图像上的特殊点,与 抛物线的形状有关。
对称轴
对称轴是二次函数图像的对 称线,通过顶点且垂直于准 线。
二次函数的变形与图像
1
垂直方向缩放
通过改变二次系数a的绝对值,可以
水平方向平移
2
改变二次函数图像的形状与开口大 小。
通过改变二次函数中x的常数项或线
性项,可以使图像左右移动。
3
对称轴变化
通过改变二次函数中x的线性项,可 以改变图像关于y轴的对称轴位置。
3
注意事项
注意事项包括仔细阅读题目、画出 准确的图像以及验证计算结果等。
二次函数的应用举例
抛物线轨迹
抛物线轨迹的运动可以用二次函数来描述, 如投射运动、弹道等。
面积与最大值
通过优化二次函数来求解相关问题,如求最 大面积。
二次函数拟合及其应用
拟合
通过将实际数据点与二次函数图像相拟合, 可以预测用于经济学、物理 学、工程学等领域中的数据模型和问题求 解。
二次函数的常见错误及纠错方法
1
常见错误
常见错误包括图像方向、顶点坐标
纠错方法
2
计算错误等。
纠错方法包括通过复习基本概念、
练习题目以及请教老师等。
当二次系数a为正数时,图像开口向上; 当a为负数时,图像开口向下。

2014最新人教版二次函数复习课件

2014最新人教版二次函数复习课件

)2-8 状相同,其解析式为 y=0.5(x-16 。
5、若x为任意实数,则二次函数y=x2+2x+3的函
数值y的取值范围是
y≥2 。
6、抛物线y=2x2-4x-1是由抛物线y=2x2-bx+c向 左平移1个单位,再向下平移2个单位得到的, 则b= 8 ,c= 3。
7、已知抛物线y=2x2+bx+8的顶点在x轴上, 则b= ±8。
(7)已知二次函数y=x2+bx+c的顶点坐标(1,-2),求 b,c的值
(8)已知二次函数y=x2+4x+c的顶点坐标在x轴上, 求c的值 (9)已知二次函数y=x2+4x+c的顶点坐标在直线y=2x+1 上,求c的值
如何求抛物线解析式常用的三种方法
1、已知抛物线上的三点,通常设解析式为 2+bx+c(a≠0) y=ax ________________ 一般式 2、已知抛物线顶点坐标(m, k),通常 设抛物线解析式为_______________ y=a(x+m)2+k(a≠0) 3、已知抛物线与x 轴的两个交点(x1,0)、 (x2,0),通常设解析式为y=a(x-x _____________ 1)(x-x2) (a≠0) 4.公式法
1 1 1 = AO ·OC + (OC+ED) ·OE+ EB ·ED 2 2 2 1 1 1 = × 1×3+ × (3+4) × 1+ × 3-1 ×4 =9 2 2 2
y
7.如图,已知直线 y= x+3与X轴、y轴分别交于点 B、C,抛物线y= -x2+bx+c 经过点B、C,点A是抛物线 与x轴的另一个交点。 (3)若点P在直线 BC上且

二次函数(复习课)课件

二次函数(复习课)课件
详细描述
伸缩变换包括横向伸缩和纵向伸缩。横向伸缩是指将图像在x轴方向上进行放大或缩小,纵向伸缩是指将图像在y轴方向上进行放大或缩小。具体来说,对于函数y=ax^2+bx+c,若图像在x轴方向上放大k倍,则新的函数为y=a(kx)^2+b(kx)+c;若图像在y轴方向上放大k倍,则新的函数为y=a(x)+b(x)/k+ck。通过这两种伸缩变换,我们可以得到原函数的放缩版函数。
02
二次函数的解析式
总结词
二次函数的一般形式是 $y = ax^2 + bx + c$,其中 $a neq 0$。
详细描述
一般式是二次函数的基本形式,它包含了二次函数的最高次项、一次项和常数项。通过一般式可以明确地看出函数的开口方向和开口大小,由系数 $a$ 决定。
VS
二次函数的顶点形式是 $y = a(x - h)^2 + k$,其中 $(h, k)$ 是函数的顶点坐标。
总结词
实际应用问题
总结词
与其他函数的综合
总结词
与几何图形的结合
01
02
03
04
05
06
总结词
详细描述
总结词与图像关系
这类问题需要探讨二次函数的系数与图像之间的关系,如开口大小、对称轴位置等。
一题多解法
这类问题通常有多种解法,需要灵活运用二次函数的性质和图像,寻找最简便的解法。
详细描述
二次函数具有对称性,其对称轴为直线$x = -frac{b}{2a}$。此外,二次函数的开口方向由系数$a$决定,当$a > 0$时,开口向上;当$a < 0$时,开口向下。顶点坐标为$left(-frac{b}{2a}, fleft(-frac{b}{2a}right)right)$。

二次函数复习课件PPT

二次函数复习课件PPT

个单位,再向 平移
个单位可
得到抛物线 y=3(x+2)2 -3.
16、将函数y=-3(x-1)2-1的图象 (1) 沿y轴翻折后得到的函数解析式_____. (2) 沿X轴翻折后得到的函数解析式_____. (3) 沿原点旋转180°后得到的函数解析式
_____. (4) 沿顶点旋转180°后得到的函数解析式
解: y ax2 bx c
a x2 b x c 提取二次项系数
a x2
a a
b x b 2 b 2 a 2a 2a
c a
配方:加上再减去一 次项系数绝对值一 半的平方
a
x
b 2a
2
4ac b2 4a2
整理:前三项化为平方形 式,后两项合并同类项
a x
y的 最值
增减性
在对称 在对称 轴左侧 轴右侧
y=ax2
a>0 向上 y轴
(0,0)
最小值 是0
y随x的增 y随x的增 大而减小 大而增大
a<0 向下
y轴
(0,0)
最大值 y随x的增 是0 大而增大
y随x的增 大而减小
y=ax2+c
a>0 向上 a<0 向下
y轴 y轴
(0,c)
最小值 是C
y随x的增 y随x的增 大而减小 大而增大
4a
➢当a>0时,抛物线的开口向上,顶点 是抛物线上的最低点;
➢当a<0时,抛物线的开口向下,顶点 是抛物线上的最高点.
二次函数关系式的常见形式:
一般式:y=ax2+bx+c 顶点式:y=a(x+m)2+k
交点式:y=a(x-x1)(x-x2)
确定二次函数的解析式时,应该根据 条件的特点,恰当地选用一种函数表达式.

二次函数复习课课件

二次函数复习课课件

提升习题
提升习题1
已知二次函数$f(x) = ax^2 + bx + c$在区间$(m,n)$上 单调递增,求$a, b, c$的取值范围。
提升习题2
已知二次函数$f(x) = ax^2 + bx + c$在区间$(m,n)$上 有两个不同的零点,求$a, b, c$的取值范围。
综合习题
综合习题1
伸缩变换
总结词
伸缩变换是指二次函数的图像在平面内沿x 轴或y轴方向进行缩放。
详细描述
伸缩变换包括横向和纵向的缩放。横向缩放 是指图像在x轴方向上缩小或放大,纵向缩 放是指图像在y轴方向上缩小或放大。在伸 缩变换过程中,二次函数的解析式会相应地 乘以或除以一个大于0的常数。例如,将二 次函数y=ax^2+bx+c的图像沿x轴方向缩 小k倍,解析式变为y=a(x/k)^2+b(x/k)+c;
二次函数的性 质
总结词
二次函数具有开口方向、对称轴、顶点 和与坐标轴交点等性质。
VS
详细描述
二次函数的性质包括开口方向、对称轴、 顶点、与坐标轴交点等。根据系数$a$的 正负,抛物线有不同的开口方向:当$a > 0$时,抛物线开口向上;当$a < 0$时, 抛物线开口向下。对称轴为直线$x = frac{b}{2a}$,顶点坐标为$left(frac{b}{2a}, fleft(frac{b}{2a}right)right)$。与y轴的交点 为$(0, c)$,与x轴的交点可以通过求解方 程$ax^2 + bx + c = 0$得到。
沿y轴方向缩小k倍,解析式变为 y=ax^2+bx/k+c/k。
对称变换

【人教版】2014中考数学复习方案:二次函数的图象与性质(二)(29张PPT)

考点聚焦 归类探究 回归教材 中考预测
第15讲┃二次函数的图象与性质(二)
(1)二次函数的图象是抛物线,是轴对称图形,充 分利用抛物线的轴对称性,是研究利用二次函数的性 质解决问题的关键. (2)已知二次函数图象上几个点的坐标,一般用待 定系数法直接列方程(组)求二次函数的解析式. (3)已知二次函数图象上的点(除顶点外)和对称轴 ,便能确定与此点关于对称轴对称的另一点的坐标.

(3)从图象和(1)(2)中可知,二次函数y=x2+2x的图
象与x轴有两个交点,交点的坐标分别为(0,0),(-2,0), 方程x2+2x=0有两个根0,-2; 二次函数y=x2-2x+1的图象与x轴有一个交点,交点坐标为 (1,0),方程x2-2x+1=0有两个相等的实数根1; 二次函数y=x2-2x+2的图象与x轴没有交点,方程x2-2x+
探究四 二次函数的图象与性质的综合运用
命题角度: 二次函数的图象与性质的综合运用.
例5 [2013· 内江] 已知二次函数y=ax2+bx+c(a>0)的 图象与x轴交于A(x1,0),B(x2,0)(x1<x2)两点,与y轴 交于点C,x1,x2是方程x2+4x-5=0的两根. (1)若抛物线的顶点为D,求S△ABC∶S△ACD的值; (2)若∠ADC=90°,求二次函数的解析式.

(1)二次函数y=x2+2x,y=x2-2x+1,y=x2-2x+
2的图象与x轴分别有两个交点,一个交点,没有交点.
(2)一元二次方程x2+2x=0有两个根0,-2;方程x2-2x+1
=0有两个相等的根1,验证略;方程x2-2x+2=0没有实数
根.
考点聚焦
归类探究
回归教材
中考预测
第15讲┃二次函数的图象与性质(二)

二次函数复习(共36张PPT)


y=ax2+bx+c的图 方程ax2+bx+c=0
象和x轴交点
的根
b2-4ac
有两个交点
方程有两个不相等的 b2-4ac>0
实数根
只有一个交点
方程有两个相等的 b2-4ac=0
实数根
没有交点
方程没有实数根 b2-4ac<0
函数的图象
y
.
. ox
y
o
x
y
o
x
根据下列表格中二次函数y=ax2+bx+c的自变量与函数 值的对应值,判断方程ax2+bx+c =0
(4)函数的自变量x的取值范围:任意实数
当二次函数表示某个实际问题时,还必须根据题意确定自变量的取值范
围.
二次函数的一般形式:
• 函数y=ax2+bx+c
– 其中a、b、c是常数 – 切记:a≠0 – 右边一个x的二次多项式(不能是分式或根式)
二次函数的特殊形式:
当b=0时, y=ax2+c 当c=0时, y=ax2+bx 当b=0,c=0时, y=ax2
向上
直线X=-h
(-h,k)
a < 0 向下
图象的平移规律:
对于抛物线y=a(x+h)2+k的平移有以下规律: (1)、平移不改变 a 的值; (2)、h决定图象沿x轴方向左右平移,左+右— (3)、k决定图象沿y轴方向上下平移,上+下—
知识运用
(坐1标)是抛物线,图(y0象=,0过)x32 第2的开口向一象、,限对上二称;轴是
二次函数 开 口 方 向 对 称 轴 顶 点 坐 标
y = ax 2
a > 0 向上 直线X=0 a < 0 向下 (或y轴)

第22章《二次函数》复习课PPT课件(人教版)

形?若存在,求点N的坐标;若不存在,请说明理由
三、课堂练习
N M
N
重视知识归纳; 重视基本概念; 重视典型题型; 重视每日小练; 重视错题整理; 避免盲目大意。
九年级数学
第22章 《二次函数》 复习(2)
定形图 性 义式象 质
坦洲实验中学初三数学
一、知识回顾
归纳知识:
(1)开a口的向符上号:由抛物a线>0的开口y 方向确定
开口向下
(2)c的符号:
a<0
o
x
由抛物线与y轴的交点位置确定.
交点在y轴正半轴
c>0
y
交点在y轴负半轴
c<0
交点是坐标原点
c=0
ox
∴ OE=DE=1.5 即D(1.5,-1.5)
设直线OD为y=kx,代入D点坐标得y= -x
令x2-2x-3 = -x
二、典型例题
证明: b2-4ac=[-(2m-1)]2-4×1×(m2-m-2) =4m2-4m+1-4m2+4m+8 =9
即b2-4ac >0 ∴ 抛物线与x轴有两个不同的交点
三、课堂练习
C
一次函数y=ax+b经过的象限与a, b符号关系 A选项,经过一二四象限, a<0, b>0 B选项,经过一二三象限,a>0, b>0 C选项,经过一三四象限, a>0, b<0 D选项,经过一三四象限,a>0, b<0
三、课堂练习
·B
A2
6
三、课堂练习
-1·
·5
与x,y轴交点
-5·
二、典型例题
解:令x=0,解得y=m2-m-2 令y=0,得x2-(2m-1) x+m2-m-2=0 [x-(m-2)][x-(m+1)]=0

初三数学复习《二次函数》(专题复习)PPT课件


面积问题
面积问题
在二次函数中,可以通过求函数与坐标轴的交点来计算图形的面积。例如,当函数与x轴交于两点时 ,可以计算这两点之间的面积;当函数与y轴交于一点时,可以计算这一点与原点之间的面积。这些 方法在解决实际问题时非常有用,例如在计算利润、产量等方面。
求解方法ቤተ መጻሕፍቲ ባይዱ
求出二次函数与x轴和y轴的交点坐标,然后根据这些坐标计算图形的面积。对于更复杂的问题,可能 需要使用积分或其他数学方法来求解。
05
综合练习与提高
基础练习题
巩固基础 覆盖全面 由浅入深
基础练习题主要针对二次函数的基本概念、性质和公 式进行设计,旨在帮助学生巩固基础知识,提高解题的 准确性和速度。
基础练习题应涵盖二次函数的各个方面,包括开口方 向、顶点坐标、对称轴、与坐标轴的交点等,确保学生 对二次函数有全面的了解。
题目难度应从易到难,逐步引导学生深入理解二次函 数,从简单的计算到复杂的综合题,逐步提高学生的解 题能力。
初三数学复习《二次函数》(专题复习)ppt课 件
目录 Contents
• 二次函数的基本概念 • 二次函数的解析式 • 二次函数的图像与性质 • 二次函数的实际应用 • 综合练习与提高
01
二次函数的基本概念
二次函数的定义
总结词
理解二次函数的定义是掌握其性 质和图像的基础。
详细描述
二次函数是形式为$f(x) = ax^2 + bx + c$的函数,其中$a, b, c$是 常数,且$a neq 0$。这个定义表 明二次函数具有两个变量$x$和 $y$,并且$x$的最高次数为2。
03
二次函数的图像与性质
开口方向
总结词:根据二次项系数a的正负判断开口方向 a>0时,开口向上
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

y
B(3,0)
x
解:令y=0,则 –x+3=0,x=3, ∴B(3,0), 令x=0, 则y=3, ∴C(0,3), 得 -9+3b+c=0 解得 b=2 c=3 c=3 ∴ y= -x2+2x+3


7.如图,已知直线 y= D(1,4) (0,3) x+3与X轴、y轴分别交于点 C 2 B、C,抛物线y= -x +bx+c 经过点B、C,点A是抛物线 A B(3,0) 与x轴的另一个交点。 x (-1,0)o (1,0) E (1)求抛物线的解析式; (2)若抛物线的顶点为D,求四边形ABDC 的面积; 解:S四边形ABDC=S△AOC+S梯形OEDC+S △EBD
2a 4ac b 2 y最小 ) 4a a>0,x≤-b/2a,y
b 直线x 2a b 4ac b 2 ( , ) 2 a 4 a b a 0,当x ,
x≥-b/2a,y随x增大 而增大
2.二次函数图象的画法
对称轴直线x= y
b 2a
b ( , c) a
x1 O x2
(4)b2-4ac的符号: a、b同号 a、b异号 b=0
由抛物线与x轴的交点个数确定
与x轴有两个交点 与x轴有一个交点 与x轴无交点 b2-4ac>0 b2-4ac=0 b2-4ac<0
(1)已知y=ax2+bx+c的图象如图所示,
< a___0,
> > b____0, c_____0, abc____0 <
(7)已知二次函数y=x2+bx+c的顶点坐标(1,-2),求 b,c的值
(8)已知二次函数y=x2+4x+c的顶点坐标在x轴上, 求c的值 (9)已知二次函数y=x2+4x+c的顶点坐标在直线y=2x+1 上,求c的值
如何求抛物线解析式常用的三种方法
1、已知抛物线上的三点,通常设解析式为 2+bx+c(a≠0) y=ax ________________ 一般式 2、已知抛物线顶点坐标(m, k),通常 设抛物线解析式为_______________ y=a(x+m)2+k(a≠0) 3、已知抛物线与x 轴的两个交点(x1,0)、 (x2,0),通常设解析式为y=a(x-x _____________ 1)(x-x2) (a≠0) 4.公式法
2
平移
对称 轴
y=ax2
b 4ac b 2 y a x 2a 4a
直线x=0 直线x=-m (0,0)
a>0当 x=0,y最小 =0
顶点 坐标 最值
增减 性
(-m,0)
a>0当x=m,y最小=0
a>0,x≤-m,y随x 增大而减小 x≥- 随x增大而减小
m,y随x增大而增大
问题1 建立如图所示的直角坐标系, 求抛物线的解析式; 问题2这位同学身高1.7 m,若 3.5m 在这次跳投中,球在头顶上 方0.25 m处出手,问:球出 手时,他跳离地面的高度是 多少?
o 2.5m 4 m
3.05 m
x
2.你知道吗?平时我们在跳绳时,绳甩到最高处的形 状可近似的看为抛物线,如图所示,正在甩绳的甲、 乙两名学生拿绳的手间距为4米,距地面均为1米,学 生丙、丁分别站在距甲拿绳的手水平距离1米、2.5米 处,绳子甩到最高处时,刚好通过他们的头顶,已知 学生丙的身高是1.5米,请你算一算学生丁的身高。
函数解析式是
y=2(x+2)2-3

(6)已知二次函数y=x2-4x-5 , 求下列问题
①开口方向
②对称轴
④怎样平移
③顶点坐标
⑤x在什么范围,y随x 增大而增大 ⑦当x为何值时,y>0
③最值
⑥与坐标轴的交点坐标
⑧与x轴的交点坐标为A,B,与y轴的交点为C,则 2-8 S∆ABC= y=-2(x+1) . ⑨在抛物线上是否存在点P,使得S∆ABP是∆ABC面积的2 倍,若存在,请求出点P的坐标,若不存在,请说明 理由
顶点式
交点式或两根式
如何求下列条件下的二次函数的解析式:
1.已知一个二次函数的图象经过点
(0,0),(1,﹣3),(2,﹣8)。
2.已知二次函数的图象的顶点坐标为 (-2,-3),且图象过点(-3,-2)。 3.已知二次函数的图象的对称轴是直线x=3,
并且经过点(6,0),和(2,12) 4.矩形的周长为60,长为x,面积为y,则y关于 x的函数关系式 。
S△PAC=
1 2
y
(0,3)
C A
P
o
B(3,0) Q
x
S △PAB,求P的坐标;
(4)第(3)题改为在直线y= -x+3上是否存在 1 点P,使S△PAC= S △PAB?若存在,求出点P 2 的坐标;若不存在,说明理由。答案一样吗?
P
y ( 0, 3) C A
y ( 0, 3) C P
(3,0) A B x o
(2) y=-2x2-2是由 y=-2x2 向 下 平移 2 (3) y=-2(x-2)2+3是由 y=-2x2 向右 平移 ,再向 上 平移 3 个单位得到 个单位得到
2 个单位
(4) y=2x2+4x-5是由 y=2x2向 左 平移 1 个单位,再 向 下 平移 7 个单位得到 (5) y=2x2向左平移2个单位,再向下平移3个单位得到
)2-8 状相同,其解析式为 y=0.5(x-16 。
5、若x为任意实数,则二次函数y=x2+2x+3的函
数值y的取值范围是
y≥2 。
6、抛物线y=2x2-4x-1是由抛物线y=2x2-bx+c向 左平移1个单位,再向下平移2个单位得到的, 则b= 8 ,c= 3。
7、已知抛物线y=2x2+bx+8的顶点在x轴上, 则b= ±8。
如何判别a、b、c、b2-4ac,2a+b,a+b+c的符 号
(1)a的符号:由抛物线的开口方向确定
a>0 开口向上 a<0 开口向下 (2)C的符号: 由抛物线与y轴的交点位置确定. c>0 交点在x轴上方 交点在x轴下方 经过坐标原点 c<0 c=0
(3)b的符号: 由对称轴的位置确定 对称轴在y轴左侧 对称轴在y轴右侧 对称轴是y轴
解:(1)由题意,x=1时,y=2;x=2时,y=2+4=6,分别代入 y=ax2+bx,得a+b=2,4a+2b=6, 解得:a=1,b=1, ∴y=x2+x. (2)设g=33x-100-x2-x,则 g=-x2+32x-100=-(x-16)2+156. 由于当1≤x≤16时,g随x的增大而增大,故当x=4时,即第4年可 收回投资。
c x
2 b 4 ac b 顶点坐标 ( , ) 4a 2a
与X轴
b 4ac b 2 ( , ) 4a 2a
与Y轴的交点坐标及它 关于对称轴的对称点
(0, c)
b ( , c) a
(1) y=2(x+2)2是由 y=2x2 向 左平移 2 个单位得到
6.某商场将进价40元一个的某种商品按50元一个售出 时,能卖出500个,已知这种商品每个涨价一元,销量 减少10个,为赚得最大利润,售价定为多少?最大利 润是多少? 分析:利润=(每件商品所获利润)× (销售件数)
设每个涨价x元, 那么
(1)销售价可以表示为
(50+x)元(x≥ 0,且 为整数)
8、已知y=x2-(12-k)x+12,当x>1时,y随 x的增大而增大,当x<1时,y随x的增大而减 小,则k的值为
10

综合应用
(中考必考题)
1. 如图,有一次,我班某同学在距篮下4m处 跳起投篮,球运行的路线是抛物线,当球运 行的水平距离2.5m时,达到最大高度3.5m, 然后准确落入篮圈。已知篮圈中心到地面的 y 距离为3.05m.
2014最新人教版九年级上册数学
二 次 函 数 复 习
乌市第58中 郭云舒
一、二次函数概念
形如y=ax2+bx+c (a,b,c是常数,a≠0) 的函 数叫做二次函数
其中二次项为ax2,一次项为bx,常数项c 二次项的系数为a,一次项的系数为b,常数项c
练习:1、y=-x² ,y=2x² -2/x,y=100-5
x² , y=3 x² -2x³ +5,其中是二次函数的有____个。 2.当m_______时,函数y=(m+1)χ - 2χ+1 是二次函 数?
二.二次函数图象
y=ax2+k 顶点式 y=a(x+m)2 y=a(x+m)2+k 直线x=-m (-m,k)
a>0当x=m,y最小=k
一般式 y=ax2+bx+c
Q
o
Q
B ( 3, 0 x

(14)(2014 •乌鲁木齐)在平面直角坐标系 xOy中,抛物线y=mx² -2x与x轴正半轴交于点 A,顶点为B.
(3) ∵墙的可用长度为8米
∴ 0<24-4x ≤8
4≤x<6
∴当x=4m时,S最大值=32 平方米
5.某企业投资100万元引进一条产品加工生产线,若不 计维修、保养费用,预计投产后每年可创利33万。该 生产线投产后,从第1年到第x年的维修、保养费用累 计为y(万元),且y=ax2+bx,若第1年的维修、保养 费用为2万元,到第2年为6万元。 (1)求y的解析式; (2)投产后,这个企业在第几年就能收回投资?
相关文档
最新文档