电力变压器的保护配置

合集下载

变压器保护原理与配置

变压器保护原理与配置

变压器保护原理与配置变压器是电力系统中重要的电力设备之一,其主要功能是将一个电压等级的电能转换为另一个电压等级的电能,并在输电中进行电能传输和分配。

为保障变压器的正常运行,必须对其进行保护。

以下是变压器保护原理与配置的介绍。

一、变压器保护原理1. 过载保护当变压器负载电流超过额定电流时,将引起变压器温升过高,甚至可能导致短路,从而损坏变压器。

因此,需要对变压器进行过载保护。

过载保护装置通常采用电流互感器检测变压器负载电流,并通过保护继电器等装置实现过载保护。

2. 短路保护当变压器发生短路故障时,电流会急剧升高,引起变压器内部温度瞬间升高,将损坏变压器绕组和绝缘。

因此,需要对变压器进行短路保护。

短路保护装置通常采用电流互感器检测变压器电流,并通过保护继电器等装置实现短路保护。

3. 地闸保护当变压器出现地闸故障时,会导致变压器绕组和绝缘被损坏,从而影响变压器正常运行。

因此,需要进行地闸保护。

地闸保护装置通常采用变压器的中性点作为检测点,并通过保护继电器等装置实现地闸保护。

4. 过压保护当变压器输入电压超过额定电压时,会导致变压器绕组和绝缘的击穿,损坏变压器正常运行。

因此,需要进行过压保护。

过压保护装置通常采用电压互感器检测输入电压,并通过保护继电器等装置实现过压保护。

5. 欠压保护当变压器输入电压低于额定电压时,会导致变压器负载电流急剧升高,造成变压器绕组温度异常升高,从而损坏变压器。

因此,需要进行欠压保护。

欠压保护装置通常采用电压互感器检测输入电压,并通过保护继电器等装置实现欠压保护。

二、变压器保护配置变压器保护装置应按照变压器及其用途来确定配置方案。

变压器通常采用机械继电器、数字化继电器、微处理器等不同类型的保护装置。

1. 机械继电器保护机械继电器保护装置是一种传统的设备保护方案,通常用于小型变压器的保护。

它具有工作可靠、升级容易、操作简单等优点,但不支持远程通信,难以实现自动化和故障诊断。

2. 数字化继电器保护数字化继电器保护装置是一种新型设备保护方案,通常用于大型变压器的保护。

简述电力变压器保护配置

简述电力变压器保护配置

电力变压器保护配置1. 介绍电力变压器是电力系统中非常重要的设备,用来变换电压级别以便传输电能。

为了保证变压器的正常运行,必须配置适当的保护装置来提供对各种故障和异常情况的保护。

本文将介绍电力变压器保护装置的配置方法和相关技术。

2. 保护装置的种类电力变压器保护装置主要包括电流保护、电压保护、温度保护、油位保护等。

下面将分别介绍各种保护装置的配置方法和工作原理。

2.1 电流保护电流保护用于检测电流异常情况,例如短路故障或过载情况。

常用的电流保护装置有电流互感器和电流继电器。

配置电流保护时,需要根据变压器的额定电流和工作条件选择合适大小的电流互感器,并设置适当的电流保护参数。

2.2 电压保护电压保护主要用于检测电压异常情况,例如电压偏低或电压偏高。

常用的电压保护装置有电压互感器和电压继电器。

配置电压保护时,需要考虑变压器的额定电压和运行条件,并设置适当的电压保护参数。

2.3 温度保护温度保护用于检测变压器的温度异常情况,例如过热和过冷。

常用的温度保护装置有温度传感器和温度继电器。

配置温度保护时,需要根据变压器的额定温度和工作条件选择合适的温度传感器,并设置适当的温度保护参数。

2.4 油位保护油位保护用于检测变压器的油位异常情况,例如油位过高或油位过低。

常用的油位保护装置有油位传感器和油位继电器。

配置油位保护时,需要根据变压器的油位范围选择合适的油位传感器,并设置适当的油位保护参数。

3. 保护参数的设置为了确保变压器保护装置能够对各种故障和异常情况做出准确的判断和响应,需要设置适当的保护参数。

以下是常用的保护参数和设置方法:3.1 电流保护参数的设置•过流保护参数:根据变压器的额定电流和工作条件,设置过流保护的动作电流和延时时间。

•短路保护参数:根据变压器的额定电流和短路电流特性,设置短路保护的动作电流和延时时间。

3.2 电压保护参数的设置•低压保护参数:根据变压器的额定电压和工作条件,设置低压保护的动作电压和延时时间。

变压器保护配置及运行规定详细讲解(变压器保护的基本要求,变压器保护配置,运行规定)

变压器保护配置及运行规定详细讲解(变压器保护的基本要求,变压器保护配置,运行规定)

极性接错时:
外部短路 误动
(二) 变压器保护配置
CJ
(二) 变压器保护配置
不平衡电流的概念:
正常运行或外部短路时,
I/2
CJ
IJ = I/2 – I//2 = Ibp
不平衡电流过大的影响:
降低保护的灵敏度,或使
保护误动。
I//2
➢ 消除方法:
(二)
变压器保护配置
CJ
利用励磁涌流中的 非周期是分根量据助鉴磁别使波形间断 L J 根铁据心二饱角次和原谐,理波自构制动成动增的原。理它构利 采用具成有大速的差。动用它保励利护磁用的涌励动流磁作的涌波流形中有 饱差和动铁继含心电电的器有流大,较量以大二躲的次开间谐励断波磁角分,量而作短 为涌制流动的路量影电这响流一。的点波进形行是工连作续 利用的二次谐波这制一动 点进行工作的
检查的设备有变压器本体、
220kV母线
三侧的避雷器、
电压互感器、
各设备的接线端头、
出线瓷套管等。
110kV母线
10kV母线
(二) 变压器保护配置
主变差动保护范围示意图(取套管CT)
第二种情况: 检查的设备有变压器本体、 中低压侧的避雷器、 中低压侧设备的接线端头、 出线瓷套管
220kV母线 110kV母线
10kV母线
(二) 变压器保护配置
主变差动保护范围 (取旁路开关CT)
第三种情况:
检查的设备有变压器本22体0kV母、线
三侧的避雷器、 各设备的接线端头、
220kV旁母线
出线瓷套管
检查旁路母线及旁路刀闸 不检查主变3刀闸
110kV母线
10kV母线
(二) 变压器保护配置
变压器的主保护 分侧差动保护

变压器的保护配置

变压器的保护配置

变压器的保护配置 Revised by Jack on December 14,2020电力变压器的保护配置随着企业的快速发展,供电可靠性的要求不断提高,变压器的安全运行更是必不可少的条件。

而合理可靠的保护配置是变压器安全运行的必备条件。

现代生产的变压器,虽然在设计和材料方面有所改进,结构上比较可靠,相对于输电线路和发电机来说,变压器故障机会也比较少,但在实际运行中,仍有可能发生备种类型的故障和异常运行情况,这会对供电可靠性和系统的正常运行带来严重影响。

为了满足电力系统稳定方面的要求,当变压器发生故障时,要求保护装置快速切除故障。

第一章电力变压器的故障及不正常工作状态(一)变压器的故障变压器的故障可以分为油箱外和油箱内两种故障。

油箱外的故障,主要是套管和引出线上发生的相间短路和接地短路。

油箱内的故障包括绕组的相间短路、接地短路、匝间短路以及铁芯的烧损等。

油箱内故障时产生的电弧,不仅会损坏绕组的绝缘、烧毁铁芯,而且由于绝缘材料和变压器油因受热分解而产生大量气体,有可能引起变压器油箱的爆炸。

因此,当变压器发生各种故障时,保护装置应能尽快的将变压器切除。

实践表明,变压器套管和引出线上的相间短路、接地短路、绕组的匝间短路是比较常见的故障形式,而变压器油箱内发生相间短路的情况比较少。

(二)变压器的不正常运行状态变压器的不正常运行状态主要有变压器外部短路和过负荷引起的过电流;中性点直接接地电力网中,外部接地短路引起的过电流及中性点过电压;风扇故障或漏油等原因引起冷却能力的下降等。

这些不正常运行状态会使绕组和铁芯过热。

大容量变压器在过电压或低频率等异常运行工况下会使变压器过励磁,引起铁芯和其他金属构件过热。

变压器处于不正常运行状态时,继电保护应根据其严重程度,发出告警信号,使运行人员及时发现并采取相应的措施,以确保变压器的安全。

第二章变压器的保护配置电力变压器油箱内故障时,除了变压器各侧电流、电压变化外,油箱内的油、气、温度等非电量也会发生变化。

变压器保护基本原理、保护配置和不正常运行状态相关知识培训讲解

变压器保护基本原理、保护配置和不正常运行状态相关知识培训讲解

一、变压器简介
1、按功能分: 电力变压器按功能分,有升压变压
器和降压变压器两大类。
2、按容量分:有R8容量(R8≈1.33倍数递增)系列
和R10容量(R10 ≈ 1.26倍数递增)系列两大类。
3、按相数分:有单相和三相两大类。 4、按调压方式分:有无载调压(又称无励磁调压)
和有载调压两大类。
5、按绕组结构分:有单绕组自耦变压器、双绕组
四、变压器保护的基本原理
四、变压器保护的基本原理
四、变压器保护的基本原理
四、变压器保护的基本原理
四、变压器保护的基本原理
四、变压器保护的基本原理
四、变压器保护的基本原理
四、变压器保护的基本原理
四、变压器保护的基本原理
四、变压器保护的基本原理
四、变压器保护的基本原理
四、变压器保护的基本原理
变压器保护基本原理、保护配置和不正常 运行状态相关知识培训讲解
奉献清洁能源 构建和谐企业 Build a harmonious enterprise dedicated clean energy
目录
变压器简介 变压器的故障类型及不正常运行情况 变压器保护配置 变压器保护的基本原理
一、变压器简介
变压器是传输电能而不改变其频率的静止的电 能转换器。
变压器是电力系统中数量极多且地位十分重要的电气 设备,变压器的总容量大约是发电机总容量的9倍以上。其 功能是将电力系统中的电能电压升高或降低,以利于电能 的合理输送、分配和使用。
在电力系统中,输送同样功率的电能,电压越高,电 流就越小,输电线路上的功率损耗也越小;输电线的截面 积也可以减小,这样就可以减少导线的金属用量。
一、变压器简介
由于制造上的困难,发电机电压不可能很高(目前 在20KV以下),所以在发电厂中要用升压变压器将发电 机电压升到很高,才能将大量的电能送往远处的用电地 区,如35KV、66KV、110KV、220kv、330kv、500kv等。 而在用电负荷处,再用降压变压器将电压降低到适当的 数值供用户电气设备使用。电力变压器在传输电能的时 候,本身也有一些有功损耗,但数量不大,因而传输效 率很高。中小型变压器的效率不低于95%,大型变压器 效率可达到98%以上。

电力变压器继电保护配置

电力变压器继电保护配置

电力变压器继电保护配置摘要:本文从差动保护、瓦斯保护、过电流保护、过负荷保护等方面介绍了变压器各种保护配置的原理及作用,最后针对具体变电站给出了变压器保护配置举例。

关键词:电力变压器;保护配置电力变压器是电力系统中大量使用的重要电气设备,同时也是非常贵重的元件,发生故障时将对供电可靠性及系统的正常运行带来严重后果,同时也会造成严重的经济损失。

因此,变压器具有合理的保护配置对变压器保护具有了非常重要的意义。

一、变压器保护的基本原理和作用(一)变压器的主保护变压器的主保护包括差动保护、瓦斯保护。

主保护是为满足系统稳定和设备安全要求,能以最快速度有选择的切除被保护设备和线路故障的保护。

1、差动保护(1)差动保护原理变压器差动保护是按照循环电流原理构成的,主要是用来反应变压器绕组、引出线及套管上的各种短路故障,是变压器的主保护。

(2)差动保护特点从保护范围上来说,可以保护三侧开关CT(包括CT)至主变部分,可以反应保护范围内的接地、相间、匝间故障。

从动作特性上看,瞬时跳三侧开关 (0秒动作)。

2、瓦斯保护(1)瓦斯保护可以反应主变内部各种故障(包括接头过热、局部放电、铁芯故障等)的非电量主保护。

轻瓦斯保护动作于发信号,重瓦斯保护动作瞬时跳开各侧开关。

(2)瓦斯保护原理当变压器发生内部故障时产生大量的气体将聚集在瓦斯继电器的上部,使油下降,当油面降低到一定程度时,上浮筒下沉使水银接点接通,发轻瓦斯动作信号。

如果是严重的故障时,油箱内的压力增大使油流冲击挡板,挡板克服弹簧阻力,带动磁铁向干簧触点方向移动使水银接点闭合接通跳闸回路。

(3)瓦斯保护的特点瓦斯保护的范围是油箱内部的相间短路故障,绕组匝间、层间短期故障,绕组与铁芯与外壳间的短路故障,铁芯故障,油面下降或漏油和分接头接触不良等故障。

(二)变压器的后备保护后备保护是指当主保护或开关拒动时,用来切除故障的保护。

后备保护分为远后备和近后备两种。

远后备保护是指当主保护或开关拒动时,由相邻电力设备或线路的保护来实现的后备保护。

简述电力变压器保护配置

简述电力变压器保护配置

简述电力变压器保护配置电力变压器是电力系统中重要的设备之一,其保护配置的合理性对于电力系统的稳定运行具有至关重要的作用。

本文将从变压器保护配置的目的、保护配置原则、主要保护及其参数设置等方面进行详细介绍。

一、变压器保护配置的目的1. 保障变压器安全稳定运行,防止因故障引起事故。

2. 提高电力系统可靠性,减少停电次数和时间。

3. 降低维修成本和损失,延长设备使用寿命。

二、保护配置原则1. 安全优先原则:在任何情况下都必须确保设备和人员安全,即使在故障发生时也不能妥协。

2. 经济合理原则:在满足安全要求前提下,尽可能地节约成本。

3. 灵活可靠原则:根据不同情况选择不同的保护措施,并确保其可靠性。

三、主要保护及其参数设置1. 过流保护过流保护是变压器最基本也是最常用的一种保护。

其作用是检测变压器中出现过流现象,并在一定时间内切断故障电路。

过流保护分为瞬时过流保护和时间限制过流保护两种,其参数设置应根据变压器额定电流、短路容量等因素进行。

2. 过温保护过温保护是指在变压器温度超出额定值时自动切断电源以防止设备损坏。

其参数设置应根据变压器绕组材料、冷却方式等因素进行。

3. 段差保护段差保护是指在变压器绝缘被击穿时自动切断电源以防止发生事故。

其参数设置应根据变压器绝缘强度、绝缘结构等因素进行。

4. 地面保护地面保护是指在变压器出现接地故障时自动切断电源以防止设备受损。

其参数设置应根据变压器接地方式、接地电阻等因素进行。

5. 差动保护差动保护是一种常用的主要保护方式,它能够有效地检测出变压器内部的故障,并在一定时间内切断故障电路。

其参数设置应根据变压器结构、相数、容量等因素进行。

6. 零序保护零序保护是指在变压器出现接地故障时自动切断电源以防止设备受损。

其参数设置应根据变压器接地方式、接地电阻等因素进行。

四、其他保护配置1. 短路电流限制器:用于限制短路电流,防止短路过大导致设备损坏。

2. 欠压保护:用于检测变压器输入端的电压是否低于额定值,以防止设备受损。

10kv变压器保护配置原则

10kv变压器保护配置原则

10kv变压器保护配置原则10kV变压器保护配置原则引言:10kV变压器在电力系统中扮演着重要的角色,其正常运行对于电网的稳定性和供电质量至关重要。

为了保护变压器免受故障和损坏,我们需要合理配置变压器的保护装置。

本文将介绍10kV变压器保护配置的原则和要点。

一、差动保护1.差动保护是变压器保护的主要手段之一。

当变压器的绕组发生短路或相间短路时,会导致差动电流增大,通过监测变压器两侧的电流差值,可以及时判断是否存在故障,并采取相应的保护动作。

二、过电流保护1.过电流保护是变压器保护的基础。

当变压器发生内部故障或外部短路时,会导致过电流的产生。

通过设置变压器的过电流保护装置,可以及时检测并切断故障电路,保护变压器免受损坏。

三、过温保护1.变压器过温保护是非常重要的一项保护措施。

当变压器内部温度过高时,可能会引发变压器绝缘材料老化、变压器油击穿等故障,严重时甚至会导致爆炸。

因此,必须设置过温保护装置,监测变压器的温度,并在温度超过额定值时及时发出警报或切断电路。

四、油位保护1.油位保护是变压器保护中的一项重要内容。

变压器油的作用是冷却和绝缘,当变压器油位过低时,会导致变压器冷却不良和绝缘性能下降,从而引发故障。

通过油位保护装置,可以及时监测油位,并在油位异常时发出警报或切断电路。

五、短路电流限制保护1.短路电流限制保护是为了保护变压器在短路故障时避免电流过大而损坏。

通过设置短路电流限制器,可以限制电流的增长,保护变压器免受损坏。

六、电流保护装置的选择1.在配置10kV变压器的电流保护装置时,需要根据变压器的额定电流、短路容量和故障类型等因素进行选择。

一般可选用电流互感器、电流继电器或电流保护装置等设备。

七、保护装置的灵敏度设置1.保护装置的灵敏度设置对于准确判断故障并及时采取保护动作至关重要。

灵敏度设置应考虑到变压器的额定电流、故障类型和系统的可靠性要求等因素。

八、保护装置的互锁与联锁1.为了提高变压器保护的可靠性和安全性,应设置保护装置的互锁和联锁功能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

技师专业论文工种:配电工题目:电力变压器的保护配置作者:程红梅身份证号:5申报等级:配电工技师单位:陕西龙门钢铁有限责任公司能源管控中心日期:2013年9月1日目录第一章电力变压器的故障及不正常工作状态1(一)变压器的故障1(二)变压器的不正常运行状态2第二章变压器的保护配置2(一)瓦斯保护2(二)纵差动保护和电流速断保护31纵差动保护4(1)纵差动保护基本原理4(2)变压器的纵差动保护52电流速断保护6(三)外部相间短路和接地短路时的后备保护7 1变压器相间短路的后备保护7(1)过电流保护7(2)低电压启动的过电流保护82中性点接地变压器的接地保护9(1)只有一台变压器的变电所9(2)两台变压器并列运行的变电所10(四)过负荷保护10(五)过励磁保护11(六)其他非电量保护11结论11参考文献12电力变压器的保护配置作者:程红梅论文摘要:电力变压器是变电所中最关键的一次设备,其主要功能是将电力系统的电压升高或降低,以利于电能的合理输送、分配和使用。

电力变压器是电力系统中的重要电器设备,而且其数量很多。

现代生产的变压器,虽然在设计和材料方面有所改进,结构上比较可靠,相对于输电线路和发电机来说,变压器故障机会也比较少,但在实际运行中,仍有可能发生备种类型的故障和异常运行情况,这会对供电可靠性和系统的正常运行带来严重影响。

再加上变压器的价格十分昂贵,所以,必须根据变压器的容量和重要程度装设性能良好、工作可靠且具有较好的经济性的保护装置。

本文主要介绍了电力变压器的几种继电保护。

主题词:变压器,瓦斯保护,纵差动保护,过负荷保护前言:随着企业的快速发展,供电可靠性的要求不断提高,变压器的安全运行更是必不可少的条件。

而合理可靠的保护配置是变压器安全运行的必备条件。

现代生产的变压器,虽然在设计和材料方面有所改进,结构上比较可靠,相对于输电线路和发电机来说,变压器故障机会也比较少,但在实际运行中,仍有可能发生备种类型的故障和异常运行情况,这会对供电可靠性和系统的正常运行带来严重影响。

为了满足电力系统稳定方面的要求,当变压器发生故障时,要求保护装置快速切除故障。

第一章电力变压器的故障及不正常工作状态(一)变压器的故障变压器的故障可以分为油箱外和油箱内两种故障。

油箱外的故障,主要是套管和引出线上发生的相间短路和接地短路。

油箱内的故障包括绕组的相间短路、接地短路、匝间短路以及铁芯的烧损等。

油箱内故障时产生的电弧,不仅会损坏绕组的绝缘、烧毁铁芯,而且由于绝缘材料和变压器油因受热分解而产生大量气体,有可能引起变压器油箱的爆炸。

因此,当变压器发生各种故障时,保护装置应能尽快的将变压器切除。

实践表明,变压器套管和引出线上的相间短路、接地短路、绕组的匝间短路是比较常见的故障形式,而变压器油箱内发生相间短路的情况比较少。

(二)变压器的不正常运行状态变压器的不正常运行状态主要有变压器外部短路和过负荷引起的过电流;中性点直接接地电力网中,外部接地短路引起的过电流及中性点过电压;风扇故障或漏油等原因引起冷却能力的下降等。

这些不正常运行状态会使绕组和铁芯过热。

大容量变压器在过电压或低频率等异常运行工况下会使变压器过励磁,引起铁芯和其他金属构件过热。

变压器处于不正常运行状态时,继电保护应根据其严重程度,发出告警信号,使运行人员及时发现并采取相应的措施,以确保变压器的安全。

第二章变压器的保护配置电力变压器油箱内故障时,除了变压器各侧电流、电压变化外,油箱内的油、气、温度等非电量也会发生变化。

因此,变压器的保护分电量保护和非电量保护两种。

非电量保护装设在变压器内部。

线路保护中采用的许多保护如过流保护、纵差动保护等在变压器的电量保护中都有应用,但在配置上有区别。

根据规程规定,变压器一般应装设下列保护:(一)瓦斯保护规程规定对于容量为800kV·A及以上的油浸式变压器和400kV·A及以上的车间内油浸式变压器,应装设瓦斯保护。

瓦斯保护是反应油浸式变压器内部故障的一种保护装置。

当油浸式变压器油箱内部发生故障时,在故障电流和电弧的作用下,变压器油和其他绝缘材料会受热而分解,产生气体,这些气体从油箱流向油枕的上部,故障越严重,产生的气体就越多,流向油枕的气流速度也越快,利用这种气体来动作的保护装置,称为瓦斯保护。

瓦斯保护的主要元件是气体继电器,它安装在油箱与油枕之间的连接管道上。

气体继电器是变压器的一种保护用组件,当变压器内部有故障,而使油分解产生气体或造成油流冲击时,继电器的触点动作,给出信号或者使断路器跳闸,使变压器退出运行。

为了不妨碍气体的流通,通往继电器的连接管道应有2%~4%的坡度。

以开口杯挡板式气体继电器为例:正常运行时,上、下开口杯都浸在油中,上、下触点均断开。

当油箱内部发生轻微故障时,少量的气体上升后逐渐聚集在继电器的上部,迫使油面下降,使上开口杯漏出油面。

由于浮力减少,在重力作用下开口杯顺时针方向转动,使上触点闭合发出“轻瓦斯”保护动作信号。

当油箱内部发生严重故障时,大量气体和油流直接冲击挡板,使下开口杯顺时针方向转动,带动下触点闭合,发出跳闸脉冲,表示“重瓦斯”保护动作。

当变压器出现严重漏油而使油面逐渐降低时,首先是上开口杯露出油面,发出报警信号,然后下开口杯露出油面,发出跳闸脉冲。

上触点表示“轻瓦斯动作”,动作后经延时发出报警信号。

下触点表示“重瓦斯动作”,动作后启动变压器保护的总出口继电器,使断路器跳闸。

当油箱内部发生严重故障时,由于油流的不稳定性可能造成触点的抖动,此时为使断路器能可靠跳闸,应选用具有电流自保持线圈的出口中间继电器,动作后由断路器的辅助触点来解除出口回路的自保持。

此外,为防止变压器换油或进行试验时引起重瓦斯保护误动作跳闸,可利用切换片将跳闸回路切换到信号回路。

瓦斯保护的主要优点是动作迅速、灵敏度高、安装接线简单、能反应油箱内部发生的各种故障(如绕组轻微的匝间短路、铁芯烧损等)。

其缺点是不能反应油箱以外的套管及引出线等部位上发生的故障(如变压器绝缘子闪络等)。

因此瓦斯保护可作为变压器的主保护之一,需要与纵联差动保护相互配合、相互补充,才能够实现快速而灵敏的切除变压器油箱内、外及引出线上发生的各种故障。

(二)纵差动保护和电流速断保护对于容量为6300kV·A及以上的变压器,以及发电厂厂用变压器和并列运行的变压器,10000kV·A 及以上的发电厂厂用备用变压器和单独运行的变压器,应装设纵差动保护。

对于容量为10000kV·A 以下的变压器,当后备保护的动作时限大于0.5s 时,应装设电流速断保护。

对2000kV·A 以上的变压器,当电流速断保护的灵敏性不能满足要求时,也应装设纵差动保护。

1纵差动保护(1)纵差动保护基本原理纵差动保护,是由比较被保护元件两侧电流的大小和相位而构成的。

以图1所示双侧电源供电的短线路为例,简要说明纵差动保护的基本原理。

设线路两端装设特性及变比完全相同的电流互感器,两侧电流互感器一次回路的正极性均放在母线的一侧,将二次回路的同极性端子相连接后,在电流互感器的二次端子上接入差动继电器。

Ik1图1-1正常运行及外部短路图1-2内部短路当正常运行及保护范围外部故障时(如图1-1所示k1点短路),两侧电流互感器一次侧流过的两个电流相等。

即I Ⅰ=I Ⅱ。

假定两侧电流互感器变比相同(均为k TA ),在忽略互感器的励磁电流的理想情况下,二次侧的两个电流I I2和I II2大小也相等,此时流入差动继电器的电流为零,即0)(12I2=-=-=II I TAII k I I k I I I 当线路内部故障时,如图1-2所示k2点短路,流入继电器的电流为TAk II k k I I I I 22I2=+=式中:I k2为短路点的总电流,当I k ≥I op 时,继电器立即动作,跳开线路两侧断路器。

实际上,由于两侧电流互感器总会存在励磁电流I m ,且励磁特性不可能完全相同,所以在正常运行及外部故障时,流过差动继电器的电流不为零,而存在一个不平衡电流I dsp 。

为了保证纵差动保护动作的选择性,差动继电器的动作电流必须躲过外部短路时出现的最大不平衡电流。

不平衡电流的存在会使继电器的动作电流增大,降低内部故障时纵差动保护的灵敏度,因此要尽量减小不平衡电流,这是所有差动保护必须解决的问题。

(2)变压器的纵差动保护图2为双绕组变压器的纵差动保护的原理接线。

由于变压器高压侧和低压侧的电流I I1和I II1是不相等的,为使变压器正常运行及外部故障时流入差动继电器的两个二次电流I I2和I II2的大小相等,必须适当选择两侧电流互感器的变比,使之满足下列条件:ITAI k I I 1I2= IITA II k I I 1II2= II2I2I I =式中ITA k ——高压侧电流互感器的变比;IITA k ——低压侧电流互感器的变比。

设变压器的变比为T k ,则有ITAIITA I II T k k I I k ==11 可见,要使变压器差动保护能正确动作,必须使两侧电流互感器变比的比值等于变压器的变比T k 。

I 图2 变压器纵差动保护原理图变压器的纵差动保护同样需要躲过在正常运行及外部短路时各种因素造成的不平衡电流。

包括变压器励磁涌流造成的不平衡电流、变压器两侧电流相位不同引起的不平衡电流、电流互感器变比标准化引起的不平衡电流、两侧电流互感器型号不同产生的不平衡电流、变压器带负荷调整分接头产生的不平衡电流等。

在电力系统中,纵差动保护主要用作变压器内部相间故障的主保护。

2电流速断保护对于容量较小的变压器,可在电源侧装设电流速断保护[4]。

为保证选择性,电流速断保护只能保护变压器的一部分,它与瓦斯保护和过电流保护配合,可以组成小型变压器的整组保护。

当变压器电源侧为小接地电流系统时,保护可采用两相式接线;当电源侧为大接地电流系统时,可采用三相式或两相三继电器式接线。

电流速断保护的动作电流应按以下两个条件计算,并取其中的较大者作为动作电流的整定值。

躲过变压器二次侧母线短路时的最大短路电流,即)3(rel max.k I K I op = 式中K rel ——可靠系数,取1.2~1.3;)3(max.k I ——变压器二次侧母线三相短路时,流过保护安装处(一次侧)的最大短路电流。

躲过变压器空载合闸时的最大励磁涌流,即NT op I I )5~3(=式中NT I ——保护安装侧变压器的额定电流。

电流速断保护的灵敏度应按下式校验2)2(in .≥=opm k s I I K 式中)2(m ax .k I ——保护安装处发生短路时的最小两相短路电流。

(三)外部相间短路和接地短路时的后备保护变压器的主保护通常采用差动保护(小容量变压器可采用电流速断保护)和瓦斯保护。

相关文档
最新文档