第四章第三节高次同余式的解数及解法

合集下载

第四章-同余式

第四章-同余式
有解的充要条件是(a, m)b。 若有解,则恰有d = (a, m)个解。 特别地,若(a, m)=1,则方程(2)有唯一解。 证明 ax b (mod m) m ax b 同余方程(2)等价于不定方程 ax my = b, (3)
因此,第一个结论可由第二章第一节定理1〔P25〕得出。
2020/12/21
则 mi x ai , mj x aj (mi , mj ) ( x ai x aj )
即 (mi , mj ) ( ai aj ) ai aj (mod (mi, mj)),1 i, j n.
2020/12/21
27
则 x1 x2 (mod [m1, m2])。
(5)
证 〔必要性〕 x a1(mod m1 ), x a2(mod m2 ) m1 x a1, m2 x a2 (m1, m2 ) a1 a2
2020/12/21
25
〔充分性〕记(m1, m2)=d. 若式(4)成立,即d a1 a2,
19y 4 (mod 7),
即 5y 4 (mod 7),
y 2 (mod 7)。
再代入(*)的前一式得到 3x 10 1 (mod 7), x 4 (mod 7)。
即同余方程组(*)的解是x 4,y 2 (mod 7)。
注:同余方程组的解法与方程组的解法相似。
2020/12/21
15
2020/12/21
12
例3 解同余方程6x 7 (mod 23)。
ax
b
(mod
m)
a1 x
b[ m ](mod m) a
解 由定理4,依次得到
6x 7 (mod 23) 5x 73 2 (mod 23) 3x 24 8 (mod 23) 2x 8×7 10 (mod 23) x 5 (mod 23)。

初等数论总复习题及知识点总结

初等数论总复习题及知识点总结

初等数论学习总结本课程只介绍初等数论的的基本内容。

由于初等数论的基本知识和技巧与中学数学有着密切的关系, 因此初等数论对于中学的数学教师和数学系(特别是师范院校)的本科生来说,是一门有着重要意义的课程,在可能情况下学习数论的一些基础内容是有益的.一方面通过这些内容可加深对数的性质的了解,更深入地理解某些他邻近学科,另一方面,也许更重要的是可以加强他们的数学训练,这些训练在很多方面都是有益的.正因为如此,许多高等院校,特别是高等师范院校,都开设了数论课程。

最后,给大家提一点数论的学习方法,即一定不能忽略习题的作用,通过做习题来理解数论的方法和技巧,华罗庚教授曾经说过如果学习数论时只注意到它的内容而忽略习题的作用,则相当于只身来到宝库而空手返回而异。

数论有丰富的知识和悠久的历史,作为数论的学习者,应该懂得一点数论的常识,为此在辅导材料的最后给大家介绍数论中着名的“哥德巴赫猜想”和费马大定理的阅读材料。

初等数论自学安排第一章:整数的可除性(6学时)自学18学时整除的定义、带余数除法 最大公因数和辗转相除法 整除的进一步性质和最小公倍数 素数、算术基本定理[x]和{x}的性质及其在数论中的应用习题要求3p :2,3 ; 8p :4 ;12p :1;17p :1,2,5;20p :1。

第二章:不定方程(4学时)自学12学时二元一次不定方程c by ax =+多元一次不定方程c x a x a x a n n =++ 2211 勾股数 费尔马大定理。

习题要求29p :1,2,4;31p :2,3。

第三章:同余(4学时)自学12学时同余的定义、性质 剩余类和完全剩余系 欧拉函数、简化剩余系欧拉定理、费尔马小定理及在循环小数中的应用 习题要求43p :2,6;46p :1;49p :2,3;53p 1,2。

第四章:同余式(方程)(4学时)自学12学时同余方程概念 孙子定理高次同余方程的解数和解法 素数模的同余方程 威尔逊定理。

高次方程及其解法

高次方程及其解法

高次方程及其解法求解程序编辑高次方程的根的求解,可以利用bairstow法,通过简单的matlab程序,求得方程的所有复根(实根和虚根)2定义编辑整式方程未知数次数最高项次数高于2次的方程,称为高次方程。

3一般形式编辑高次方程的一般形式为anx^n+an-1x^n-1+-------+a1x+a0=高次方程等式两边同时除以最高项系数,得:anx^n/an+an-1x^n-1/an+--------+a1x/an+a0/an=0所以高次方程一般形式又可写为x^n+bnx^n-1+-------b1x+b0=04其它相关编辑解法思想通过适当的方法,把高次方程化为次数较低的方程求解.根与系数按这个高次方程的形式x^n+bn-1x^n-1+-------b1x+b0=0,那么有所有根相加等于系数bn-1的相反数所有根两两相乘再相加等于系数bn-2所有根三三相乘再相加等于系数bn-3的相反数依次类推,直到所有根相乘,等于(-1)^nb0成果伽罗华(Galois,1811——1832),法国数学家。

伽罗华15岁进入巴黎有名公立中学学习,偏爱数学。

后来想进工科大学,两次落榜只进一所代等的预备学校,此时,他专攻五次方程代数解法。

第一年写了四篇文章,1828年,17岁的伽罗华写了《关于五次方程的代数解法问题》等两篇论文送交法国科学院,但被柯西(Cauchy,1789——1875)遗失,后来,他又把一篇文章送给傅利(Fourier,1768——1830)。

不久,傅利就去世了,也就不了了之。

1831年,伽罗华完成了《关于用根式解方程的可解性条件》一文,院士普阿松(Poisson,1781-1840)的审查意见却是“完全不能理解”,予以退回。

伽罗华不幸因决斗受重伤于1832年5月31日离世,时年不满21岁,在决斗前夜,他深知为女友决斗而死毫无意义,但又不甘示弱,当晚他精神高度紧张和极度不安,连呼“我没有时间了!”匆忙之中,把他关于方程论的发现草草写成几页说明寄给他的朋友,并附有如下一段话:“你可以公开地请求雅可比(Jacobi)或高斯,不是对于这些定理的真实性而是对于其重要性表示意见,将来我希望有人会发现这堆东西注释出来对于他们是有益的。

密码学数学基础第四讲 同余式(3)

密码学数学基础第四讲 同余式(3)
第四讲 同余式(3)
教师:李艳俊
本讲内容
一、原根的定义 二、x k 1(mod n) 的解 三、基本性质
四、存在性问题
五、基本计算方法
一、原根的定义
回顾:欧拉定理 设m 1 是正整数,a是与m互素的正整数,则
a ( m ) 1(mod m)
问题: (m)是否为使得上述同余式成立的最小的正整数,
例1 求模41的所有原根。 解: (41) 40 23 5 所以40的素因数为2,5,而 40/2=20,40/5=8,
8 20 计算 g , g 模41是否为1 :
28 mod 41 10,220 mod 41 1 48 mod 41 18,420 mod 41 1 68 mod 41 10,620 mod 41 40
m
的简化剩余系;
(4)
m (a) m (a ) , d 0 ,进一步,如果g是模m的 ( m (a ), d ) 原根,则 g d 是模m的原根的充分必要条件是 (d , (m)) 1;
d
(5)如果模m存在一个原根g,则模m有 ( (m)) 个不同原根; (6)如果(a, m) 1, (b, m) 1,则 ( m (a), m (b)) 1 的充分必要 条件是
640 mod 412 143
6 4120 mod 412 1106
6418 mod 412 903 47 418 mod 412 370
47 40 mod 412 1518
47 4120 mod 412 83
所以6和47都是模1681的原根。
2 例3 设 m 2 41 3362 ,求模m的原根。
定理2.17 设k是正整数,n为整数,p为素数,且不是n的因子,

初等数论练习册

初等数论练习册
湖北师范学院数学与统计学院《初等数论》课程建设 余红宴
作业次数:
初等数论练习册
学号
姓名
第 0 章 序言及预备知识
第一节 序言(1)
1、数论人物、资料查询:(每人物写 600 字左右的简介) (1)华罗庚 2、理论计算与证明: (1) 2 是无理数。 (2)Show that there are infinitely many Ulam numbers 3、用 Mathematica 数学软件实现
初等数论练习册
作业次数:
学号
姓名
第 6 节 函数[x]与{x}
1、数论人物、资料查询:(每人物写 600 字左右的简介) (1) PAUL ERDO S
2、理论计算与证明:
(1)求 30! 的标准分解式。
(2)求 20!的末尾有多少个零?
(3)设 n 是任一正整数,α 是实数,证明:
(i)
⎡[nα
2010-6-7 version1.0
初等数论练习册
作业次数:
学号
姓名
作业成绩
第 1 节 剩余类及完全剩余系、简化剩余系
1、数论人物、资料查询:(每人物写 600 字左右的简介) (1)DAVID HILBERT
2、理论计算与证明
(1)证明 ϕ(1) + ϕ( p) + ϕ( p2 ) + ... + ϕ( pα ) = pα , p 为素数。
Байду номын сангаас
(2)设 a,b, c 都是正整数,则
max{a,b, c} = a + b + c − min{a,b}− min{a, c} − min{b, c}+ min{a,b, c}

第四章 同余式 (2)

第四章   同余式 (2)
9 9 4
6 2) 30 8(mod11 ( )
4
(3)用形式分数
定义1:当(a,m)=1时,若ab 1(modm), 则记b 1 (modm)称为形式分数。 a
c 1 (mod m) 根据定义和记号, 有性质 a
c a
1、
c c mt1 (mod m), t1 , t2 Z a a mt 2
c1 c 2、(d,m)=1,且 a da1, c dc1,则 a1 a (mod m)
利用形式分数的性质把分母变成1,从而求出 一次同余式的解。
例:解一次同余方程17 x 19(mod 25) 解:∵(17,25)=1,原同余方程有解,利 用形式分数的性质,同余方程解为
19 6 3 28 x 7(mod 25) 17 8 4 4
由一次同余方程有解条件知t有解,即同余方程组有解.
下面给出一个例子,并用代入法求解
x 3(mod 4) 例:解一次同余式组 x 1(mod 6)

解:因为(4,6)=2|3-1,所以有解,由(1)式得x=3+4t 代入(2)得 4t 2(mod 6) 2t 1(mod 3) 即 t 1(mod 3) 得 t 1 3t1 代入x=3+4t 得 x 3 4(1 3t1 ) 7 12t1 即 x 7(mod12)为一次同余式组的解。
证: 若 x b1 (mod m1 ) (1)有解,则有 x b (mod m )(2)
2
x b2 (mod(m1 , m2 ))
反之由(1)得

(m1, m2 ) | b1 b2
代入(2)有
x b1 m1t

高次方程的解法

高次方程的解法

高次方程的解法高次方程是指次数大于等于2的方程,例如二次方程、三次方程、四次方程等。

解高次方程是数学中的基本技能之一,能够帮助我们研究各种实际问题。

本文将介绍几种解高次方程的方法,包括因式分解、配方法、提取公因式和根的公式等。

一、因式分解法当高次方程可因式分解时,我们可以通过因式分解的方式求解方程。

举个例子,考虑解二次方程x^2 - 5x + 6 = 0。

首先,我们观察方程中的常数项6,寻找其因数。

可以得知6的因数有1、2、3和6。

然后我们将这些因数带入方程,并观察是否能够满足等式。

不难发现,当将2和3带入方程时,等式成立。

因此,我们可以得出以下因式分解形式:(x - 2)(x - 3) = 0。

由因式分解的性质可知,当一个方程的乘积等于0时,其中一个因式等于0。

因此,我们可以得到两个解:x - 2 = 0 和 x - 3 = 0。

进一步求解可得x的值,即x = 2和x = 3。

因此,原方程的解为x = 2和x = 3。

二、配方法对于一些特殊的高次方程,我们可以通过配方法来求解。

配方法适用于二次方程以及一些特殊的三次方程,例如x^2 + bx + c = 0。

我们仍以二次方程为例进行讲解。

考虑解方程x^2 - 8x + 12 = 0。

首先,我们观察方程中的系数,将常数项12分解为两个数的乘积,这里可以分解为2和6。

然后我们观察方程中的一次项系数-8,将其写成-2和-6之和。

然后将方程重新写成完全平方的形式:(x - 2)(x - 6) = 0。

继续通过因式分解的性质可以得到x的两个解:x - 2 = 0 和 x - 6 = 0。

求解可得x = 2和x = 6。

因此,原方程的解为x = 2和x = 6。

三、提取公因式法当高次方程中存在公因式时,我们可以通过提取公因式的方式简化方程,并进一步求解。

举个例子,考虑解方程x^3 - 4x^2 + 4x = 0。

首先,我们观察方程中的每一项,可以发现每一项都含有x。

第四章 同余式 (2)

第四章   同余式 (2)
“小模”和“降次”的方法来得到一般 模的高次同余方程的解。
1、小模:即把一般模高次同等方程转化为 一系列模两两互素的高次同余方程组,即有
m 定理:设m m1m2 mk , 1, m2 ,mk 两两互素, f ( x) 0(mod m) 等价于下面方程组 则 (1)
例:同余方程 x3 x2 x 1 0(mod15)
解:原同余方程等价于同余方程组
x3 x2 x 1 0(mod3)
x3 x2 x 1 0(mod5)
即有
x 1,2(mod 3) x 1,4(mod 5)
所以有4解,由孙子定理为
x 1,4,11,14(mod15)
9 9 4
6 2) 30 8(mod11 ( )
4
(3)用形式分数
定义1:当(a,m)=1时,若ab 1(modm), 则记b 1 (modm)称为形式分数。 a
c 1 (mod m) 根据定义和记号, 有性质 a
c a
1、
c c mt1 (mod m), t1 , t2 Z a a mt 2
(1)移项运算是传统的,
(2)同余方程两边也可以加上模的若干倍。 相当于同余方程两边加“零”。 (3)乘上一数k或除去一个数k,为了保持其 同解性,必须(k ,m)=1,这一点和同余的性 质有区别。

15x2 17x 5(mod12) 等价于 3x2 5x 5(mod12)
12 7
x 2x 6x 8 0(mod5)
x0 m1t2 mk x0 m1t2 mod m) (
2.2 一次同余方程ax≡b(mod m)的解法。
(1)化为不定方程ax+my=b
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档