无线网络WIFI天线原理

合集下载

wifi天线原理

wifi天线原理

wifi天线原理WiFi天线原理。

WiFi天线是无线网络中的重要组成部分,它的性能直接影响到无线网络的覆盖范围和传输速度。

在日常生活中,我们经常使用WiFi来上网、观看视频、进行在线游戏等,而WiFi天线的性能则是这些活动能否顺利进行的关键。

因此,了解WiFi天线的原理对于提高无线网络的稳定性和速度至关重要。

首先,我们来了解一下WiFi天线的工作原理。

WiFi天线通过发射和接收无线信号来实现无线网络的连接。

它的工作原理类似于电磁波的传播,通过天线内的电路产生电磁场,将电信号转换成无线电波,并将其发送到空气中。

同时,它也可以接收空气中的无线电波,并将其转换成电信号,通过电路传输到设备中。

这样一来,就实现了无线网络的连接和数据传输。

其次,WiFi天线的性能受到多种因素的影响。

首先是天线的类型,常见的WiFi天线类型包括定向天线、全向天线、板状天线等。

不同类型的天线适用于不同的场景,定向天线适合于远距离传输,而全向天线适合于覆盖范围较广的场所。

其次是天线的增益,增益越高,天线的信号传输距离就越远。

另外,天线的工作频率、极化方式、阻抗匹配等也会对性能产生影响。

因此,在选择WiFi天线时,需要根据实际需求和使用环境来进行合理的选择。

另外,WiFi天线的安装位置也对性能有着重要影响。

一般来说,WiFi天线的安装位置应该尽量避免遮挡和干扰,以保证信号的稳定传输。

此外,天线的高度和角度也会影响信号的覆盖范围和传输距离,因此在安装时需要进行合理的调整。

最后,WiFi天线的调试和优化也是提高性能的关键。

在实际使用中,可以通过调整天线的方向、角度和位置来优化信号覆盖范围和传输速度。

同时,还可以通过增加信号放大器、使用信号增强器等设备来进一步提高WiFi天线的性能。

总的来说,WiFi天线作为无线网络的重要组成部分,其性能对无线网络的稳定性和速度有着重要影响。

了解WiFi天线的工作原理和性能影响因素,对于提高无线网络的覆盖范围和传输速度具有重要意义。

无线天线接收器的原理

无线天线接收器的原理

无线天线接收器的原理
无线天线接收器的原理主要包括信号接收和信号解调两个部分。

首先,信号接收。

无线天线接收器通过天线接收到无线电波信号,将无线电波信号转换为电信号。

天线是接收无线电波信号的器件,它可以将接收到的无线电波信号转换为电流或电压信号。

其次,信号解调。

接收到的电信号是模拟信号,需要经过解调处理才能转换为数字信号。

解调是将模拟信号恢复成原始的数字信号的过程。

常用的解调方法有频率解调、相干解调和抽样解调等。

此外,无线天线接收器还包括信号放大、滤波和抗干扰处理等环节。

信号放大是为了增加接收灵敏度和提高信噪比;滤波是为了去除杂散信号和滤除不需要的频段;抗干扰处理是为了减小外界干扰对信号接收的影响。

综上所述,无线天线接收器的原理是通过天线接收无线电波信号,经过信号解调、放大、滤波和抗干扰处理等处理过程,最终将无线电波信号转换成可用的数字信号。

路由器上的天线原理

路由器上的天线原理

路由器上的天线原理路由器上的天线是用来接收和发送无线信号的设备,它是路由器的重要组成部分,主要用于传输无线网络信号。

在路由器中,天线的作用类似于电视天线,可以通过接收无线网络信号,实现无线网络的覆盖和传播。

下面我们来详细解释一下路由器上的天线原理。

首先,路由器上的天线是用来接收和发送电磁波的,它采用了天线技术来实现无线通信。

天线实际上是一种电气设备,它可以将电磁波信号转换成电流或电压信号,然后通过无线传输的方式来进行通信。

路由器上的天线一般会具有不同的类型,例如指向性天线、全向性天线、定向天线等,每种类型的天线都有着不同的特点和用途。

其次,路由器上的天线通过接收和发送电磁波来实现无线网络的传输。

当路由器接收到一个无线网络信号时,天线会将该信号转换成电流或电压信号,然后传输到路由器的无线网络接收端进行处理。

而当路由器需要发送无线网络信号时,天线会将电流或电压信号转换成电磁波信号,然后通过无线传输的方式发送出去。

通过这样的方式,天线可以实现无线网络的覆盖和传播。

另外,路由器上的天线可以通过天线技术来实现信号的增强和优化。

在无线网络传输中,信号的强度和质量是非常重要的,而天线可以通过增强信号的接收和发送能力,从而提高无线网络的覆盖范围和传输速度。

一些高端的路由器会采用多天线技术,通过多个天线同时接收和发送信号,从而实现信号的增强和优化。

此外,路由器上的天线也需要考虑天线的方向性和极化特性。

不同类型的天线具有不同的方向性和极化特性,这些特性会直接影响到天线的接收和发送能力。

在选择路由器时,需要根据具体的使用环境和需求来选择适合的天线类型和设置方向,以达到最佳的无线网络效果。

最后,路由器上的天线原理是基于无线通信的基本原理和天线技术来实现的。

通过天线的接收和发送电磁波信号,可以实现无线网络的覆盖和传播。

在选购和使用路由器时,需要了解天线的类型、特性和设置,以充分发挥无线网络的传输效果。

希望上述解释可以帮助你更好地理解路由器上的天线原理。

wifi定向天线原理

wifi定向天线原理

wifi定向天线原理
WiFi定向天线原理是利用天线阵列技术,通过控制天线的相
位和幅度,实现对无线信号的定向发射和接收。

定向天线一般由许多天线单元组成,每个天线单元都可以独立地发射和接收信号。

定向天线的原理是通过调整每个天线单元的发射相位和幅度,使得信号在特定方向上有增强而在其他方向上有衰减。

可以根据需要将无线信号集中发送或接收到特定的方向,从而实现对无线信号的定向传输。

当调整每个天线单元的相位和幅度时,相位和幅度的变化可以改变波的干涉效果。

如果相位和幅度的变化能够使得波在特定方向上相干叠加,就会形成一个相对较强的定向波束。

相反,如果波在其他方向上产生干涉破坏,就会导致波束在其他方向上的衰减。

定向天线的工作原理可以通过波的干涉原理来解释。

当波在空间中传播时,如果波在传播路径上的距离差满足波长的整数倍,就会产生干涉叠加增强;而如果波在传播路径上的距离差满足波长的半整数倍,就会产生干涉破坏。

通过合理地调整相位和幅度,可以使得波在特定方向上相干叠加,形成定向波束。

通过利用定向天线的原理,可以提高WiFi的覆盖范围和传输
速率。

定向天线可以将发射功率更加集中在特定的方向上,可以减少信号的衰减和干扰,提高信号的接收灵敏度。

此外,定向天线还可以通过调整波束的方向和宽度,实现对不同区域的定向覆盖,从而提高网络的容量和性能。

wifi天线发射原理

wifi天线发射原理

wifi天线发射原理
WiFi天线的发射原理涉及到无线通信和电磁波传播的相关知识。

WiFi天线是用来发送和接收无线网络信号的装置,它通过一系列的
物理原理来实现信号的传输和接收。

首先,WiFi天线通过无线路由器或者其他无线设备发送电信号。

这些电信号会被转换成无线电波,这是通过WiFi天线内的电路和天
线元件来实现的。

这些天线元件包括导线、电容和电感等。

当电信
号通过这些元件时,它们会产生变化的电场和磁场,从而形成电磁波。

其次,这些电磁波会在空间中传播,就像水波在水面上传播一样。

这些波会以光速传播,经过一定的距离后会被接收设备(比如
手机、电脑)的天线所接收。

接收设备的天线会将接收到的电磁波
转换成电信号,然后通过设备的电路进行处理,最终实现数据的接
收和解码。

在WiFi天线的发射过程中,天线的形状和材料也起着重要作用。

不同形状和材料的天线会对电磁波的发射和接收产生影响,例如指
向性天线可以集中信号发送到特定方向,增强信号的覆盖范围和传
输距离。

总的来说,WiFi天线的发射原理涉及到电信号的转换成电磁波、电磁波在空间中的传播以及接收设备的接收和处理过程。

这些原理
是无线通信技术的基础,也是WiFi网络实现无线连接的关键。

路由器天线原理

路由器天线原理

路由器天线原理路由器天线是无线网络中非常重要的组成部分,它的性能直接影响到无线网络的覆盖范围和信号质量。

那么,路由器天线的原理是什么呢?首先,我们需要了解一下天线的基本原理。

天线是一种能够将电磁波转换为电流或者将电流转换为电磁波的装置。

在无线通信中,天线接收到的电磁波会被转换为电流,然后通过无线设备进行处理和解码,最终转换为我们能够理解的信息。

同样,无线设备发送的信息会被转换为电流,然后通过天线转换为电磁波进行传输。

路由器天线的原理和普通天线基本相同,它们都是利用电磁波的传播特性来进行无线通信。

但是,路由器天线相对于普通天线来说有一些特殊的设计和工作原理。

首先,路由器天线通常采用的是多天线技术,即采用多个天线进行信号的发送和接收。

这样可以提高信号的覆盖范围和传输速率。

多天线技术包括了天线分集、空间复用、波束赋形等技术,能够更好地利用空间资源,提高无线网络的性能。

其次,路由器天线通常会采用定向天线或者全向天线。

定向天线可以将信号集中在某一个方向上,提高信号的覆盖范围和穿墙能力,适用于需要远距离传输的场景。

而全向天线则可以在水平方向上提供均匀的覆盖,适用于室内环境和近距离通信。

另外,路由器天线的工作频段也是非常重要的。

不同的无线网络标准和频段对天线的设计有着不同的要求。

比如,2.4GHz和5GHz 频段在无线网络中应用非常广泛,路由器天线需要能够支持这两个频段的信号传输。

总的来说,路由器天线的原理是利用电磁波的传播特性进行无线通信,采用多天线技术、定向天线或者全向天线,以及支持不同工作频段的设计。

这些都是为了提高无线网络的覆盖范围和信号质量,为用户提供更好的网络体验。

在选择路由器时,我们也可以根据路由器天线的设计和性能来进行选择,以满足不同场景下的无线通信需求。

希望通过本文的介绍,能够让大家对路由器天线的原理有更深入的了解,为日常使用和选购路由器提供一些参考。

wifi 天线 原理

wifi 天线 原理

wifi 天线原理
WiFi天线是用来接收和发送WiFi信号的设备。

它的工作原理涉及到无线电波的传输和接收。

WiFi信号是通过无线电波在空气中传播的,而WiFi天线则是用来捕捉这些无线电波并将其转换成电信号,或者将电信号转换成无线电波进行发送。

WiFi天线的原理基本上是利用天线的结构来捕捉和发送无线电波。

天线的长度和形状会影响它接收和发送无线电波的效率。

一般来说,WiFi天线会被设计成一定长度的导线或者 PCB 板,以便捕捉特定频率的无线电波。

当无线电波通过天线时,它会在天线中产生电流,这个电流会被接收设备转换成数字信号,然后被设备处理成数据或者声音等信息。

另一方面,当设备需要发送WiFi信号时,它会将数字信号转换成电流,然后通过天线发送成无线电波。

天线的设计和结构会影响无线电波的传播方向和范围,不同类型的天线会有不同的信号覆盖范围和传输性能。

除了天线的结构,WiFi天线的放置位置也会影响其性能。

合理的放置位置可以最大限度地提高WiFi信号的覆盖范围和传输速度,
而不合理的放置位置则可能导致信号覆盖不均匀或者信号被阻挡的
问题。

总的来说,WiFi天线的工作原理涉及到无线电波的传输和接收,以及天线的结构和放置位置对信号的影响。

通过合理设计和使用
WiFi天线,可以实现更稳定和高效的无线网络连接。

详解无线路由器天线的原理

详解无线路由器天线的原理

详解无线路由器天线的原理无线路由器天线是无线网络传输的重要组成部分,其原理涉及到无线信号的传播和接收。

本文将详细解析无线路由器天线的原理,包括天线的种类和结构、天线工作原理、天线性能参数以及天线的优化方法等。

一、天线的种类和结构无线路由器天线主要分为内置天线和外置天线两种类型。

内置天线常见于小型路由器和笔记本电脑等设备,其结构一般为PCB(Printed Circuit Board,印制电路板)天线或PIFA(Planar Inverted-F Antenna,平面倒F天线)。

外置天线则多用于大型路由器、无线网络扩展设备等,常见的有全向天线、定向天线和扇形天线等。

二、天线的工作原理天线是将电磁波能量转换为电信号或者将电信号转换为电磁波能量的装置。

在无线路由器中,天线接收到的电信号经过放大和解调处理后转换为数字信号,然后通过网络传输给其他设备;同时,天线接收到其他设备发送的数字信号,经过解调和放大处理后转换为电信号再进行调制,最后通过天线发送出去。

三、天线的性能参数1. 增益(Gain):表示天线在某个方向上接收或者发送信号的能力,一般以dBi(deciBels isotropic,相对于理想点源天线)为单位。

2. 方向性(Directivity):表示天线在某个方向上的敏感程度,一般用指向图(pattern)来表示,单位为dB。

3. 辐射特性(Radiation pattern):表示天线在不同方向上的辐射强度分布情况,主要包括水平辐射图和垂直辐射图。

4. 阻抗(Impedance):指天线在工作频率上的输入阻抗,常见的有50欧姆和75欧姆两种。

5. 波束宽度(Beamwidth):表示天线在水平或者垂直方向上覆盖的角度范围,一般用角度值表示。

6. 极化方式(Polarization):表示天线电磁场的振动方向,常见的有垂直极化和水平极化。

四、天线的优化方法1. 天线位置调整:通过调整天线的方向和位置,最大限度地获得覆盖范围和传输性能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

无线网络WIFI天线原理1 天线1.1 天线的作用与地位无线电发射机输出的射频信号功率,通过馈线(电缆)输送到天线,由天线以电磁波形式辐射出去。

电磁波到达接收地点后,由天线接下来(仅仅接收很小很小一部分功率),并通过馈线送到无线电接收机。

可见,天线是发射和接收电磁波的一个重要的无线电设备,没有天线也就没有无线电通信。

天线品种繁多,以供不同频率、不同用途、不同场合、不同要求等不同情况下使用。

对于众多品种的天线,进行适当的分类是必要的:按用途分类,可分为通信天线、电视天线、雷达天线等;按工作频段分类,可分为短波天线、超短波天线、微波天线等;按方向性分类,可分为全向天线、定向天线等;按外形分类,可分为线状天线、面状天线等;等等分类。

*电磁波的辐射导线上有交变电流流动时,就可以发生电磁波的辐射,辐射的能力与导线的长度和形状有关。

如图1.1 a 所示,若两导线的距离很近,电场被束缚在两导线之间,因而辐射很微弱;将两导线张开,如图1.1 b 所示,电场就散播在周围空间,因而辐射增强。

必须指出,当导线的长度L 远小于波长λ 时,辐射很微弱;导线的长度L 增大到可与波长相比拟时,导线上的电流将大大增加,因而就能形成较强的辐射。

1.2 对称振子对称振子是一种经典的、迄今为止使用最广泛的天线,单个半波对称振子可简单地单独立地使用或用作为抛物面天线的馈源,也可采用多个半波对称振子组成天线阵。

两臂长度相等的振子叫做对称振子。

每臂长度为四分之一波长、全长为二分之一波长的振子,称半波对称振子, 见图1.2 a 。

另外,还有一种异型半波对称振子,可看成是将全波对称振子折合成一个窄长的矩形框,并把全波对称振子的两个端点相叠,这个窄长的矩形框称为折合振子,注意,折合振子的长度也是为二分之一波长,故称为半波折合振子, 见图1.2 b。

1.3 天线方向性的讨论1.3.1 天线方向性发射天线的基本功能之一是把从馈线取得的能量向周围空间辐射出去,基本功能之二是把大部分能量朝所需的方向辐射。

垂直放置的半波对称振子具有平放的“面包圈”形的立体方向图(图1.3.1 a)。

立体方向图虽然立体感强,但绘制困难,图1.3.1 b与图1.3.1 c给出了它的两个主平面方向图,平面方向图描述天线在某指定平面上的方向性。

从图1.3.1 b可以看出,在振子的轴线方向上辐射为零,最大辐射方向在水平面上;而从图1.3.1 c可以看出,在水平面上各个方向上的辐射一样大。

1.3.2 天线方向性增强若干个对称振子组阵,能够控制辐射,产生“扁平的面包圈” ,把信号进一步集中到在水平面方向上。

下图是4个半波振子沿垂线上下排列成一个垂直四元阵时的立体方向图和垂直面方向图。

也可以利用反射板可把辐射能控制到单侧方向,平面反射板放在阵列的一边构成扇形区覆盖天线。

下面的水平面方向图说明了反射面的作用------反射面把功率反射到单侧方向,提高了增益。

抛物反射面的使用,更能使天线的辐射,像光学中的探照灯那样,把能量集中到一个小立体角内,从而获得很高的增益。

不言而喻,抛物面天线的构成包括两个基本要素:抛物反射面和放置在抛物面焦点上的辐射源。

1.3.3 增益增益是指:在输入功率相等的条件下,实际天线与理想的辐射单元在空间同一点处所产生的信号的功率密度之比。

它定量地描述一个天线把输入功率集中辐射的程度。

增益显然与天线方向图有密切的关系,方向图主瓣越窄,副瓣越小,增益越高。

可以这样来理解增益的物理含义------为在一定的距离上的某点处产生一定大小的信号,如果用理想的无方向性点源作为发射天线,需要100W的输入功率,而用增益为G = 13 dB = 20 的某定向天线作为发射天线时,输入功率只需100 / 20 = 5W 。

换言之,某天线的增益,就其最大辐射方向上的辐射效果来说,与无方向性的理想点源相比,把输入功率放大的倍数。

半波对称振子的增益为G=2.15dBi。

4个半波对称振子沿垂线上下排列,构成一个垂直四元阵,其增益约为G=8.15dBi ( dBi 这个单位表示比较对象是各向均匀辐射的理想点源)。

如果以半波对称振子作比较对象,其增益的单位是dBd。

半波对称振子的增益为G=0dBd(因为是自己跟自己比,比值为1,取对数得零值。

)垂直四元阵,其增益约为G=8.15–2.15=6dBd。

1.3.4 波瓣宽度方向图通常都有两个或多个瓣,其中辐射强度最大的瓣称为主瓣,其余的瓣称为副瓣或旁瓣。

参见图1.3.4 a ,在主瓣最大辐射方向两侧,辐射强度降低 3 dB(功率密度降低一半)的两点间的夹角定义为波瓣宽度(又称波束宽度或主瓣宽度或半功率角)。

波瓣宽度越窄,方向性越好,作用距离越远,抗干扰能力越强。

还有一种波瓣宽度,即10dB波瓣宽度,顾名思义它是方向图中辐射强度降低10dB (功率密度降至十分之一)的两个点间的夹角,见图1.3.4 b。

1.3.5 前后比方向图中,前后瓣最大值之比称为前后比,记为F / B 。

前后比越大,天线的后向辐射(或接收)越小。

前后比F / B 的计算十分简单------F / B = 10 Lg {(前向功率密度)/(后向功率密度)}对天线的前后比F / B有要求时,其典型值为(18 ~30)dB,特殊情况下则要求达(35 ~ 40)dB。

1.3.6 天线增益的若干近似计算式1)天线主瓣宽度越窄,增益越高。

对于一般天线,可用下式估算其增益:G(dBi)= 10 Lg { 32000 / (2θ3dB,E ×2θ3dB,H )}式中,2θ3dB,E 与2θ3dB,H 分别为天线在两个主平面上的波瓣宽度;32000 是统计出来的经验数据。

2)对于抛物面天线,可用下式近似计算其增益:G(dB i)=10 Lg { 4.5 ×(D / λ0 )2}式中,D 为抛物面直径;λ0 为中心工作波长;4.5 是统计出来的经验数据。

3)对于直立全向天线,有近似计算式G(dBi )= 10 Lg { 2 L / λ0 }式中,L 为天线长度;λ0 为中心工作波长;1.3.7 上旁瓣抑制对于基站天线,人们常常要求它的垂直面(即俯仰面)方向图中,主瓣上方第一旁瓣尽可能弱一些。

这就是所谓的上旁瓣抑制。

基站的服务对象是地面上的移动电话用户,指向天空的辐射是毫无意义的。

1.3.8 天线的下倾为使主波瓣指向地面,安置时需要将天线适度下倾。

1.4 天线的极化天线向周围空间辐射电磁波。

电磁波由电场和磁场构成。

人们规定:电场的方向就是天线极化方向。

一般使用的天线为单极化的。

下图示出了两种基本的单极化的情况:垂直极化---是最常用的;水平极化---也是要被用到的。

1.4.1 双极化天线下图示出了另两种单极化的情况:+45°极化与-45°极化,它们仅仅在特殊场合下使用。

这样,共有四种单极化了,见下图。

把垂直极化和水平极化两种极化的天线组合在一起,或者,把+45°极化和-45°极化两种极化的天线组合在一起,就构成了一种新的天线---双极化天线。

下图示出了两个单极化天线安装在一起组成一付双极化天线,注意,双极化天线有两个接头。

双极化天线辐射(或接收)两个极化在空间相互正交(垂直)的波。

1.4.2 极化损失垂直极化波要用具有垂直极化特性的天线来接收,水平极化波要用具有水平极化特性的天线来接收。

右旋圆极化波要用具有右旋圆极化特性的天线来接收,而左旋圆极化波要用具有左旋圆极化特性的天线来接收。

当来波的极化方向与接收天线的极化方向不一致时,接收到的信号都会变小,也就是说,发生极化损失。

例如:当用+ 45°极化天线接收垂直极化或水平极化波时,或者,当用垂直极化天线接收+45°极化或-45°极化波时,等等情况下,都要产生极化损失。

用圆极化天线接收任一线极化波,或者,用线极化天线接收任一圆极化波,等等情况下,也必然发生极化损失------只能接收到来波的一半能量。

当接收天线的极化方向与来波的极化方向完全正交时,例如用水平极化的接收天线接收垂直极化的来波,或用右旋圆极化的接收天线接收左旋圆极化的来波时,天线就完全接收不到来波的能量,这种情况下极化损失为最大,称极化完全隔离。

1.4.3 极化隔离理想的极化完全隔离是没有的。

馈送到一种极化的天线中去的信号多少总会有那么一点点在另外一种极化的天线中出现。

例如下图所示的双极化天线中,设输入垂直极化天线的功率为10W,结果在水平极化天线的输出端测得的输出功率为10mW。

1.5 天线的输入阻抗Zin定义:天线输入端信号电压与信号电流之比,称为天线的输入阻抗。

输入阻抗具有电阻分量Rin和电抗分量Xin,即Zin = Rin + j Xin。

电抗分量的存在会减少天线从馈线对信号功率的提取,因此,必须使电抗分量尽可能为零,也就是应尽可能使天线的输入阻抗为纯电阻。

事实上,即使是设计、调试得很好的天线,其输入阻抗中总还含有一个小的电抗分量值。

输入阻抗与天线的结构、尺寸以及工作波长有关,半波对称振子是最重要的基本天线,其输入阻抗为Zin= 73.1+j42.5 (欧) 。

当把其长度缩短(3~5)%时,就可以消除其中的电抗分量,使天线的输入阻抗为纯电阻,此时的输入阻抗为Zin= 73.1 (欧) ,(标称75 欧)。

注意,严格的说,纯电阻性的天线输入阻抗只是对点频而言的。

顺便指出,半波折合振子的输入阻抗为半波对称振子的四倍,即Zin= 280 (欧) ,(标称300欧)。

有趣的是,对于任一天线,人们总可通过天线阻抗调试,在要求的工作频率范围内,使输入阻抗的虚部很小且实部相当接近50 欧,从而使得天线的输入阻抗为Zin = Rin= 50 欧------这是天线能与馈线处于良好的阻抗匹配所必须的。

1.6 天线的工作频率范围(频带宽度)无论是发射天线还是接收天线,它们总是在一定的频率范围(频带宽度)内工作的,天线的频带宽度有两种不同的定义------一种是指:在驻波比SWR ≤ 1.5 条件下,天线的工作频带宽度;一种是指:天线增益下降 3 分贝范围内的频带宽度。

在移动通信系统中,通常是按前一种定义的,具体的说,天线的频带宽度就是天线的驻波比SWR 不超过1.5 时,天线的工作频率范围。

一般说来,在工作频带宽度内的各个频率点上, 天线性能是有差异的,但这种差异造成的性能下降是可以接受的。

1.7 移动通信常用的基站天线、直放站天线与室内天线1.7.1 板状天线无论是GSM 还是CDMA,板状天线是用得最为普遍的一类极为重要的基站天线。

这种天线的优点是:增益高、扇形区方向图好、后瓣小、垂直面方向图俯角控制方便、密封性能可靠以及使用寿命长。

板状天线也常常被用作为直放站的用户天线,根据作用扇形区的范围大小,应选择相应的天线型号。

相关文档
最新文档