电磁波传播基本知识及天线原理

合集下载

完整版天线基本原理

完整版天线基本原理

完整版天线基本原理天线是一种将电磁场能量转换成电信号或者将电信号转换成电磁场能量的无线通信线路组件。

它是无线通信系统的重要组成部分,通过接收和发射电磁波,将信息传递至接收器或者环境中。

1.天线的基本原理天线的基本原理是根据远离电流源的点的法向辐射电场的方向来确定。

当电流通过导线时,会在其周围产生电磁场。

这个电磁场包含自电场和磁场两部分。

2.天线的结构天线的常见结构包括金属导线、金属片和金属网格等。

导线型天线广泛应用于各种通信系统中,如普通天线、微带天线、螺旋天线等。

导线型天线通常由金属材料制造,包括铜、铝和银等。

导线的长度和形状会影响天线的工作频率和辐射模式。

3.天线的工作原理天线的工作原理可以简单描述为接收和发射电磁场能量。

当电磁波到达天线时,它们会在导线上引起电磁感应现象,导致电子在导线中运动,进而形成感应电流和电磁场。

接收天线将电磁波转化为电信号,通过连接到接收器或接收电路的导线将信号传递给接收器,然后接收器将其转化为有用的信息。

发射天线接收到电信号后,将其转化为电磁波,并通过导线发射出去。

4.天线的工作频率和辐射模式天线的工作频率是天线接收和发射电磁信号的频率范围。

不同类型的天线对应不同的工作频率范围。

天线的长度和形状会影响天线的共振频率。

天线的辐射模式是指天线在不同方向上的辐射能力,它受到天线的结构和工作频率的影响。

辐射模式通常用辐射图来表示,辐射图描述了天线在各个方向上的辐射能力。

5.天线的增益和效率天线的增益是指天线在一些方向上辐射能量的能力,与参考天线(理想天线)相比较。

增益越大,则天线在特定方向上的辐射能力越好。

天线的效率是指天线将输入能量转换为输出能量的比率。

天线的效率受到天线材料、结构和工作频率的影响。

提高天线效率的方法包括减少导线损耗、减少表面反射损耗等。

6.天线的常见类型常见的天线类型包括偶极子天线、螺旋天线、微带天线、天线阵列等。

偶极子天线是最常见和最简单的天线,它由两个导线构成,用于发射和接收电磁波。

电磁波传播基本知识和天线原理

电磁波传播基本知识和天线原理
极化扭转:
一、电磁波传播基础知识
空间分集:单极化天线
极化分集:双极化天线
接 收 信 号 强 度
接收距离
一、电磁波传播基础知识
绕射传播
电波在传播途径上遇到障碍物时,总会力 图绕过障碍物,再向前传播。这种现象叫 做电波的绕射。
信号质量受到影响的程度不仅和接收天线 距建筑物的距离及建筑物的高度有关,还 和频率有关,频率越高,建筑物越高、越 近,影响越大。相反,频率越低,建筑物 越矮、越远,影响越小。 因此,选择基站场地以及架设天线时,一定要考虑到绕射传播可能产生的 各种不利影响。 (要点:近处、水平/垂直主波束+/-10dB内无遮挡)
特殊应用中才会考察垂直面方向图的前后比,
比如基站背向区域有超高层建筑物。
后向功率
前向功率
三、天线主要性能参数
根据天线辐射参数对网络性能影响程度,可分类如下:
对网络的不同影响程度
满足网络覆盖要求的基础指标
天线参数
水平面波束宽度、波束偏移及方向图一致性 垂直面波束宽度及电下倾角度 前后比 增益
能够提升网络通信质量的辅助指标
对网络的不同影响程度
满足网络覆盖要求的基础指标
天线参数
水平面波束宽度、波束偏移及方向图一致性 垂直面波束宽度及电下倾角度 前后比 增益
能够提升网络通信质量的辅助指标
交叉极化比 上旁瓣抑制
对网络性能有影响的辅助指标
下零点填充 方向图圆度
三、天线主要性能参数
半功率波束宽度:在方向图主瓣范围内,相对最大辐射方向功率密
京信通信 未来无限延伸
一、 电磁波传播基础知识 二、天线辐射原理 三、天线主要性能参数 四、天线分类
二、天线辐射原理
天馈系统简介

电磁波传播和天线技术

电磁波传播和天线技术

电磁波传播和天线技术在现代通信技术中,电磁波传播和天线技术是不可或缺的两个部分。

电磁波作为一种电磁辐射形式,在信息传输和接收中具有重要的应用价值。

而天线则是将电磁波从信号源传输到接收器的一种装置。

本文将探讨电磁波传播和天线技术的原理和应用。

一、电磁波传播原理电磁波是由电场和磁场相互作用而产生的一种辐射形式。

电磁波在空间中传播时,它的传输速度是一定的,即光速(299,792,458米每秒)。

在自由空间中,电磁波的能量可以传播到很远的距离,但会逐渐衰减,直至消失。

电磁波的频率和波长是决定其传播特性的两个重要参数。

频率越高,波长越短,电磁波的穿透能力就越弱。

例如,无线电波的波长较长,能穿透建筑物和树木,但受到地球曲率的限制,不能传播得太远。

而微波、红外线和可见光波长较短,穿透能力较弱,但传输距离较远。

电磁波在传输过程中受到障碍物的影响也是不可避免的。

信号的衰减、多径传播和反射等现象会对信号的质量产生影响。

因此,在实际应用中,需要通过天线技术和信号处理技术来弥补这些影响。

二、天线技术原理天线是将电磁波从信号源传输到接收器的装置。

它的主要作用是将电磁波从电路中转换为自由空间中的辐射波。

天线的形状和大小取决于所传输的信号的频率和波长。

天线的信号收发特性与其结构有关。

如果天线的结构与信号的波长匹配,则可以最大限度地获取信号。

例如,在接收WIFI信号时,我们通常使用带有小型晶片天线的路由器来接收信号。

天线的特性除了与其结构有关,还与其所处环境有关。

例如,移动电话天线的特性会受到其周围环境的影响,如建筑物和树木等。

此外,天线的方向性也是一个重要的特性。

向各个方向辐射的天线称为全向天线,而只向特定方向辐射的天线称为定向天线。

三、应用案例分析电磁波传播和天线技术在现代通信中应用广泛。

以下是一些典型的应用案例:1.卫星通信卫星通信是通过卫星将信号传输到地面的通信方式。

在卫星通信中,天线具有非常重要的作用,它必须能够接收到来自卫星的信号,并将信号转发给相应的设备。

电磁波传播与天线

电磁波传播与天线
波长
8
基本概念 无线电波和光波一样,它的传播速度和传播媒质有关。无线 电波在真空中的传播速度等于光速。我们用C=30000 0公里/秒表示。在媒质中的传播速度为:V ε ` =C/√ ε , 式中 ε 为传播媒质的相对介电常数。空气的相对介电常数与 真空的相对介电常数很接近,略大于1。 因此,无线电波在空 气中的传播速度略小于光 速,通常我们就认为它等 于光速。
4.4 电磁波传播与天线
1
一、电磁波基本概念
二、天线接收原理
三、天线的种类 四、天线的参数
2
一、电磁波基本概念
1、 电磁波的辐射
3
基本概念 无线电波是一种能量传输形式,在传播过程中,电场和磁 场在空间是相互垂直的,同时这两者又都垂直于传播方向。
4
基本概念 2、 电磁波相角
无线电波在空间传播时,其电场方向是按一定的规律而变 化的,这种现象称为无线电波的极化。无线电波的电场方向 称为电波的极化方向。如果电波的电场方向垂直于地面,我 们就称它为垂直极化波。如果电波的电场方向与地面平行, 则称它为水平极化波。
线极化天线接收任一圆极化波时,都要产生3分贝的极化损失,即只能接
收到来波的一半能量; 当接收天线的极化方向(例如水平或右旋圆极化)与来波的极化方 向(相应为垂直或左旋圆极化)完全正交时,接收天线也就完全接收不到 来波的能量,这时称来波与接收天线极化是隔离的。
30
基本概念 三、天线的种类
1、半波振子天线
16
基本概念
超短波的传播
无线电波的波长不同,传播特点也不完全相同。目前 GSM和CDMA移动通信使用的频段都属于UHF(特高频)超 短波段,其高端属于微波。 超短波和微波的视距传播 超短波和微波的频率很高,波长较短,它的地面波衰减很 快。因此也不能依靠地面波作较远距离的传播,它主要是由 空间波来传播的。空间波一般只能沿直线方向传播到直接可 见的地方。在直视距离内超短波的传播区域习惯上称为“照 明区”。在直视距离内超短波接收装置才能稳定地接收信号。

电磁波天线原理

电磁波天线原理

电磁波天线原理
电磁波天线是一种用于接收或发射电磁波的装置,其工作原理基于电磁场相互作用的基本原理。

当电磁波信号传播到天线上时,它会激发天线产生电流,进而产生电磁场,然后将信号转换为电信号或者从电信号转换为电磁波信号。

电磁波天线常用的原理包括频率选择、谐振和定向性。

首先是频率选择原理,即天线的尺寸和结构设计使其在特定频率范围内具有较高的灵敏度,对其他频率的信号具有较弱的响应。

这样可以提高天线对特定频段的接收或发射效率。

其次是谐振原理,天线的结构和长度会实现特定频率的谐振,使得该频率的信号被更好地接收或发射。

这是因为在谐振频率附近,电磁波与天线之间的相互作用更为强烈,从而提高了天线的效能。

最后是定向性原理,为了增加天线在特定方向上的接收或发射能力,可以通过天线的结构设计使其在某个特定方向上具有增益。

这种增益效应是通过调整天线长度、方向性元件或者构建天线阵列等方式实现的。

定向性使得天线成为一种有向性的设备,可用于定位和通信等应用。

综上所述,电磁波天线的工作原理主要包括频率选择、谐振和定向性。

这些原理的应用使得电磁波天线能够高效地接收或发射特定频率的信号,为无线通信、雷达、卫星通信等领域提供了重要的技术支持。

电磁波传播与天线设计原理

电磁波传播与天线设计原理

电磁波传播与天线设计原理介绍:1. 电磁波是由电场和磁场组成的一种能量传播形式,广泛应用于通讯、雷达、卫星导航等领域。

2. 天线作为电磁波的传播工具,起到发送和接收信号的关键作用。

电磁波传播原理:1. 电磁波的特性:电磁波具有速度快、传播距离远、穿透力强等特点。

2. 电磁波的频率与波长:频率与波长呈倒数关系,不同频率的电磁波在传播中有不同的特性。

3. 电磁波传播的衰减:电磁波在传播过程中会遇到散射、吸收等现象导致衰减。

电磁波的传播途径:1. 空间传播:电磁波在空间中自由传播,以直线传播为主。

2. 大气传播:大气中的粒子、水分会对电磁波产生散射和吸收,影响传播距离和质量。

3. 地面传播:电磁波在地面上的反射、绕射、折射等现象影响传播路径。

天线设计原理:1. 天线的基本构成:天线由导体和辐射器组成,导体用于导电,辐射器用于辐射电磁波。

2. 天线的辐射特性:不同天线具有不同的辐射模式,如定向天线、全向天线等。

3. 天线的增益:天线的增益可以改善信号强度,提高发送和接收效果。

4. 天线的波束宽度:波束宽度决定了天线的辐射范围,对于定向天线具有重要意义。

天线设计步骤:1. 确定应用需求:根据具体的应用场景,确定所需的信号类型、频率范围、传播距离等。

2. 选择合适的天线类型:根据应用需求和场景特点,选择合适的天线类型,如定向天线、全向天线等。

3. 设计天线结构:根据所选天线类型和频率要求,设计天线的结构参数,如导体长度、辐射器形状等。

4. 优化天线性能:通过仿真和实验等手段,对设计的天线进行优化,改善天线的辐射特性和增益。

5. 验证天线性能:通过实际测试和性能评估,验证设计的天线是否满足应用需求。

6. 调整和改进:根据测试结果和用户反馈,对天线进行调整和改进,以进一步提升性能和适应不同应用场景。

结论:电磁波传播与天线设计原理是现代通讯技术和无线电技术的核心理论,掌握电磁波传播原理和天线设计步骤,对于有效地传输和接收无线信号具有重要意义。

电磁波传播基本知识及天线原理

电磁波传播基本知识及天线原理

高增益天线垂直方向图
低增益天线垂直方向图
三、天线主要性能参数
根据天线辐射参数对网络性能影响程度,可分类如下:
对网络的不同影响程度
满足网络覆盖要求的基础指标
天线参数
水平面波束宽度、波束偏移及方向图一致性 垂直面波束宽度及电下倾角度 前后比 增益
能够提升网络通信质量的辅助指标
交叉极化比 上旁瓣抑制
对网络性能有影响的辅助指标
差程度 。建议考察±60º边缘的场强偏差(3dB为指标)或者3dB点的角度差( 2º为指标)。 波束偏移较大,方向图一致 性较差时,会使覆盖区距离 向相邻扇区的交叠区域发生 变化,对距离向覆盖带来不 利影响,
65º±6º ±0.5dB 1dB @ ±60º
三、天线主要性能参数
根据天线辐射参数对网络性能影响程度,可分类如下:
京信通信 未来无限延伸
一、 电磁波传播基础知识 二、天线辐射原理 三、天线主要性能参数 四、天线分类
二、天线辐射原理
天馈系统简介
天线调节支架
抱杆
接头密封件 绝缘密封胶带,PVC绝缘胶带
天线
接地装置
室外馈线
馈线卡 馈线过线窗
基站天线在整个网络建设中占经费比例不到3%,但它 对网络性能的影响却超过60%, 在实际网优工作中,通过天线的选择与调整是简单但收 效最大的方法。强化天线的性能和品质起着四两拨千斤 的作用。
交叉极化比 上旁瓣抑制
对网络性能有影响的辅助指标
下零点填充 方向图圆度
三、天线主要性能参数
天线增益
系指天线在某一规定方向上的辐射功率通量密度与参考天线(通常采用理 想点源)在相同输入功率时最大辐射功率通量密度的比值,
P1
P0 天线

天线功能与工作原理

天线功能与工作原理

天线功能与工作原理天线是一种用来接收和传输无线电波的装置,它是电磁学中一种非常重要的器件,广泛应用于通信、导航、雷达等领域。

天线的功能是将电信号转换为电磁波,或将电磁波转换为电信号。

它通过特定的结构和工作原理来实现这些功能。

一、天线的功能1.发射功能:天线可以将电信号转换为电磁波并进行发射。

当电信号输入到天线的接口,通过天线的结构转换为电磁场,然后以电磁波的形式辐射出去。

2.接收功能:天线可以接收到周围环境中的电磁波,并将其转换为电信号输出。

当电磁波入射到天线上时,通过天线的结构转换为电信号输出到接收设备中。

二、天线的工作原理天线的工作原理基于电磁学的相关理论,包括电流在导体中的传输、电场和磁场的相互作用等。

以下是几种常见天线的工作原理。

1.零件天线:零件天线是一种较为简单的天线,适用于低频率的无线电通信。

它由一根直立的金属杆组成,当电信号输入到杆上时,电流在杆上流动产生电磁波。

根据杆的长度和天线的地面情况,可以实现不同频率的辐射。

2.扁平天线:扁平天线是一种广泛应用于移动通信设备的天线,例如手机、平板电脑等。

它主要由导电材料制成,常见的形状有板状、带状等。

扁平天线通过导电板上的电流流动来产生电磁波,电磁波的功率主要集中在导电板周围。

3.螺旋天线:螺旋天线是一种常用于卫星通信、微波通信等高频率应用的天线,它可以实现较高的增益。

螺旋天线由导线组成螺旋线圈,当电信号输入到螺旋线圈上时,电流沿螺旋线圈流动,产生电场和磁场,从而辐射出电磁波。

4.盘形天线:盘形天线是一种应用于雷达、卫星通信等领域的天线,它具有较高的方向性和增益。

盘形天线由中心驱动源和金属盘组成,中心驱动源发出的电信号经过金属盘上的结构变换为电磁波,并沿着特定的方向辐射出去。

总的来说,天线的工作原理是通过将电信号转换为电磁波或将电磁波转换为电信号来实现无线通信。

不同类型的天线根据其结构和原理的不同,能够适用于不同频率和应用环境的无线通信需求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
极化扭转:
一、电磁波传播基础知识
空间分集:单极化天线
极化分集:双极化天线
接 收 信 号 强 度
接收距离
一、电磁波传播基础知识
绕射传播
电波在传播途径上遇到障碍物时,总会力 图绕过障碍物,再向前传播。这种现象叫 做电波的绕射。
信号质量受到影响的程度不仅和接收天线 距建筑物的距离及建筑物的高度有关,还 和频率有关,频率越高,建筑物越高、越 近,影响越大。相反,频率越低,建筑物 越矮、越远,影响越小。 因此,选择基站场地以及架设天线时,一定要考虑到绕射传播可能产生的 各种不利影响。 (要点:近处、水平/垂直主波束+/-10dB内无遮挡)
对网络的不同影响程度
满足网络覆盖要求的基础指标
天线参数
水平面波束宽度、波束偏移及方向图一致性 垂直面波束宽度及电下倾角度 前后比 增益
能够提升网络通信质量的辅助指标
交叉极化比 上旁瓣抑制
对网络性能有影响的辅助指标
下零点填充 方向图圆度
三、天线主要性能参数
垂直面波束宽度及电下倾角精度:决定了网络覆盖区中距离向性能的
一般来说,在工作频带宽度内的各个频率点上,天线性能是有差异的。因此, 在相同的指标要求下,工作频带越宽,天线设计难度越大。
三、天线主要性能参数
辐射参数
主瓣; 副瓣; 半功率波束宽度; 增益; 波束下倾角; 前后比; 交叉极化鉴别率; 上旁瓣抑制; 下零点填充;
天线辐射方向图
三、天线主要性能参数
根据天线辐射参数对网络性能影响程度,可分类如下:
京信通信 未来无限延伸
一、 电磁波传播基础知识 二、天线辐射原理 三、天线主要性能参数 四、天线分类
二、天线辐射原理
天馈系统简介
天线调节支架
抱杆
接头密封件 绝缘密封胶带,PVC绝缘胶带
天线
接地装置
室外馈线
馈线卡 馈线过线窗
基站天线在整个网络建设中占经费比例不到3%,但 它对网络性能的影响却超过60%。 在实际网优工作中,通过天线的选择与调整是简单但收 效最大的方法。强化天线的性能和品质起着四两拨千斤 的作用。
三、天线主要性能参数
根据天线辐射参数对网络性能影响程度,可分类如下:
对网络的不同影响程度
满足网络覆盖要求的基础指标
天线参数
水平面波束宽度、波束偏移及方向图一致性 垂直面波束宽度及电下倾角度 前后比 增益
能够提升网络通信质量的辅助指标
交叉极化比 上旁瓣抑制
对网络性能有影响的辅助指标
每个扇区的天线在最大辐射方向偏离±60º时到达覆盖边缘,需要切换到相邻 扇区工作。在±60º的切换角域,方向图电平应该有一个合理的下降。电平下降太 多时,在切换角域附近容易引起覆盖盲区掉话;电平下降太少时,在切换角域附近 覆盖产生重叠,导致相邻扇区干扰增加。
理论仿真和实际应用结果表明:在密集建筑 的城区,由于多径反射严重,为了减小相邻扇区 之间的相互干扰,在±60º的电平下降至-10dB左 右为好,反推半功率宽度约为65º;而在空旷的郊 区,由于多径反射少,为了确保覆盖良好,在 ±60º的电平下降至-6dB 左右为好,反推半功率 宽度约为90º。 水平面波束宽度、波束偏斜及方向图一致性决定 了覆盖区方位向的性能好坏。
Stock Code: 2342.HK
电磁波传播基本知识及天线原理
京信通信 未来无限延伸
一、 电磁波传播基础知识 二、天线辐射原理 三、天线主要性能参数 四、天线分类
一、电磁波传播基础知识
无线电波的定义
无线电波是一种信号和能量的传播形式,在传播过程中,电场和磁场在 空间中相互垂直,且都垂直于传播方向。
进得去, 出得来。
二、天线辐射原理
天线的辐射原理

线
的 辐
~



二、天线辐射原理
天线半波振子
半波振子是天线的基本辐射单元,波长越长,天线半波振子越大。
1/4 波长 1/4 波长
1/2 波长
半波振子 (电长度)
水平面
垂直面
二、天线辐射原理
半波振子示例:
二、天线辐射原理
天线辐射方向图
用来表述天线在空间各个方向上所具有的发射 和接收电磁波的能力。一般为三维辐射立体图。
主馈线(7/8“) 室内超柔馈线
防雷保护器 基站主设备
二、天线辐射原理
天线的定义
能够有效地向空间某特定方向辐射电磁波或能够有效地 接收空间某特定方向来的电磁波的装置。
能量转化
电缆内高频电流

效率要求---追 求高效率
线

无线电 设备

定向辐射(接收)
方向图要求---满足特定空间分布要求
空间电 磁波
好坏。 观察图 3-1的垂直面方向图。波束应该适当下倾,下倾角度最好使得最大辐
射指向图3-1 中目标服务区的边缘。如果下倾太多(黄色),服务区远端的覆盖 电平会急剧下降;如果下倾太少,覆盖在服务区外,且产生同频干扰问题。
图 3-1 垂直面波束下倾角的设置
三、天线主要性能参数
电下倾角度:最大辐射指向与天线法线的夹角。
零点填充 方向图圆度
三、天线主要性能参数
交叉极化比:极化分集效果优劣的指标
为了获得良好的上行分集增益,要求双极化天线应该具有良好的正交极化特性,即在 ±60º的扇形服务区内,交叉极化方向图电平应该比相应角度上的主极化电平有明显的 降低,其差别(交叉极化比)在最大辐射方向应大15dB,在±60º内应大于10dB,最低 门槛也应该大于7dB,如图所示。如此,才可以认为两个极化接收到的信号互不相关。
E、H、S 满足右手螺 旋
特例: 垂直的线极 化
随时间变化 随空间变化
一、电磁波传播基础知识
无线电波的传播方向
正交特性;电生磁、磁生电。
一、电磁波传播基础知识
无线电波的波长、频率与传播速度的关系
其中:波长 λ= C/f (式中,C为光速,f为工作频率,λ为波长。)
要点
在相同的介质中,不同频率下,天线的工作波长不同。频率越高, 波长越短。
度下降至一半时的角域宽度,也叫3dB波束宽度。 水平面的半功率波束宽度叫水平面波束宽度;垂直面的半功率波束宽
度叫垂直波束宽度。
3dB 波束宽度 峰值 - 3dB
60° (eg)
峰值 峰值 - 3dB
10dB 波束宽度
峰值 - 10dB
120° (eg)
峰值
峰值 - 10dB
三、天线主要性能参数
水平面波束宽度
特殊应用中才会考察垂直面方向图的前后比,
比如基站背向区域有超高层建筑物。
后向功率
前向功率
三、天线主要性能参数
根据天线辐射参数对网络性能影响程度,可分类如下:
对网络的不同影响程度
满足网络覆盖要求的基础指标
天线参数
水平面波束宽度、波束偏移及方向图一致性 垂直面波束宽度及电下倾角度 前后比 增益
能够提升网络通信质量的辅助指标
单个辐射单元
多单元阵列
二、天线辐射原理
天线辐射方向图
实际评判中是其转化成的二维平面图形,即水平 面方向图及垂直面方向图。
水平面 垂直面
二、天线辐射原理
天线组成部件
同一款基站天线有多种设计方案来实现。
设计方案涉及到天线的以下四部分:
1、辐射单元(对称振子 or 贴片[阵元]) 振子
2、反射板(底板)
? >6.5º >9º >12º
+/-1º
夹角
法线方向 最大辐射方向
三、天线主要性能参数
根据天线辐射参数对网络性能影响程度,可分类如下:
对网络的不同影响程度
满足网络覆盖要求的基础指标
天线参数
水平面波束宽度、波束偏移及方向图一致性 垂直面波束宽度及电下倾角度 前后比 增益
能够提升网络通信质量的辅助指标
交叉极化比 上旁瓣抑制
对网络性能有影响的辅助指标
下零点填充 方向图圆度
三、天线主要性能参数
天线增益
系指天线在某一规定方向上的辐射功率通量密度与参考天线(通常采用理 想点源)在相同输入功率时最大辐射功率通量密度的比值。
P1
P0 天线
P2
理想辐射单元
G = 10log(P1/P2)
三、天线主要性能参数
天线增益、方向图和天线尺寸之关系
天线增益是用来衡量天线朝一个特定方向收发信号的能力,它是选择基站天 线重要的参数之一。 天线增益越高,方向性越好,能量越集中,波瓣越窄。 增益越高,天线长度越长。
37
三、天线主要性能参数
增益:影响覆盖距离指标
合理选择增益!!!
提高天线增益,覆盖的距离增大,但同时会压窄波束宽度,导致覆盖的均匀性变差。天线增 益的选取应以波束和目标区相配为前提,为了提高增益而过分压窄垂直面波束宽度是不可取 的,只有通过优化方案,实现服务区外电平快速下降、压低旁瓣和后瓣,降低交叉极化电平, 采用低损耗、无表面波寄生辐射、低VSWR的馈电网络等途径来提高天线增益才是正确的。
3、功率分配网络(馈电网络)
4、封装防护(天线罩)
反射板
馈电网络
天线罩
京信通信 未来无限延伸
一、 电磁波传播基础知识 二、天线辐射原理 三、天线主要性能参数 四、天线分类
三、天线主要性能参数
天线工作频率
无论天线还是其他通信产品,总是在一定的频率范围(频带宽度)内工作, 其取决于指标的要求。通常情况下,满足指标要求的频率范围即可为天线的 工作频率。
特例:线极化 垂直的、水平的
一、电磁波传播基础知识
圆极化 椭圆极化 线极化 左旋、右旋;垂直、水平
一、电磁波传播基础知识
天线极化:是指电场矢量在空间运动的轨迹。
相关文档
最新文档