世界各国高速接触网的发展
第二章高速铁路接触网模式及比较

第二章高速铁路接触网模式及比较2.1引言接触网是与高速电气化铁路运营最为直接相关的架空设备,其工作环境恶劣,沿线架设且无备用,是整个牵引供电系统最为薄弱的环节。
接触网性能的优劣直接决定着电力机车受电弓的受流质量,最终影响列车的运行速度与安全。
因此,接触网历来被视为高速技术的主要难点。
日本、德国和法国是高速铁路比较发达的国家,其技术水平可以代表当今世界高速铁路的最高水平。
因此,下面主要对这三个国家的高速铁路接触网模式进行介绍和比较。
2.2悬挂类型比较高速铁路接触网悬挂类型是接触网设计施工的最基本参数。
目前国外高速铁路接触网大体有三种悬挂类型:以日本为代表的复链型悬挂;以德国为代表的弹性链型悬挂;以法国为代表的简单链型悬挂。
2.2.1日本的高速铁路接触网悬挂类型日本于1964年开通的世界上第一条高速铁路—东京至新大阪的东海道新干线,采用的是复链型悬挂。
九十年代以前,日本的高速铁路接触网都采用复链型悬挂。
但是这种悬挂类型一次性投资太大,而且因为结构复杂、组成零部件太多,导致接触网运营的维修费用高昂,发生事故时抢修难度大、运输中断时间长。
再加上近年来日本的国民经济趋于衰退,所以1997年兴建的北陆新千线采用了简单链型悬挂,简单链型悬挂由于结构简单和易于维修保养,显示出较好的应用前景。
2.2.2德国的高速铁路接触网悬挂类型德国高速铁路接触网一直采用弹性链型悬挂。
在总结Re75,Re100,Re160三种标准的基础上,形成了Re200, Re250和Re330标准系列。
Re表示为标准接触网,后边的数字为在该标准接触网形式下列车可运行的最大时速。
弹性链型悬挂带有弹性吊索,而弹性吊索的设置需要相当精确的计算和一套严格的施工程序,其调整工作非常麻烦,而且很难进行检测。
再加上弹性吊索本身的长度和张力是随着温度发生变化的,要想保证它在各种温度条件下不使附近的接触网变形,是一件相当困难的事情。
所以,德国专家现在也开始研究简单链型悬挂。
日本高速铁路(新干线)的发展

3 新干线的技术发展
3.1 环境对策 日本新干线沿线除了山区隧道区间外,线路的近
就这样,1964年10月东海道新干线正式开业。
3.4 注重加大软件的投入 总体来说,我国铁路信息系统的软件开发水平与
国外水平相比有较大的差距,重技术轻管理,重硬件 投入轻软件投入,这是目前我国铁路信息系统建设中 一个比较普遍的问题。尽管近年来有了较大改进,但 问题仍然存在。比如在编制国家铁路概预算办法中, 对软件的计费没有行之有效的办法等,这些都应引起 我们的足够重视。
用。
2.1.2
新干线与既有线直通运转
除了根据上述整备法修建的新干线外,在东北地
区省府所在地等重要城市将既有窄轨实施标准轨改造 或铺设第3轨,与既有所谓新干线与既有线直通运转方
式,获得了好评。在这种情况下,由于既有线区间存在 着小半径曲线和道口,列车最高运行速度只达130 km/h左右,但是,只要允许实施改造工程,速度还可
新干线电动车要求有很高的可靠性,因此采用电 气制动优先的完全双重制动系统。备有电指令式空气
2000年第2期
日本高速铁路(新干线)的发展圃田宏
制动和车轮侧盘形制动。为降低维修费用,尽可能多 用电制动,少用机械制动。就制动的控制而言,由0系 的分级制动,发展到按粘着曲线进行控制和按旅客重 量进行控制等方式;最近,附加了对应高减速度的陶 瓷颗粒喷射设备和为减轻车头负担的控制方式,以达 到更高的性能和更佳的舒适度。 3.3.4轻量化
在车辆方面,减少了受电弓的数量,设置了受电 弓罩,开发了新型受电弓;在车体方面,使车体表面平 滑,车体轻量化,改进车头的外形,采用新车架结构, 进一步减轻转向架重量。
国外高速铁路发展

日本- (1981)
319km/h
(1979)
法国东南TGV -270 km/h (1981)
法国大西洋线 -300km/h (1989)
西班牙马德里-巴 塞罗那-350km/h
(2004)
法国地中海线 -320km/h (2001)
62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 00 02 04
亚洲1日本新干线路网建成2175公里四各国高速铁路四各国高速铁路2韩国1990年政府批准建设汉城釜山高速铁路1992年开工建设线路全长412公里最高设计速度350kmh最高运营速度300kmh沿线新建汉城南天安大田东大丘庆州釜山等六个客运站
国外高速铁路发展
石家庄铁道学院土木分院
1
目录
1、高速铁路基本概况 2、高速铁路基本特征 3、高速铁路管理模式 4、各国高速铁路
里300km/h高速线,2010年通车;
木浦
20世纪90年代初,韩国已经作出了全国高
速铁路网的规划。
四、各国高速铁路
(3)我国台湾省
2000年10月台湾高速铁路正式开工; 线路北起台北、途经桃园、新竹、苗栗
、台中、彰化、云林、嘉义、台南,终 到高雄,全长345公里,最高设计速度 350km/h,最高运营速度300km/h; 机电核心设备由日本新干线联合体提供 ,采用JR东海公司开发的700系高速列 车;工程技术咨询由欧洲联合咨询公司 承担; 项目采用BOT方式运作,由大陆工程等 五家企业,联合日本新干线有关企业组 成联合体,成立台湾高速铁路公司; 政府授予台湾高速铁路公司30年经营特 许权; 2007年1月5日投入试运营。
高速铁路的发展计划,不仅在日本和 欧洲得到推广,在亚洲、北美、澳大利 亚都在进行中。
第二节高速铁路接触网

第二节高速铁路接触网一、接触悬挂形式及其主要技术参数自1964年日本开通世界上第一条高速铁路至今,世界发达国家已经致力于高速电气化铁路的研究和发展。
经过30多年的运行、实验,使高速电气化铁路的车速不断提高,运营速度由220 km /h 提高到270 km /h ,正向300 km /h 进。
法国是目前轮轨系列车时速的世界记录保持者,它于 2007年 4月4日进行的实验运行速度达到574.8 km /h ,在激烈竞争的市场经济条件下,各种交通工具之间为争夺市场运输份额,不断开发和引进高新技术,而提高铁路车速将给铁路参与市场竞争带来机遇。
接触网结构在机车高速运行情况下,发生了许多重大变化,需要进行一系列的改革,采取什么样的悬挂类型来适应高速铁路,一直是各发达国家研究的课题。
根据国外高速电气化铁路运行经验,高速滑行的受电弓,其抬升力在空气动力和自身惯性作用下,以列车速度平方的比例大幅度增加,因而使接触线产生较大的抬升量,当驶过等距支柱甚至在跨距中的等距吊弦时,会周期性激发接触线振动,它会使接触线弯曲应力增加,容易引发疲劳断线事故,同时这种振动可沿导线以一定速度传播,在遇到吊弦线夹和悬挂点时,会将波反射放大引起导线振荡,这是引起受电弓离线的主要原因,离线产生的电弧会烧伤接触线使磨耗增加,即电磨耗。
当导线弯曲刚度小而张力大时,其波动速度可由下式求出: ρT C =式中 T ——接触线张力(N );ρ——线密度。
为了减少导线抬升量,可提高其张力,减少接触网弹性不均匀性,同时也提高了接触线波动传播速度,不引起导线共振使受电弓取流状态更好。
接触悬挂形式是指接触网的基本结构形式,它反映了接触网的空间结构和几何尺寸。
不同的悬挂形式,在工程造价、受流性能、安全性能上均有差别,另外,对接触网的设计、施工和运营维护也有不同的要求。
对高速接触网悬挂形式的要求是:受流性能满足高速铁路的运营要求、安全可靠、结构简单、维修方便、工程造价低。
我国和世界主要城市轨道交通接触网结构形式

我国和世界主要城市轨道交通接触网结构形式普虹瑞2013232324昆明工业职业技术学院摘要:城市轨道交通接触网是城市轨道交通工程中的重要设备系统之一,它担负着为电动列车传递电能的重要作用,目前接触网分为两种:架空接触网和接触轨,其中架空接触网中柔性架空接触网已经越来越少的在正线使用,在分析了城市轨道交通两大牵引接触网的基本要求、不同类型与特点后,我认为DC1500刚性架空接触网形式具有一定的优越性。
关键词:接触网的结构形式、供电方式和安全世界城市轨道交通已有140多年历史,目前已呈现多元化的发展趋势。
我国城市轨道交通起步较晚,只有40年历史,但近期发展迅猛。
世界上城市轨道交通中的直流牵引电压等级繁多,从750V到3000V都有,中国国家标准规定为750V、1500V两种,其电压允许波动范围分别为500~900V、1000V~1800V。
电压等级与馈电方式是牵引网供电制式中的关键点,两者密切相关。
对于一个具体的城市,电压等级与馈电方式的选择,应该结合起来,统一考虑。
1 城市轨道交通接触网类型牵引供电系统由电网输电线路、牵引变电所、馈电线、牵引接触网和回流线等组成。
牵引网系统的馈电方式有架空接触网和接触轨两种方式。
接触轨仅用于地铁与城市轻轨,架空式接触网除地铁外还用于铁路干线、工矿、城市地面等。
1.1 架空式接触网架空式接触网的悬挂类型大致分为三种:简单悬挂,链形悬挂,刚性悬挂,地面架空式。
不同类型的悬挂方式其电缆粗细、条数、张力都不一样。
架空线的悬挂方式,要根据架线区的列车速度、电流容量等输送条件以及架设环境进行综合勘察来决定。
1.1.1 简单悬挂简单悬挂只有接触线和一根架空地线,支柱安装负荷较轻,但是驰度大,弹性不均匀,接触网取流效果差,车辆速度受到限制,为改善弹性差的状况,大多会采用在悬挂点处增加一个倒Y形的弹性吊索,称为弹性简单悬挂,同样为改善驰度大的状况,常采用加装补偿装置的措施,称为带补偿的弹性简单接触悬挂。
国外高速铁路建设及发展趋势

橡胶垫层 泡沫聚乙烯 防振 G 型
32
2007.03 ( 上半月刊)
240 240
track center line
轨枕 B 355.3 W60M 距离 650mm
2800 2509
UIC60 轨道 轨道扣件系统 VOSSIOH300
1∶8
TOR= ± 0.00 -493
超高混凝土 横向钢筋 ¿20,a=650
根据 1970 年 5 月日本7 1 法令, 列车在主要区间以 200km/h 以上 速度运行,可以被称为高速铁路。 根据 1985 年 5 月联合国欧经会的 标准,客运专线300km/h ,客货混 线 250km/h 可以被称高速铁路。 国际铁路联盟( U I C ) 给出的标准是 新线 2 5 0 k m / h 以上,既有线改造 200km/h 以上。目前,国际上公认 列车最高运行速度达到 200km/h 及 以上的铁路叫作高速铁路。 2.2 世界高速铁路的发展
技术创新成为世界铁路复苏的 重要动力。自 20 世纪中后期,铁路 行业开始复苏。在世界范围内,以信 息技术和高速技术为龙头,带动了 铁路整体技术的迅猛发展,使铁路 这一传统产业面貌焕然一新,铁路 市场竞争能力大大提高。
2 世界高速铁路概况
2.1 高速铁路的出现 1964 年 10 月 1 日,世界第一条
TGV 动车组试验速度达到515.3km/h。 高速铁路设计速度为200km/h 以上, 日、法、德、意等技术原创国,高速 实际运行速度为210km/h,近期运行 列车运行速度都达 300km/h,最高达 速度已提高到 270km/h 以上。法国 320km/h,350km/h 动车组正在研制。 早期高速铁路设计速度为 300km/h,
现在铁路发展模式形成了 3 种 类型(见图 1),包括: 客运型,以日 本铁路为代表; 货运型,以美国铁 路为代表,还有加拿大、南非等; 客 货并举型,有俄罗斯、中国、印度及 欧洲铁路等。其中,旅客运输正向高 速、便捷、舒适化方向发展,而货物
地铁接触网检测现状及发展趋势

地铁接触网检测现状及发展趋势【摘要】地铁接触网检测是确保地铁运行安全和稳定的重要环节。
本文首先介绍了地铁接触网检测技术的基本原理和方法,包括传统的人工检测和现代化的自动化检测系统。
接着分析了目前地铁接触网检测存在的问题,如检测精度不高和安全隐患等。
随后探讨了地铁接触网检测技术的未来发展趋势,包括智能化应用和数据分析预测技术的应用。
最后总结指出,地铁接触网检测技术在未来将更加智能化和精准化,为地铁运营提供更可靠的保障。
【关键词】地铁接触网检测现状、发展趋势、技术介绍、存在问题、智能化应用、数据分析、预测技术、未来发展。
1. 引言1.1 地铁接触网检测现状及发展趋势地铁接触网是地铁系统中的重要组成部分,承载着供电传输和信号传输等重要功能。
地铁接触网的正常运行对地铁系统的安全运行和乘客出行具有至关重要的作用。
而地铁接触网检测技术则是确保接触网运行状态的关键环节。
随着地铁系统的不断发展和扩张,地铁接触网的规模和复杂度也在不断增加,为接触网检测技术提出了更高的要求。
目前,地铁接触网检测技术主要包括地面检测系统和车载检测系统两种。
地面检测系统通过安装在地铁轨道旁的传感器和设备对接触网进行监测;车载检测系统则是通过在地铁列车上安装检测设备,通过列车接触网与地面接触网的连接来实现对接触网状态的检测。
这两种检测方式各有优势,但也存在一些问题和不足之处,例如精度不高、实时性不强、数据处理能力有限等。
未来,地铁接触网检测技术将朝着智能化、自动化、高效化的方向发展。
随着人工智能、大数据、云计算等技术的不断发展和应用,地铁接触网检测将更加准确、及时地监测到接触网的运行状态,实现故障的预测和预防,为地铁系统的安全运行提供更加稳定的保障。
的研究将继续深入,为地铁系统的安全和可靠运行做出更大的贡献。
2. 正文2.1 地铁接触网检测技术介绍地铁接触网检测技术是地铁运行安全的重要保障。
接触网检测主要通过检测接触网的供电情况、接触网的绝缘状态、接触网的弯曲和振动情况等参数,以确保接触网的正常运行和及时发现问题。
地铁接触网检测现状及发展趋势

地铁接触网检测现状及发展趋势1. 引言1.1 地铁接触网检测现状及发展趋势地铁接触网是地铁列车供电系统的重要组成部分,而地铁接触网检测则是确保地铁系统正常运行的关键环节。
随着城市轨道交通的迅速发展,地铁接触网的检测技术也在不断创新和完善。
本文将对地铁接触网检测的现状及发展趋势进行探讨。
目前,地铁接触网检测技术主要包括红外热像仪、激光测距仪、超声波检测仪等多种检测手段。
这些技术可以实现对接触网的温度、距离、声波等数据的采集和分析,帮助地铁运营管理部门及时发现接触网存在的问题,确保列车正常运行。
未来,随着人工智能、大数据等技术的发展,地铁接触网检测将更加智能化和自动化。
预计将出现更多结合人工智能算法的检测设备,能够实现对接触网状态的实时监测和预警,并能够进行智能化决策。
地铁接触网检测技术将持续发展壮大,未来的发展方向将是智能化、自动化。
地铁运营管理部门需要密切关注这些发展趋势,不断提升自身的检测技术水平,以确保地铁系统的安全运行。
2. 正文2.1 地铁接触网检测技术的现状地铁接触网检测技术作为地铁运行安全的重要保障,目前已经取得了一定的进展。
针对接触网状态的检测,目前主要采用的是高清晰度图像和传感器技术相结合的方式。
通过图像识别和传感器监测,可以实时监测接触网的状态,及时发现问题并进行维护。
一些地铁公司还引入了无人机技术进行接触网巡检,提高了检测效率和准确性。
除了传统的检测方法外,一些公司还在尝试引入人工智能和大数据技术来提升接触网检测的精度和效率。
通过建立数据模型和算法,可以实现对接触网状况的智能分析和预测,从而提前发现潜在问题并采取相应措施。
地铁接触网检测技术在不断创新和发展,逐渐朝着智能化、自动化的方向发展。
随着技术的不断进步和成熟,相信地铁接触网检测技术将为地铁运行安全和效率提供更加可靠的保障。
2.2 地铁接触网检测技术的发展趋势一、智能化发展:随着人工智能和大数据技术的不断发展,地铁接触网检测技术也将越来越智能化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
日本评价高速受流系统要点
为保证受流系统的稳定性,必须提高接触线的波 动传播速度;
最大一次离线时间不应大于200ms,离线率最好 不超过5%,最差不超过20%;
出于安全,定位器采用限位装置,允许最大抬升 量180mm,受电弓最大允许抬升量为100mm;
德国高速接触网的发展
70年代中期,研制出Re250标准接触悬挂,并在 80年代末期修建了曼海姆——斯图加特的高速铁 路,最高运行速度250km/h,采用弹性链形悬挂, AgCu120mm2 接 触 线 , Tj=15kN , 波 动 传 播 速 度 为 426km/h,β=0.59
德国高速接触网的发展
旋转腕臂转动的灵活性 减轻接触悬挂上零部件的重量,合理布置电连接
从施工方面入手
提高腕臂结构预配的精度 改善测量手段,提高测量精度及安装位置精度 对接触悬挂导线的蠕变伸长量必须在施工前期进
行削除 重视定位器坡度的调整工作 严格下锚补偿装置的安装工艺
谢谢观看
法国高速接触网的发展
90年代初,巴黎——勒芒、图尔的大西洋 新干线上,取消了东南新干线使用的Y型 吊弦,采用简单链形悬挂,全长320km, 运营速度为300km/h,接触线为Cu150mm2, Tj=20kN,波动传播速度为441km/h
法国高速接触网的发展
1993年开通的北大西洋新干线仍采用简单链形 悬挂,运营速度300km/h,锡铜150mm2接触线, Tj=20kN,波动传播速度为441km/h,β=0.68
法国高速接触网的发展
1983 年 9 月 建 成 巴 黎 —— 里 昂 东 南 新 干 线 , 426km , 弹 性 链 形 悬 挂 , 运 行 速 度 270km/h , Tj=14kN , CdCu120mm2 接 触 线 , 波 动 传 播 速 度 412km/h,β=0.66
东南新干线开通后三个月内连续发生两次重大 事故,导线拉断,接触网损坏
最新型的AGV高速列车于今年初投入运营服务, 商业最高运行速度为350km/h
法国评价高速受流系统要点
超过250km/h,受流质量与接触网的弹性均匀度 关系不大,更大程度上取决于接触线的振动。取 消Y索,对吊弦进行合理布置,提高接触线张力, 虽然跨中的弹性均匀度不是很好,但较大的接触 线张力足以保证高速受流。简化的设计方案使维 修容易,可靠性增加,安装成本下降;也获得了 不需精心设置弹性吊弦的益处,避免了由于错误 的设置导致非正常的磨耗
保证接触线高度精度的措施
导高误差的评价标准,是施工安装的重要依据, 是衡量接触悬挂运行性能好坏的重要内容,是运 行安全可靠性的重要保证
高速接触悬挂对导线高度精度要求十分严格;导 线坡度必须满足高速要求,且坡度越小越好
从设计方面入手
合理控制锚段长度,减小接触线的张力差 提高补偿器的传动效率,严格坠铊串重量 提高导线制造精度,降低导线自重误差 提高支柱及基础、腕臂支撑结构的稳定性,提高
定为国铁高速接触网标准悬挂型式
日本高速接触网的发展
90年代,采用减少受电弓数量,母线相联及 提高接触线张力等方法,将新干线的速度提 高为270km/h,仍采用复链形悬挂,接触线 为SnCu170mm2,Tj=20kN,波动传播速度为 414km/h,β=0.65
日本高速接触网的发展
近年,用法国高铁模式,简化悬挂类型,改善 受电弓性能。北陆新干线,简单链形悬挂, Tj=Tc=20kN,CS110mm2接触线,设计速度270km/h, 波动传播速度提高到525km/h,β=0.51
90年代初,开发出Re330,最高运行速度达300~ 400km/h。Re330仍采用弹性链形悬挂,接触线为 MgCu120mm2,Tj=27kN,波动传播速度569km/h, β=0.53~0.7
德国评价高速受流系统要点
接触网与受电弓之间相互作用状态最终的定量评 价标准为动态接触力和接触力的分布情况
法国评价高速受流系统要点
可见电弧控制在1次/160m 弓网接触压力的标准偏差与平均接触压力的比值
≤0.33 定位点的最大抬高与允许抬高的比值一般控制在
2倍范围
德国高速接触网的发展
在50年代大规模修建电气化铁路的同时,开始 了接触网的标准化设计工作,由Siemens、AEG、 BBC公司联合先后共同开发出了Re75、Re100、 Re160和Re200
高速接触网的发展
日本、法国、德国高速电气化铁路接触网采用 的悬挂型式,为当今世界上高速电气化铁路的 三种主要趋向
日本高速接触网的发展
第一个国家。1964,第一条,东京——大阪, 东 海 道 新 干 线 , 515.4km , 速 度 : 220 ~ 240km/h , 复 链 形 悬 挂 , Cu170mm2 接 触 线 , Tj=15kN , 波 动 传 播 速 度 [V=3.6(Tj/g)1/2] 为 355km/h,β(运营速度与接触线波动传播速 度之比)=0.68。
控制最大接触压力和最小接触压力,最小 Nhomakorabea触压 力太小将导致接触不良,引起电弧。最大接触压 力太大,造成接触网的抬升量过大,受电弓运动 振幅加大,受流状况恶化
国外高速受流技术研究动向
法国、日本、德国均致力于300 ~350km/h的高 速技术研究及制订弓网关系评判标准
将高速悬挂与受电弓当作一个整体进行研究, 改善受电弓的动态特性
设计中妥善处理导线应力与疲劳振动的关系
法国高速接触网的发展
高速铁路用TGV(法文Train a Grande Vitesse 缩写——高速列车)表示
是轮轨系最新世界记录保持者,1990年5月18日, 大西洋新干线的试验运行速度达到515.3km/h
法国高速接触网的发展
自60年代末期,既有电气化线路改造,运营速度 逐步提高到200km/h