世界各国高速动车组技术的发展现状

世界各国高速动车组技术的发展现状
世界各国高速动车组技术的发展现状

世界各国高速动车组技术的发展现状

1.1概述

先来介绍一下“动车组”这个概念:把动力装置分散安装在每节车厢上,使其既具有牵引力,又可以载客,这样的客车车辆便叫做动车。而动车组就是几节自带动力的车辆加几节不带动力的车辆编成一组。带动力的车辆叫动车,不带动力的车辆叫拖车组.动车组技术源于地铁,是一种动力分散技术。一般情况下,我们乘坐的普通列车是依靠机车牵引的,车厢本身并不具有动力,是一种动力集中技术。而采用了“动车组”的列车,车厢本身也具有动力,运行的时候,不光是机车带动,车厢也会“自己跑”,这样把动力分散,更能达到高速的效果。

1.2动车组分类

按照动力排布:动力集中,动力分散

按照用途:客运,货运(比如日本M250,法国TGV行邮),特殊用途(轨道检测等)

按照性能:高性能,低性能。

1.3牵引方式

动车组有两种牵引动力的分布方式,一种叫动力分散,一种叫动力集中。

动力分散电动车组的优点是,动力装置分布在列车不同的位置上,能够实现较大的牵引力,编组灵活。由于采用动力制动的轮对多,制动效率高,且调速性能好,制动减速度大,适合用于限速区段较多的线路。

另外,列车中一节动车的牵引动力发生故障对全列车的牵引指标影响不大。动力分散的电动车组的缺点是:牵引力设备的数量多,总重量大。动力集中的电动车组也有其优点,动力装置集中安装在2~3节车上,检查维修比较方便,电气设备的总重量小于动力分散的电动车组。动力集中布置的缺点是动车的轴重较大,对线路不利。

1903年7月8日,在德国柏林诞生了一种“动车+无动力车厢+动车+动车+无动力车厢+动车”这样编组的列车。这种无动力车厢不会隔断动车之间的联系,因为它安装了重联线。与动车相对,这种专门为动车组准备的无动力车厢叫从车,中文翻译为拖车。

8月14日,由接触网供电的单相交流电动车组问世。

10月28日,西门子公司制造的三相交流电动车组进行高速试验,首创时速210. 2公里的历史性记录。

一战结束,内燃机车开始普及,内燃动车出现。

二战结束,内燃机车也能重联了,内燃动车组出现。

60年代,日木决心新建高速客运铁路网,于是有了世界上首列运营用高速动车组—新干线—0系。

70年代,法国试制了燃气轮机高速动车组—TGV-0。

80年代,高速铁路网在欧洲延伸,风驰电掣的各系TGV以300km/h 的速度成为法国人的骄傲。

90年代,TGV试验速度突破500km/h。

新世纪,TGV试验速度突破500km/h 。

2.1国外动车组状况

日木的高速列车以动力分散为主,大编组、高功率、小轴重。1964年10月,日木先于其他国家开通了世界第一条高速铁路一东海道新干线(东京一新大阪的高速客运专线),最高运行时速为210公里。至今已40多年过去,高速列车从东海道新干线的O系,发展了100系、200系、300系、400系、500系、700系、El系(MAX)、E2系、E3系等。

新干线里最受关注的车辆,是运营速度最快,体现出九十年代高科技水准的500系电动车组。生产于1995-1998年,16辆编组,最高运行时速为300公里。500系的车头流线型可谓十足,弯曲部分长达9米多。远远看过去,500系就象一条细长的蛇。所有新干线车辆中,流线型最好的就数500系了。

700系名为铁路之星RailStar,这是日本最新也是最先进的一款电动车组。正式投入运行是在1999年3月11日。700系C sets模式每组车16节车厢,E sets模式有8节车厢。最高运营时速为285km/h。由于车体采用了中空铝型材,700系重仅708吨。车的编组方式为12动4拖,功率13200kw。700系全长约400米,共载1323名乘700系的车体是用铝合金压制成的中空外壳,内部填充的是吸音,防震的复合材料。

日木高速铁路的发展有以下几个特点:高速列车采用动力分散型,轴重小,这样的设计使得列车的安全性增强;线路中桥隧比重大,线路的标准不断提高;列车运行密度大,定员多,旅客输送最大;安全性能好,旅客死亡事故少。

德国是铁路客运速度提高较快的国家之一。1962年德国研制的“菜茵金子”号客车的构造速度已达160km/h,1974年ET403型电动车组的最高运行速度为160km/h, 1977年提高到200km/h, 1985年制造出1CE型高速列车。由5辆车组成的1CE列车于1985年交付试验。头车和尾车为动车,各长20. 8m,自重78.2t,采用三相交流牵引装置,每辆动车的功率为4209kw。中间3辆拖车的长度均为24. 34m。

德国的ICE第一代列车(ICE1)于1988年就跑出了4OOkm/h的速度,列车编组为2辆动力头车牵引10--14节客车不等。该列车的设计把乘客的舒适度放在第一位,由于德国铁路穿越隧道较多,故对列车的密封性设计也仿效日本新干线列车进行设计,为欧洲第一代气密性列车,随后改进制成ICE第二代(1CE2)和1CE第三代(ICE3)产品。

由于ICE3要在莱茵-科隆问线路上运行,该线路设计坡度为40‰,并以300km/h运行,为了有足够的粘着力,故该车采用动力分散型。

德国高速铁路发展有其一定特点:它采用三相交流传动技术:计算机控制列车制动:轻型车体构造;列车有自诊断技术:统一调度指挥。法国高速铁路线上采用的电动车组在牵引动力上的布置与日本不同,它采用的是动力集中式,只在列车两端的头车(或与头车相临的客车的一端)装有牵引动力装置。法国第一条铁路线(巴黎东南新干线)于1972年动工,1983年投入运用。运用TGV-PSE电动车组,最高时速为270公里。在巴黎东南新干线通车后,法国继续扩大高速铁路线,1990年大西洋新干线(巴黎一勒芒、图尔)正式通车,采用TGV-A

电动车组,最高运行时速为300公里。

“欧洲之星”高速列车是法国TGV列车的派生系列,目前运行在伦敦至巴黎和布鲁塞尔之间、该车载客量794人、12根动轴,总功率12000kw,时速达300km/h,编组型式为2L18T,铰接式转向架。

法国高速铁路发展的特点是:动车组采用动力集中方式及铰链式车厢:多电流制供电与简单链型悬挂接触网,能使用一般线路的1500V3000V直流供电,也能使用高速线25kV交流供电;采用符合ETCS 标准的TVM列车控制系统;注重系统的安全性与可靠性;线路要求高标准高质量

2.2中国动车组发展足迹

2004年4月1日,国务院召开会议专题研究铁路机车车辆装备有关问题,形成《研究铁路机车车辆装备有关问题的会议纪要》,明确了“引进先进技术、联合设计生产、打造中国品牌”基木原则,确定重点扶持国内几家机车车辆制造企业、引进少量原装、国内散件组装和国内生产的项目运作模式。

2004年7月29日,国家发改委与铁道部联合印发《大功率交流传动电力机车技术引进与国产化实施方案》和《时速200公里动车组引进与国产化实施方案》。

2004年8月,铁道部公开招标采购时速200公里动车组项目。 2005年1 0月,铁道部公开招标采购时速300公里动车组项目。2006年7月31日,国内首列国产化时速200公里动车组下线。

2006年9月,铁路部门在胶济线以及第六次人提速既有线改造区段组织了多次全线拉通试验和提速平推试验,动车组进入运行试验。 2007年2月,动车组以160公里的时速投入春运。

2007年4月18日,动车组全面上线投入运营。

2008年8月1日,动车组投入运营的京津线是中国首条高速铁路客运专线,是中国进入高铁时代的标志。

2.3和谐号动车组

中国铁道部将所有引进国外技术、联台设计生产的CRH动车组车辆均命名为“和谐号”。通常用来指2007年4月18日起在中国铁路第六次提速调图后开行的CRH动车组列车。CR H为英文缩写,全名China Railway High-speed,中文意为“中国铁路高速”,是中国铁道部对中国高速铁路系统建立的品牌名称。中国铁路开行的CRH动车组已知有CRH1, CRH2,CRH3,CRH5等型。

CRH5一中国北车集团长春轨道客车股份有限公司联合法国阿尔斯通,引进法国阿尔斯通的Pendolino宽体摆式列车技术,取消了装设的摆式功能,车体以法国阿尔斯通为芬兰国铁提供的SM3动车组为原型。由北车长春轨道客车股份有限公司负责国内生产。CRH5A 为8节车厢编组座车动车组,200公里级别〔营运速度200km/h,最高速度250km/h〕.

CRH380A:

2010年9月,铁道部下发《关于新一代高速动车组型号、车号及坐席号的通知》,正式将四方机车车辆股份的CRH2-380型

动车组型号名称更改,其中短编组动车为CRH380A,而长编组动车为CRH380AL。

CRH380A采用.与CRH2C一样的6动2拖的编组方式,牵引功率为9600千瓦,使用SS400+型高速受电弓,以及在受电弓。以及两侧为立体围护整流罩。列车设有二等座车/观光车(ZEG)l辆(1车)、一等座车(ZY2辆)3车、4车其中3车带有一等包厢)。

2010年12月3日,中国铁路在京沪高铁先导段联调试时再次创造奇迹,国产“和谐号 "CRH380A新一代高速动车组最高时速达到486. 1公里,风一样的速度,再次刷新世界路运营试验最高速。3以下是各国高速动车组的图片

世界各国高速动车组技术的发展现状

世界各国高速动车组技术的发展现状1.1概述 先来介绍一下“动车组”这个概念:把动力装置分散安装在每节车厢上,使其既具有牵引力,又可以载客,这样的客车车辆便叫做动车。而动车组就是几节自带动力的车辆加几节不带动力的车辆编成一组。带动力的车辆叫动车,不带动力的车辆叫拖车组.动车组技术源于地铁,是一种动力分散技术。一般情况下,我们乘坐的普通列车是依靠机车牵引的,车厢本身并不具有动力,是一种动力集中技术。而采用了“动车组”的列车,车厢本身也具有动力,运行的时候,不光是机车带动,车厢也会“自己跑”,这样把动力分散,更能达到高速的效果。 1.2动车组分类 按照动力排布:动力集中,动力分散 按照用途:客运,货运(比如日本M250,法国TGV行邮),特殊用途(轨道检测等) 按照性能:高性能,低性能。 1.3牵引方式 动车组有两种牵引动力的分布方式,一种叫动力分散,一种叫动力集中。 动力分散电动车组的优点是,动力装置分布在列车不同的位置上,能够实现较大的牵引力,编组灵活。由于采用动力制动的轮对多,制动效率高,且调速性能好,制动减速度大,适合用于限速区段较多的线

路。另外,列车中一节动车的牵引动力发生故障对全列车的牵引指标影响不大。动力分散的电动车组的缺点是:牵引力设备的数量多,总重量大。动力集中的电动车组也有其优点,动力装置集中安装在2~3节车上,检查维修比较方便,电气设备的总重量小于动力分散的电动车组。动力集中布置的缺点是动车的轴重较大,对线路不利。 1903年7月8日,在德国柏林诞生了一种“动车+无动力车厢+动车+动车+无动力车厢+动车”这样编组的列车。这种无动力车厢不会隔断动车之间的联系,因为它安装了重联线。与动车相对,这种专门为动车组准备的无动力车厢叫从车,中文翻译为拖车。 8月14日,由接触网供电的单相交流电动车组问世。 10月28日,西门子公司制造的三相交流电动车组进行高速试验,首创时速210. 2公里的历史性记录。 一战结束,内燃机车开始普及,内燃动车出现。 二战结束,内燃机车也能重联了,内燃动车组出现。 60年代,日木决心新建高速客运铁路网,于是有了世界上首列运营用高速动车组—新干线—0系。 70年代,法国试制了燃气轮机高速动车组—TGV-0。 80年代,高速铁路网在欧洲延伸,风驰电掣的各系TGV以300km/h 的速度成为法国人的骄傲。 90年代,TGV试验速度突破500km/h。 新世纪,TGV试验速度突破500km/h 。 2.1国外动车组状况

我国高速公路发展的历史和现状

我国的高速公路发展比西方发达国家晚近半个世纪的时间,从80年代末开始起步,经历了80年代末至1997年的起步建设阶段和1998年至今的快速发展阶段。 对建设高速公路认识的统一 在改革开放初期,随着我国国民经济的快速发展,公路客货运输量急剧增加,公路交通长期滞后所产生的的后果充分暴露出来,特别是主要干线公路交通拥挤、行车缓慢、事故频繁。为改善主要干线公路交通紧张状况,缓解公路交通的瓶颈制约,从“六五”开始,公路交通部门重点对干线公路进行加宽改造。尽管有些路段加宽到15米甚至20米以上,但收效甚微。为了寻求缓解我国公路交通瓶颈制约的有效途径,公路交通部门开始深入研究发达国家解决交通问题的经验,并对我国主要干线公路的交通情况进行调查研究。研究结果显示,我国公路交通存在着三个突出问题:一是由于运输工具种类繁多,汽车、拖拉机、自行车、畜力车、行人混行,车辆行驶纵向干扰大;二是由于人口稠密,公路沿线穿越城镇较多,横向干扰大;三是公路平交道口多,通过能力低,交通事故严重。以上三个问题严重影响了公路交通功能的发挥。根据发达国家的实践经验,建设高速公路是解决主要干线公路交通紧张状况的有效途径。 这一时期,社会各界对修建高速公路问题非常关注,对于“中国要不要修建高速公路”的问题认识并不统一。直至1989年7月,在沈阳召开的高等级公路建设现场会上,时任国务院副总理的邹家华同志指出:“高速公路不是要不要发展的问题,而是必须发展”。“这样的结论是明确的,这已经不是理论问题”。认识的统一,为我国高速公路的快速发展奠定了基础,拉开了中国高速公路发展的序幕。 起步建设阶段 1988年上海至嘉定高速公路建成通车,结束了我国大陆没有高速公路的历史;1990年,被誉为“神州第一路”的沈大高速公路全线建成通车,标志着我国高速公路发展进入了一个新的时代;1993年京津塘高速公路的建成,使我国拥有了第一条利用世界银行贷款建设的、跨省市的高速公路。为了集中力量、突出重点,加快我国高速公路的发展,1992年,交通部制定了“五纵七横”国道主干线规划并付诸实施,从而为我国高速公路持续、快速、健康发展奠定了基础。

当今世界能源现状与发展综述

当今世界能源现状及发展趋势 当今世界,人类社会发展日益加速,无论是在工业,农业,还是第三产业服务业,高新技术产业,都是处于人类历史上空前发 展最快的一个阶段。社会的发展提高了人类的生活水平,大大加 强了社会生产力,同时对能源(如煤,石油)的需求和使用也大 幅提高,从汽车内燃机到家用用电器,无不需要能源去运作。 就中国目前来说,我国GDP每年以10%的速度发展,能源消 耗急骤增加,环境、生态日益恶化。这种对自然无序的、掠夺性 索取的发展模式已难以为继,实际上已造成当前十分严重的、不 可逆转的后果,大自然的惩罚已经不断地凸现出来,并还要继续 加重。 能源在历史上的利用状况: 人类对能源的利用主要有三大转换:第一次是煤炭取代木材 等成为主要能源;第二次是石油取代煤炭而居主导地位;而当 今世界是在石油逐渐枯竭的状况下向多能源结构的过渡转换。

18世纪前,人类只限于对风力、水力、畜力、木材等天然能源的直接利用,尤其是木材,在世界一次能源消费结构中长期占据首位。蒸汽机的出现加速了18世纪开始的产业革命,促进了煤炭的大规模开采。到19世纪下半叶,出现了人类历史上第一次能源转换。1860年,煤炭在世界一次能源消费结构中占24%,1920年上升为62%。从此,世界进入了“煤炭时代”。 19世纪70年代,电力代替了蒸汽机,电器工业迅速发展,煤炭在世界能源消费结构中的比重逐渐下降。1965年,石油首次取代煤炭占居首位,世界进入了“石油时代”。1979年,世界能源消费结构的比重是:石油占54%,天然气和煤炭各占18%,油、气之和高达72%。石油取代煤炭完成了能源的第二次转换。因此,石油是现在世界上利用最多的能源,并且面临着枯竭的危机。 化石燃料的大量利用破坏了生态环境,间接上对人类的发展也造成了不良的影响。因此,发展新能源,向多能源结构的过渡是当今人类所不可避免的。 我国能源利用现状: 一、能源丰富而人均消费量少  我国能源虽然丰富,但分布很不均匀,煤炭资源60%以上在华北,水力资源70%以上在西南,而工业和人口集中的南方八

完井技术国内外发展现状分析

完井技术国内外发展现状分析 第1章前言 1.1 现代完井技术发展现状 完井工程是衔接钻井和采油工程而又相对独立的工程,是从钻开油气层开始,到下套管注水泥固井、射孔、下生产管柱、排液,直至投产的一项系统工程。完井设计水平的高低和完井施工质量的优劣,对油气井生产能否达到预期指标和油田开发的经济效益有决定性的影响。 近十多年来,国内外完井均有了较快发展,并已发展成为独立的学科。除常规井完井技术日益完善外,其他特殊井完井也得到了很大发展,如水平井完井、复杂地质条件下的完井、小井眼完井、分支井完井、深井超深井完井、现代智能完井、膨胀管完井等。国内在完井技术方面虽然取得了一些进步,但是与国外相比,完井技术还有很大差距,特别是在不同储层选择合适的完井方式、水平井完井、欠平衡井完井、小井眼完井、分支井完井,从而影响了油气井的产量及经济效益。 1.2 本文的主要研究内容 1.查阅现代完井技术方面的文献,对各种完井技术现状进行综合性分析: (1)射孔完井技术; (2)割缝衬管完井技术; (3)砾石充填完井技术; (4)膨胀管完井技术; (5)封隔器完井技术; (6)智能完井技术。 2. 调研国内外最新完井技术现状,重点分析国内外现代完井技术现状、最新进展、应用成果以及发展趋势等,并对国内完井技术方案实施的可行性和完井技术的研究方向作初步预测和探讨。

第2章常规完井技术 完井方式的选择主要是针对单井而言。虽单井属于同一油藏类型,但是所处构造位置不同,所选定的完井方式也不尽相同,如油藏有气顶、底水,若采用裸眼完成,技术套管则应将气顶封隔住,再钻开油层,而不钻开底水层。若采用射孔完成,则应避射气顶和底水。又如油藏有边水,套管射孔完成时,油田开发要充分利用边水驱动作用,避射开油水过渡带。下面主要介绍常用的几种常规完井方式[1]。 2.1 裸眼完井技术 裸眼完井方式分先期裸眼完井方式、复合型完井方式和后期裸眼完井方式三种。 先期裸眼完井方式(如图2-1)是钻头钻至油层顶界附近后,下套管柱水泥固井。水泥浆上返至预定设计高度后,再从套管中下入直径较小的钻头,钻穿水泥塞,钻开油层至设计井身完井。 复合型完井方式(如图2-2)是指适合于裸眼完井的厚油层,但上部有气顶或顶界邻近又有水层时,可以将技术套管下过油气界面,使其封隔油层的上部,然后裸眼完井,必要时再射开其中的含油段。 后期裸眼完井方式(如图2-3)是不更换钻头,直接钻穿油层至设计井深,然后下套管至油层顶界附近,注水泥固井。固井时,为防止水泥浆损害套管鞋以下的油层,通常在油层段垫砂或者换入低失水、高粘度的钻井液,以防水泥浆下沉。 图2-1 先期裸眼完井示意图 1—表层套管 2—生产套管 3—水泥环 4—裸眼井壁 5—油层

中国高速铁路发展历程

中国高速铁路发展历程 2010年12月03日 12月3日,中国自主研发的"和谐号"CRH380高速动车组列车在京沪高铁枣庄至蚌埠段试验运行最高时速达486.1公里。这是中国铁路创造的世界纪录,更是世界铁路发展史上值得书写的重要章节,因为,高速铁路是人类文明与智慧的宝贵结晶,是人类社会走向现代化的重要标志和有力支撑。 目前,中国高速铁路建立了较为完善的运营管理体系,确保了运营持续安全,取得了良好的经营业绩,提供了安全、快捷、舒适、经济的运输服务,有力地促进了经济社会又好又快发展。如今,中国铁路每天开行"和谐号"高速动车组列车1000多列,发送旅客近百万人。而且高速铁路开通后,既有铁路通道的货运能力得到了巨大释放,为实现货运增量、丰富货运产品体系、提升货运服务质量奠定了坚实基础。 中国人在建设和发展高速铁路的历史进程中,不仅在技术上取得了重大突破,在营业里程上不断快速扩展,而且锤炼了"勇攀科技高峰,争创世界一流"的高速铁路精神,形成了以"运行高速度、安全高可靠、服务高品质"为基本内涵的高速铁路文化体系。 作为带动性产业、战略性新兴产业,高速铁路不仅大大加快了中国铁路现代化建设进程,而且对国家新兴产业的发展和产业结构的优化产生了积极影响,在加快转变经济发展方式、促进经济社会又好又快发展中发挥了重要作用,对政治、经济、文化、社会等诸多领域产生了重要而深远的意义,是加快实现国家现代化的助推器。 中国高速铁路发展的历史起点 在中国,铁路是国家重要的基础设施、国民经济的大动脉和大众化交通工具,在综合交通运输体系中处于骨干地位。新中国成立以来,尤其是改革开放以来,中国铁路取得了长足进步,为经济建设做出了重要贡献。但与其他行业相比,铁路发展相对滞后,运输能力严重不足,"一票难求、一车难求"的现象十分突出,铁路成为制约经济社会发展的"瓶颈"。 从世界范围看,速度作为交通运输现代化的重要标志之一,往往在很大程度上影响着某种运输方式或某种交通工具的兴衰。铁路自诞生以来,正是由于它在运输速度和运输能力上的巨大优势,才在很长的历史时期内成为世界各国交通运输的骨干,极大地推动着社会进步和历史进程。曾几何时,由于忽视了普遍提高行车速度,铁路在速度方面的优势迅速缩小,甚至消失。速度慢成了阻碍铁路发展的重要因素之一。 20世纪中叶以来,世界铁路以高速客运为突破口开始了新一轮的复兴。高速铁路的问世,使一度被人们称为"夕阳产业"的铁路焕发了青春,出现了新的生机。客运高速化是世界铁路发展的趋势。在许多国家,越来越多的旅客把乘坐舒适便捷的高速列车作为出行的首选。 建设现代化的中国铁路,必须在速度上"突出重围"。高速铁路具有速度快、运量大、节约土地、节能环保等明显优势。发展高速铁路,符合中国经济社会发展需要,对于构建现代

国内外公路现状与发展展望

第1章绪论 1.1我国公路现状 交通运输业是国民经济中从事运送货物和旅客的社会生产部门,是国民经济和社会发展的动脉,是经济社会发展的基础行业、先行产业。交通运输主要包括铁路、公路、水运、航空、管道五种运输方式,其中,铁路、水运、航空、管道起着“线”的作用,公路则起着“面”的作用,各种运输方式之间通过公路路网联结起来,形成四通八达、遍布城乡的运输网络。改革开放以来,灵活、快捷的公路运输发展迅速,目前,在综合运输体系中,公路运输客运量、货运量所占比重分别达90%以上和近80%。高速公路是经济发展的必然产物,在交通运输业中有着举足轻重的地位。在设计和建设上,高速公路采取限制出入、分向分车道行驶、汽车专用、全封闭、全立交等较高的技术标准和完善的交通基础设施,为汽车快速、安全、经济、舒适运行创造了条件。与普通公路相比,高速公路具有行车速度快、通行能力大、运输成本低、行车安全、舒适等突出优势,其行车速度比普通公路高出50%以上,通行能力提高了2~6倍,并可降低30%以上的燃油消耗、减少1/3的汽车尾气排放、降低1/3的交通事故率。 新中国成立以来,经过60多年的建设,公路建设有了长足发展。2011年初正值“十一五”规划结束,“十二五”规划伊始。“十一五”时期是我国公路交通发展速度最快、发展质量最好、服务水平提升最为显著的时期。经过4年多的发展,公路交通运输紧X状况已实现总体缓解,基础设施规模迅速扩大,运输服务水平稳步提升,安全保障能力明显增强,为应对国际金融危机、保持经济平稳较快发展、加快经济发展方式转变、促进城乡区域协调发展、保障社会和谐稳定、进一步提高我国的综合国力和国际竞争力作出了重要贡献。 “十一五”前4年,全国累计完成公路建设投资2.93万亿元,年均增长近16%,约为“十一五”预计总投资的1.2倍,也超过了“九五”和“十五”的投资总和。公路建设投资的快速增长,极大地拉动和促进了国民经济的迅猛发展。从公路建设投资占同期全社会固定资产总投资的比重来看,“十一五”期间基本保持在4.5%左右。 在投资带动下,公路网规模不断扩大,截至2009年底,全国公路网总里程达到386万公里,其中高速公路6.51万公里,二级及以上公路42.52万公里,分别较"十五"末增加36.4万公里、2.5万公里和9.4万公里;全国公路网密度由“十五”末的每百平方公里34.8公里提升至40.2公里。预计到2010年底,全国公路网总里程将达到395万公里,高速公路超过7万公里,分别较“十五”末增加45.3万公里与3万公里。农村公路投资规模年均增长30%,总里程将达到345万公里,实现全国96%的乡镇通沥青(水泥)路。 “十一五”期间公路的快速发展,为扩大内需、拉动经济增长作出了突出贡献。特别是2008年以来,为应对国际金融危机,以高速公路为重点,建设步伐进一步加快,“十一五”末高速公路里程将达到"十五"末的1.78倍。“十一五”期间全社会高速公路建设累计投资达2万亿元,直接拉动GDP增长约3万亿元,拉动相关行业产出

中国新能源的发展现状与趋势

中国新能源的利用现状与趋势 1 引言 随着全球化石能源枯竭供应紧、气候变化形势严峻,世界各国都认识到了发展新能源的重要性,特别是中国长期以来主要依靠煤炭,在一次能源供给中一直保持在2/3以上的比例。而中国的石油进口量连续增长,2009年进口原油约2.04亿吨。据测算,中国石油消费进口依存度已达到50%的“警戒线”。同时随着2000年以来,在国家和地方政府的政策支持下,城镇燃气行业改革加速,燃气行业得到了长足发展,对天然气的需求一直处于高速增长,这种状况将在未来将长时间存在,毕竟中国的人均能源消耗只有的美国的1/11。随着中国的社会经济进一步发展,生活水平的改善意味着人均能源消耗量将有十分巨大的增长,近几年来汽车保量的快速增加即是例证。 随着传统化石燃料,如石油、煤矿、天然气等储存量不断减少,而同时社会经济不断发展,对能源的需求日益增加,以及环境恶化的巨大压力,新能源被提到了更重要的位置。虽然中国还处于工业化、城镇化快速发展的关键阶段,但是仍然在哥本哈根会议上提出努力的方向,“到2020年单位国生产总值二氧化碳排放比2005年下降40%-45%”。新能源是一个有力的工具。 2 新能源的利用现状 2.1 新能源 新能源,是指新的能源利用方式,既包括风电、太阳能、生物质能等,又包括对传统能源进行技术变革所形成的新能源,如煤层气、煤制天然气等。新能源

产业具有资源消耗低、清洁程度高、潜在市场大、带动能力强、综合效益好的优势,正在成为富有活力、最具前景的战略性新兴产业,对推动我国经济社会可持续发展具有重要战略意义。 2.2 太阳能 太阳能利用主要有太阳能的热利用和发电两种途径。热利用以太阳能热水器为代表,主要集中在小城镇和农村地区,由于城市土地紧以及政策、规划和设计等因素,太阳能的热利用在城市属于个案,如位于市龙岗区的振业城是华南第一个大规模应用太阳能技术的社区,整个太阳能中央热水系统采用的是联集式全玻璃真空式太阳能集热器。太阳能板和屋顶结合,与保温水箱分离,这种安装方式达到形式与功能的统一,与建筑较为完美的结合,这些太阳能热水器还设置了电辅助加热设施,即使在阴雨天也可正常使用,能提供适宜身体的水温。而集中利用则较少。 另一种主要的途径就是太阳能光伏发电,虽然近些年来光伏发电技术有了较大的进步,但是与常规发电方式和核发电相比太贵了,经济性不强。 2.3 风能 中国的风能资源丰富和较丰富的地区主要分布在两个大带:一是三北(东北、华北、西北)地区丰富带。风能功率密度在200W/㎡~300W/㎡以上,有的可达500 W/㎡,可利用的小时数在5000h以上,有的可达7000h以上。二是沿海及其岛屿地丰富带。年有效风能功率密度在200W/㎡以上,可利用小时数在7000h~8000h。这一地区特别是东南沿海,由海岸向陆是丘陵连绵,所以风能丰富地区仅在海岸50km之。 《可再生能源法》实施以来,中国的风电产业和风电市场发展十分迅速,截

国内外海洋工程技术的现状及发展趋势

国内外海洋工程技术的现状及发展趋势 海洋工程技术是造船界关注的技术领域之一,世界上现代化的一流船厂都把高新技术船舶与大型海洋工程结构物作为其纲领性产品。海洋工程技术涉及的领域很广,包括海洋发电技术、海洋钻探技术、海水淡化技术、海洋油矿开采技术、海岸风力发电技术、海层探测技术、海洋物质分离技术、海水提炼技术、海洋建筑设计等。海洋发电技术包括:海水发电、海洋风力发电、潮汐发电、温差发电等。海洋钻探技术包括:海洋油井开发、海洋矿石开采等、海水淡化技术包括:太阳能净水、工业净水等。海洋物质分离技术包括:海水金属分离、轻水物质提炼等。能源开发、资源开采等领域海洋工程技术数目众多,未来人类利用和保护海洋是个新新话题。 随着近年来海洋开发“热”的升温,特别是专属经济区资源勘探和开发的实施,海洋工程技术得到了迅猛发展。 ——在潜水器技术方面。目前世界上建造的载人潜水器超过160艘,无人潜水器超过1000艘。日本继1989年建成深海6500 米载人潜水器“SHINKAI6500”以后,于1993年又建成了世界上第一艘潜深10000米的无人潜水器,用于深海矿产资源和海洋生物资源的调查研究。经过“七五”和“八五”的工作,我国的潜水器技术有了很大的发展。在无人潜水器方面,某些项目已经达到国际水平;在载人潜水器方面,潜深600米的“7 1 03”深潜救生艇是我国第一艘载人潜水器,还有300米工作水深的“QSZ—II型双功能单人常压潜水装具系统”、潜深150米的鱼鹰I号和双功能的鱼鹰II。综合国内从事潜水器开发的各院校、研究院和研究所的力量,我国已具有开发深海载人潜水器的技术能力。

——在海底管线埋设、检测和维修技术方面。我国海底电缆的铺设已有几十年的历史,第一条国际通讯电缆于1976年完成,1993年成功研制出MG一1型海缆埋设犁,并于同年成功完成中日光缆的埋设任务。上世纪80年代开始,英国SMD(Soil Machine Dynamics Ltd.)公司和Land& Marine Eng.公司建造了不少拖曳式埋设系统。而美国的海洋系统工程公司为AT&T研制的SCA- B号埋设机是一种ROV型(水中航行型)的埋设机。可在1850米深用喷水的方式埋设电缆至地下0.6米,可以取出埋深在1.2米以内的电缆,埋设电缆直径为300毫米。履带爬行自走式、带有不同功能挖掘机构的埋设机是海底管道及电缆的埋设技术的发展趋势。在这种履带车载体上通过更换不同的挖沟机械,装备各种探测设备后,既能在沙泥底中进行埋设作业,也能在软岩底中进行埋设作业;既能铺设又能跟踪、挖掘、检修、复埋;既能在水下,也能在浅滩或滩涂工作。目前,这种自走式埋设机已有20多台。 作为开发海洋资源的一种活动,海洋空间利用已有相当长的历史,最早利用海面空间是两千多年前的海上交通运输。然而直到20世纪60年代,由于海洋工程等技术的逐步提高,以及城市化、工业化的迅速发展,导致陆上用地日趋紧张,使人们更加重视海洋空间的利用。海洋空间资源的开发利用可分为几个方面。第一、生活和生产空间;第二、海洋交通运输;第三、储藏和倾废空间;第四、海底军事基地。 解决海洋空间利用的工程技术问题也是近年来海洋工程界研究的热点。 国外研究现状 (1)超大型浮式海洋结构的研究。 在这方面,目前进行最广泛和深入的是日本和美国。日本于1999年8月4 日在神奈川县横须贺港海面上建成—个海上浮动机场。这个浮动机场于1995年开始研制,它由6块长380米、

火车的发展历程

火车的发展历程 梁政 我们进行远距离旅行,往往会乘坐火车,车上有座位、床铺、餐桌、洗手间等,简直就是一座流动的旅馆。坐在平稳的车厢里遥望车外的青山绿水、田园景色,令人心旷神怡。除此之外,火车还担负着运送工农业生产和国防建设物资的重任,真不愧为国民经济的大动脉!从火车的发明到现在已走过了207年,这个对推动世界工业化革命发挥了巨大作用的火车是怎样发生、发展、变化的呢现在就让我们一起去回顾这一段闪烁着人类智慧的光辉历史吧。 火车和所有其他的发明一样,都是为了满足社会需要而问世的。18世纪初,随着社会生产力的发展,人们急需一种比马车装得多、跑得快的新型车辆。在这种情况下,英国人瓦特发明了蒸汽机。这种机器比马的力气可大多了,它一问世就引起了人们的关注。 在那时,一些具有改革创新激情的人萌发了将蒸汽机装在车上,以代替人力或者畜力来拖动车辆。这个设想首先在军事上得到了应用。那时,欧洲各国的军队为了满足作战需要,把大炮的口径和射程做得越来越大。这就导致了炮的重量不断增加,用人推马拉的办法很难保证大炮能及时跟随部队转战。法国一位名叫居尼奥的炮兵军官,针对这一问题研制成了用蒸汽机推动的“蒸汽车”来拉炮,从而开辟了以机器为动力的现代车辆发展的道路,也为火车的诞生打下了基础。

这种将蒸汽机装在车子上的机械车是怎样推动车辆行驶的呢我 们从它的外形上可以看到,蒸汽机有一个大锅炉,装在车架的前端。在锅炉下面烧着煤火,用来将锅炉里面的水加热成蒸汽。由锅炉上的一根管子将蒸汽引入车子前轮上方的汽缸里,蒸汽的力气很大,便推着汽缸里的活塞向前移动,而活塞通过连杆和曲轴与前轮连在一起,于是随着曲轴的转动,车轮就跟着转起来,这就是蒸汽机车行走的基本原理。 此后不久,这种冒着黑烟、喘着粗气的车子先后在英国和德国出现了。英国人于1804年制成了蒸汽机车。不过,它的模样和先前不大一样了:有的将锅炉移到车子的中间,并罩上罩子,两头还装上几排座位;有的把锅炉移到车后部,而在前面坐人的地方装了一个车厢,等等。这种蒸汽车已经颇有点近代车的气派了。但提醒大家注意的是,当时这种蒸汽机车是在公路上行驶的,因为那时世界上还没有铁路。 世界上第一台行驶于轨道上的蒸汽机车是“新城堡号”蒸汽机车。它是由英国一位出身贫寒、到处漂泊的发明家理查德·特里维西克设计制造的。1804年2月29日,这台机车(自重5吨)首次在南威尔士的麦瑟尔提德维尔到阿巴台之间的轨道上作运行试验,车速为每小时8公里,只能牵引十几吨重,比马车好不了多少。但它却开辟了世界铁路史上第一台蒸汽机车的光辉行程。 图1 世界上第一台蒸汽机车“新城堡号”

高速铁路动车组简介

高速铁路动车组简介 (一)牵引动力及牵引方式比选 1、高速列车应采用电力牵引 内燃牵引和电力牵引两种牵引种类 列车速度从100km/h增加到300km/h时,运行阻力约增加5倍,此时牵引列车的总功率则为100km/h时的15倍电力牵引更适宜高速列车的牵引 内燃牵引是很难实现的 主要原因如下: (1)目前我国功率最大的DF8内燃机车标称功率为2720kw,柴油-发电机组总重为30.87t,柴油机组平均每千瓦功率金属消耗量为11.35kg/kw。而电力机车以 SS3为例,机车功率为4320kw,主变压器重12.4t,平均每千瓦功率金属消耗量为 2.87kg/kw。因此牵引动力装置在轴重和轴数维持一样的条件下,电力牵引可实现更大的牵引功率。 (2)内燃牵引若实现高速牵引则必须提高柴油机功率,必然会增加柴油发电机组及辅助系统重量,最终会导致机车轴重或轴数增加。轴重的增加对高速列车的运行是极其有害的,它增大了轮对对钢轨的冲击力,易导致钢轨的折断,并增加了轨道线路的养护维修工作量和维修费用。若为了维持轴重不增加而增加轴数,如采用C0-C0式转向架或B0-B0-B0式转向架,或组合式机车,使转向架复杂,不利于机车的高

速运行。 (3)大功率柴油机的噪音及排放的废气对环境造成严重的污染,影响旅行的舒适度,同时由于机车燃料油的储备有限,列车不能长距离行驶,需换挂机车或在站上补充燃料及水,增加了列车辅助作业时间。 电力牵引由于牵引功率的增加,对列车的质量影响很小,易实现大功率牵引,所以高速列车最佳的牵引方式为电力牵引。 2、高速铁路宜采用动车组 目前我国铁路基本上采用机车牵引旅客列车的输送方式,机车和旅客列车分别整备,机车在车站联挂列车后出行,机车只在规定的交路范围内运行。这种运行方式有以下缺点: (1)机车按规定交路行驶,中途须换挂机车,辅助作业时间延长,从而使旅行时间延长。而动车组本身在运行中不需更换牵引动力,有效地压缩了运行时间。 (2)列车出入始发(终到)站时通过车站咽喉区每开行一对旅客列车,则占用咽喉次数达6次,造成咽喉区能力紧张。若采用动车组,只用咽喉次数仅2次,极大的缓解了咽喉区的通过能力。 (3)采用动车组可以避免部分机车的单机走行以节省能源的消耗。

我国高速公路发展现状及未来趋势

我国高速公路发展现状及未来趋势 前言 高速公路被誉为一个国家走向现代化的桥梁,是发展现代交通业的必经之路,而中国在这条路上,则迈出了非同寻常的一个个令人赞叹的脚印。我国公路从建国初的几万公里到目前的400万公里,高速公路从1984年兴建到1988年底通车的第一条沪嘉高速公路开始到目前拥有总里程7.4万公里,居世界第二位,仅次于美国。这其中的发展历程留下了几代人艰苦奋斗的足迹,凝结了无数公路建设者们的辛勤汗水。作为一名学生和未来的公路工作的从事者,我觉得我非常有必要了解一些公路发展的历史,更要清楚地看清现状,和探讨公路事业发展的未来,这非常有利于我们更好的开展公路方面的学习、科研和施工工作。 第一章高速公路概念 1.1高速公路的概念和定义 公路是指联接城市、乡村和工矿基地之间,主要供汽车行驶并具备一定技术标准和设施的道路称公路。高速公路属于高等级公路。其建设情况反映着一个国家和地区的交通发达程度、乃至经济发展的整体水平。 世界各国的高速公路没有统一的标准,命名也不尽相同。各国尽管对高速公路的命名不同,但都是专指有4车道以上、两向分隔行驶、完全控制出入口、全部采用立体交叉的公路。此外,有不少国家对部分控制出入口、非全部采用立体交叉的直达干线也称为高速公路。国际道路联合会在历年的统计年报中,把直达干线也列入高速公路范畴。从定义可以看出,一般来讲高速公路应符合下列4 个条件:(1)只供汽车高速行驶;(2)设有多车道、中央分隔带,将往返交通完全隔开;(3)设有平面、立体交叉口;(4)全线封闭,出入口控制,只准汽车在规定的一些立体交叉口进出公路。 第二章世界公路发展情况 2.1世界公路发展的四个阶段 目前,全世界已有80多个国家和地区拥有高速公路,目前世界各国的公路总长度约2000万公里,约80个国家和地区修建了高速公路,通车总里程26万公里左右(此数据不太准确),其中美国、中国、英国、德国、法国、意大利、日本、加拿大等国高速公路里程约占世界高速公路里程的80%以上。 回顾历史,国外发达国家公路的发展大致都已经历了三个发展阶段,现正处于第四个发展阶段。 第一阶段从19世纪末到本世纪30年代,是各国公路的普及阶段。这期间随着汽车的大量使用,大多是在原有乡村大道的基础上,按照汽车行驶的要求进行改建与加铺路面,构成基本的道路网,达到大部分城市都能通行汽车的要求。 第二阶段从30年代到50年代,是各国公路的改善阶段。这期间由于汽车拥有量的迅速增加,公路交通改善需求增长很快,各国除进一步改善公路条件外,开始考虑城市间、地区间公路有效连接,着手高速公路和干线公路的规划,英、美、德、法等国都相继提出了以高速公路为主的干线公路发展规划,并通过立法,从法律和资金来源方面给予保障。

世界各国高速动车组技术的发展现状

世界各国高速动车组技术的发展现状 1.1概述 先来介绍一下“动车组”这个概念:把动力装置分散安装在每节车厢上,使其既具有牵引力,又可以载客,这样的客车车辆便叫做动车。而动车组就是几节自带动力的车辆加几节不带动力的车辆编成一组。带动力的车辆叫动车,不带动力的车辆叫拖车组.动车组技术源于地铁,是一种动力分散技术。一般情况下,我们乘坐的普通列车是依靠机车牵引的,车厢本身并不具有动力,是一种动力集中技术。而采用了“动车组”的列车,车厢本身也具有动力,运行的时候,不光是机车带动,车厢也会“自己跑”,这样把动力分散,更能达到高速的效果。 1.2动车组分类 按照动力排布:动力集中,动力分散 按照用途:客运,货运(比如日本M250,法国TGV行邮),特殊用途(轨道检测等) 按照性能:高性能,低性能。 1.3牵引方式 动车组有两种牵引动力的分布方式,一种叫动力分散,一种叫动力集中。 动力分散电动车组的优点是,动力装置分布在列车不同的位置上,能够实现较大的牵引力,编组灵活。由于采用动力制动的轮对多,制动效率高,且调速性能好,制动减速度大,适合用于限速区段较多的线路。

另外,列车中一节动车的牵引动力发生故障对全列车的牵引指标影响不大。动力分散的电动车组的缺点是:牵引力设备的数量多,总重量大。动力集中的电动车组也有其优点,动力装置集中安装在2~3节车上,检查维修比较方便,电气设备的总重量小于动力分散的电动车组。动力集中布置的缺点是动车的轴重较大,对线路不利。 1903年7月8日,在德国柏林诞生了一种“动车+无动力车厢+动车+动车+无动力车厢+动车”这样编组的列车。这种无动力车厢不会隔断动车之间的联系,因为它安装了重联线。与动车相对,这种专门为动车组准备的无动力车厢叫从车,中文翻译为拖车。 8月14日,由接触网供电的单相交流电动车组问世。 10月28日,西门子公司制造的三相交流电动车组进行高速试验,首创时速210. 2公里的历史性记录。 一战结束,内燃机车开始普及,内燃动车出现。 二战结束,内燃机车也能重联了,内燃动车组出现。 60年代,日木决心新建高速客运铁路网,于是有了世界上首列运营用高速动车组—新干线—0系。 70年代,法国试制了燃气轮机高速动车组—TGV-0。 80年代,高速铁路网在欧洲延伸,风驰电掣的各系TGV以300km/h 的速度成为法国人的骄傲。 90年代,TGV试验速度突破500km/h。 新世纪,TGV试验速度突破500km/h 。 2.1国外动车组状况

高速公路发展现状

高速公路发展现状 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

我国高速公路行业发展前景分析 统筹:陶毅讨论:黎凯 执笔:黎凯 报告日期:2007-07-21 从我国高速公路产业的发展历程来看,1988年沪嘉高速公路的建成通车实现我国大陆高速公路零的突破,到2006年底全国高速公路通车里程超过4.5万公里。我国的高速公路事业从无到有,高速发展,取得了震惊世界的成绩。 步入2007年,我国高速公路事业依然如火如荼,经过20余年的发展,我国高速公路事业的发展已经步入快车道,路网效应的逐步显现也使高速公路在客运和货运中的优势地位日渐明朗。本文将主要阐述目前我国高速公路行业的发展阶段和现阶段的发展前景。 一、高速公路行业的产业周期分析 1、高速公路产业化发展规律分析 产业存在的基础是产品,高速公路产业的生命周期同产品的存在属性、成长规律相关。高速公路个体具有公共物品及商品的双重属性并具有随着特许经营期限的临近其商品属性逐步弱化的特征,这一特征决定了高速公路产业生命周期的复杂性。 从经营生命来看,高速公路个体经过建设期、经营期和转入公共物品使用期三个阶段;从技术生命来看,高速公路个体要经历功能形成期(投入生产要素的建设期)、服务维修期(维持建成初期的使用功能和技术水平)、技术升级期(增加技术投入、提高通行能力和服务水平)和可能的衰退期(高速公路逐步被其他运输方式取代)四个阶段。 高速公路产业的生命周期就是由高速公路个体的经营生命和技术生命的合成,据此我们可以得出高速公路产业发展的四个阶段。

产业发展期。在这个阶段,由于产业化实施释放了高速公路产业发展的潜在动力,高速公路进入快速、持续的增长期。高速公路逐步网络化,即主骨架形成后,进一步加大干线公路的密度,形成网络状的、更为合理的高速公路结构形态,该阶段为技术升级和资本扩张综合发展期。 产业持续期。在这个阶段,高速公路通车里程增长缓慢、资本扩张趋缓、高速公路的发展重点是高速公路运营管理智能化,应用新技术提高整个路网的通行能力,维护系统的安全性、高效性和衔接性,靠技术提高来保持高速公路在综合运输体系中的主导地位。 产业的可能衰退期。出现这一现象的可能性在于:(1)高速公路个体逐步推出收费期,收费公路的减少使得高速公路直接经营产值下降;(2)其他运输方式的兴起,使得高速公路的地位逐步削弱,或因环保等需要限制汽车保有量的增长而使高速公路维持运营所需的通行费收入逐步减少致使高速公路的功能及作用逐步退化。但由于汽车作为交通工具不可能完全被替代,因此这个阶段呈现衰而不亡的特征。 2、目前我国高速公路产业的生命周期判断 根据上述对高速公路产业周期各个阶段特征的分析,本文认为,目前我国的高速公路产业处于产业发展期。 第一、我国高速公路主干线已初具规模,但高速公路总量仍然不足,网络还未完全形成。 到2006年底,我国高速公路通车里程超过4.5万公里,保持世界第二。长江三角洲、珠江三角洲、环渤海等经济发达地区的高速公路网正在加快形成。“五纵七横”国道主干线已经基本建成,交通部表示将确保2007年底完成“五纵七横”国道主干线系统最后2385公里的建设任务。

世界能源资源状况

世界能源资源状况 根据《年世界能源统计》,截止到年底,全世界剩余石油探明可采储量为亿吨,其中,中东地区占%,北美洲占%,中,南美洲占%,欧洲占%,非洲占%,亚太地区占%.年世界石油产量为亿吨,比上年度增加%.通过对比各地区石油产量与消费量可以发现,中东地区需要向外输出约亿吨,非洲和中南美洲地石油产量也大于消费量,而亚太、北美和欧洲地产消缺口分别为亿、亿和亿吨. 煤炭资源地分布也存在巨大地不均衡性.截止到年底,世界煤炭剩余可采储量为亿吨,储采比高达(年),欧洲、北美和亚太三个地区是世界煤炭主要分布地区,三个地区合计占世界总量地%左右.同期,天然气剩余可采储量为万亿立方米,储采比达到.中东和欧洲是世界天然气资源最丰富地地区,两个地区占世界总量地%,而其他地区地份额仅分别为%~%.随着世界一些地区能源资源地相对枯竭,世界各地区及国家之间地能源贸易量将进一步增大,能源运输需求也相应增大,能源储运设施及能源供应安全等问题将日益受到重视. 世界能源供应和消费趋势 根据美国能源信息署()最新预测结果,随着世界经济、社会地发展,未来世界能源需求量将继续增加.预计,年世界能源需求量将达到亿吨油当量,年达到亿吨油当量,年达到亿吨油当量,年均增长率为%.欧洲和北美洲两个发达地区能源消费占世界总量地比例将继续呈下降地趋势,而亚洲、中东、中南美洲等地区将保持增长态势.伴随着世界能源储量分布集中度地日益增大,对能源资源地争夺将日趋激烈,争夺地方式也更加复杂,由能源争夺而引发冲突或战争地可能性依然存在. 随着世界能源消费量地增大,二氧化碳、氮氧化物、灰尘颗粒物等环境污染物地排放量逐年增大,化石能源对环境地污染和全球气候地影响将日趋严重.据统计,年世界二氧化碳地排放量约为亿吨,年达到亿吨,预计年将为亿吨,年达到亿吨,年均增长%. 面对以上挑战,未来世界能源供应和消费将向多元化、清洁化、高效化、全球化和市场化方向发展. .多元化 世界能源结构先后经历了以薪柴为主、以煤为主和以石油为主地时代,现在正在向以天然气为主转变,同时,水能、核能、风能、太阳能也正得到更广泛地利用.可持续发展、环境保护、能源供应成本和可供应能源地结构变化决定了全球能源多样化发展地格局.天然气消费量将稳步增加,在某些地区,燃气电站有取代燃煤电站地趋势.未来,在发展常规能源地同时,新能源和可再生能源将受到重视.在欧盟年可再生能源发展规划中,风电要达到万千瓦,水电要达到亿千瓦.年初英国政府公布地《能源白皮书》确定了新能源战略,到年,英国地可再生能源发电量占英国发电总量地比例要从目前地%提高到%,到年达到%..清洁化 随着世界能源新技术地进步及环保标准地日益严格,未来世界能源将进一步向清洁化地方向发展,不仅能源地生产过程要实现清洁化,而且能源工业要不断生产出更多、更好地清洁能源,清洁能源在能源总消费中地比例也将逐步增大.在世界消费能源结构中,煤炭所占

各国高速列车的发展史

<一>法国高速列车的发展史 法国是世界上从事提高列车速度研究较早的国家,1955年即利用电力机车牵引创造了331km/h的世界纪录,在日本建成东海道新干线之后,他们开始从更高起点研究开发高速铁路,1976年法国开始了东南线高速铁路(TGV)的建设,TGV高速铁路系统走上了迅速发展的道路,在技术、经济、商业等方面都取得了巨大的成功,30多年来,一直居于世界铁路运输的前沿。 1981年法国建成了它的第一条高速铁路(TGV东南线) TGV高速列车在东南线南段部分投入运营,试验纪录达到380km/h,打破了传统铁路运行速度的概念。法国建成了它的第一条高速铁路(TGV东南线),该线包括联络线在内全长417km。东南线上运行的TGV-PSE型高速动车组允许最高速度为270km/h,超过了当时日本东海道新干线最高速度220km/h。 1990年5月,TGV列车在大西洋线上创造的515.3km/h的世界纪录,1990年建成并投入运营的地中海高速线,列车运行速度可达350km/h,速度为300km/h 的高速双层列车也已问世。现已研制出性能更高、速度达350km/h的第四代动力分散式AGV型高速列车。 1993年TGV北方线(也称北欧线)全线开通,全长333km。北方线由巴黎以北的喀内斯到里尔,在里尔分为两条支线,一条向西穿越英吉利海峡隧道到达英国伦敦,另一条通向比利时的布鲁塞尔,东连德国的科隆,北通荷兰的阿姆斯特丹,成为一条重要的国际通道。 <二>德国高速列车发展史 德国从1986年正式开始研发高速铁路,ICE——试验型城际列车特快(InterCityExperimental)——于1989年投入服务。为了适应在整个欧洲的推广,ICE发展到第三代车型ICE3时取消了动力车头。动力输出被分散在列车各车轮上,各车廂推进力量相同,在同等耗能下大大提升列车的稳定性、动力效率与爬坡能力。以ICE3的技术为基础,德国高铁也发展出了ICE-T(电力驱动)和ICE-TD(柴油驱动)两种摆式列车,ICE T/TD不以直线上的最高速度作为主要发展的目的,而是保持车辆在弯道上的平均车速,可以很好的适应多弯的山路,独有的车体倾斜技术令列车能够应付更多、更急的弯道并以更高的车速过弯。<三>日本高速列车发展史 作为世界上第一条载客运营的高速铁路系统,日本东海道新干线已经安全行驶了近半个世纪。1964年10月1日东京奥运会举办前夕,这条凝聚着一代日本铁路工作者心血的高速铁路正式通车,并在运营的第二年达到了令世人艳羡的210公里时速。东海道新干线把京滨、中京、阪神城市群结成一个“4小时经济

国内外石油钻井装备的发展现状分析

国内外石油钻井装备的发展现状分析 摘要:通过对当前国外石油钻机新技术的介绍和国内石油钻机装备的现状及问题的分析,提出了石油钻井装备的发展趋势,并重点介绍了矢量控制全数字变频超深井钻机ZJ70DB。 关键词:石油钻井钻机钻井技术 当前的经济形势使我国油气工业面临着巨大的压力,加之跨国石油公司进入我国市场所形成的压力,使得我们必须大力推进技术进步。在这种背景下,我国钻井行业要想和国外钻井承包商及其技术服务公司争夺国内钻井市场,并挤入国际钻井市场,除了保持钻井技术持续高速发展之外,还必须有技术先进的钻机。 一、国外石油钻机新技术 为了适应浅海、海滩、沙漠和丘陵等不同地带油气藏的勘探开发,国外研究改进、开发创新了多种新型石油钻机,涌现了许多新结构、新技术,美、德、法、意、加和罗马尼亚等国先后开发了各种类型的石油钻机。 1.挪威AKER MH公司可编程自动钻井系统(CADS),该公司的第一套可编程管子处理系统己在挪威海上钻井平台上使用 操作该系统时,司钻可以预先依次将起下钻操作步骤程序化,不需要分别操作绞车、顶驱、管子处理装置和卡瓦。钻台上除司钻操作室内的司钻外,不需要其它操作者。该系统总称为可配置自动钻井系统(CADS),根据承包商和操作者的要求,该公司可将各种操作程序化。系统除有一套可编程管子处理系统外,还包括一套先进的防碰系统,用来防止操作间的相互干扰。在司钻操作室内,触摸屏代替了按钮和开关,同时配备有手动操作的备用系统,所有操作都是经过优化的,大大减少了起下钻时间,每小时可以起下55柱立根。 2.Varco公司钻机在线监视与诊断系统 Varco公司的E-Drill是第一套可用于远程监视和诊断世界各地钻机上的Varco监测系统,钻机操作人员可以在1h以内和Varco的技术人员取得联系,各种参数可以直接从置于Varco公司监测系统内的智能系统取得,用于最大限度提高顶驱、排管系统和Varco集成控制和信息系统(V-ICIS)的性能。通过该监测系统,操作人员可以访问由解决方案、事件记录、运行检查、通话记录组成的档案数据库,各钻机数据资源可共享。当遇到故障时,可与Varco公司的E-Drill 技术人员和钻机人员联系,分析故障原因并提出解决方案。 3.RIGSERV钻机集成控制系统 RIGSERV钻机集成控制系统是安装在钻台上司钻控制室内完整和最先进的

中国铁路发展史

中国铁路迄今已有100多年的历史:从其第一条营业铁路——上海吴淞铁路——1876年通车之时算起,是123年;从其自办的第一条铁路——唐胥铁路——1881年通车之时算起,也有118年了。 然,新中国的铁路事业在其长达50年的发展历程中,也不是一帆风顺的。它经历了由小到大、由少到多和由弱变强的渐进过程,在其前进的道路上不乏平坦与坎坷,欢欣与痛惜,经验与教训,胜利与失败。 这50年是中国铁路自强不息、坚忍不拔、披荆斩棘、前赴后继的50年,这50年又自有其曲折的变化和发展。20世纪70年代末和80年代初,中国铁路进入改革开放新时期。在新的路线和新的方针、政策指引下,铁路事业推陈出新,突飞猛进。 中国铁路迄今已有100多年的历史:从其第一条营业铁路——上海吴淞铁路——1876年通车之时算起,是123年;从其自办的第一条铁路——唐胥铁路——1881年通车之时算起,也有118年 日本、法国、德国是当今世界高速铁路技术发展水平最高的三个国家。 高速铁路的实际应用发源于日本。1959年,日本国铁开始建造东京至大阪的高速铁路,并在1964年开通,全长515公里,时速210公里,称为东海新干线。随后向西延伸,于1975年开通至冈山,1975年开通至终点站博多,大阪至博多称为山阳新干线,全长1069公里。 1 高速铁路中的几个概念及建设模式 高速铁路是指既有线路列车最高速度达到200km/h,或新建线路列车最高时速达到250km/h的干线铁路,称为高速铁路。 归纳起来,当今世界上建设高速铁路主要有以下几种模式: 日本新干线模式:全部修建新线,与既有线不接轨,旅客列车专用; 法国TGV模式:部分修建新线,与既有线接轨,部分旧线改造,旅客列车专用; 德国ICE模式:全部修建新线,与既有线接轨,旅客列车及货物列车混用; 英国APT模式:既不修建新线,也不对旧线进行大量的改造,主要用由摆式车体的 车辆组成动车组,旅客列车及货物列车混用。 从我国的国情、路情的实际情况出发,我国高速铁路的建设一方面既有线中的繁忙 干线和条件较好的双线(如胶济、武九)区段,通过提速改造,将旅客列车最高速度提 高到200km/h及以上;另一方面在客运繁忙的区段,新建时速250km/h~350km/h的客运

相关文档
最新文档