变压器故障检测技术

合集下载

电力变压器内部故障检测办法

电力变压器内部故障检测办法

电力变压器内部故障检测办法摘要:变压器为现代电力系统的重要设备之一,围绕变压器配备了多种保护功能,确保其能够长期稳定可靠运行。

但是就变压器自身而言,其结构复杂、运行环境也相对恶劣,因此时常会出现各种内部故障问题。

本文就电压器典型内部故障予以分析,并就其检测策略予以探讨。

希望对我国电力事业的健康、科学发展有所帮助。

关键词:电力;变压器;内部故障;引言变压器为电网中常见的设备之一,对于供配电、输送电等方面均有着重要意义。

因此在日常运维保养过程中,需要尤其关注变压器的运行工况。

内部故障是变压器的主要故障构成之一,如若未有得到及时的关注,很有可能造成严重后果。

而一些内部故障可结合一定的检测办法予以明确,本文就此展开讨论。

1.变压器故障诱因分析变压器在运行过程中会遭遇包括天气原因、人为原因以及其它方面原因等的长期影响,继而导致其运行工况不断降低。

不同的诱因,其主要表征以及特点也存在明显的差异性。

1.1绝缘老化纵观变压器内部故障问题诱因,其中绝缘老化问题位列第二位。

对于常规的变压器设备而言,其使用寿命往往仅有17.8年上下,该指标远低于设计的35-40年的使用寿命。

长期的复杂运行环境加上长时间的运行,导致设备绝缘老化问题加剧,极大的削弱了设备的耐用性。

1.2过负荷不言而喻,变压器设备长期担负着小马拉大车的任务,必定会导致设备过负荷,不利于设备的健康运行。

一般过负荷问题会出现于电厂以及有关用电单位持续性的缓缓的提高负荷的情况。

由此导致变压器不得不超负荷的工作,由此设备会产生更大的热能,由此造成设备的绝缘部分性能被不断削弱。

如若变压器的绝缘部分老化以后,绝缘强度随即大大折扣。

所以,长期的过负荷工作很有可能会削弱绝缘性能,由此导致故障问题出现。

1.3雷击与负荷不平衡随着技术的发展、相关理论研究越来越成熟,业内有关雷击方面的研究也越来越多。

对于户外型的变压器设备而言,在投入运行期间,复杂的天气环境极有可能造成设备被雷击,而雷电的强电流瞬间冲击变压器,很有可能会造成变压器工作异常,内部线路受损或是其它问题。

变压器运行状态监测与分析方法与案例

变压器运行状态监测与分析方法与案例

变压器运行状态监测与分析方法与案例随着电力设备技术的不断发展,变压器作为电力系统中的重要装备,其在电力系统中的重要性日益凸显。

然而,由于变压器的工作环境复杂、负荷变化大、易受电力系统其他设备的影响等因素,变压器的故障率较高,因此对变压器的运行状态进行监测和分析,对于提高电力系统的可靠性和稳定性具有重要的意义。

本文将重点介绍变压器运行状态监测与分析的方法和案例,以期为电力系统工程师提供一些参考。

一、变压器运行状态监测方法1.1 温度监测法变压器温度是反映其运行状态的重要指标。

变压器在运行过程中,绕组内部和外部会产生一定的热量,因此监测变压器的温度变化可以有效地判断变压器的负荷性能变化、故障情况等。

常用的温度监测方法包括:(1)绕组温度监测:通过在变压器绕组内安装温度传感器,实时监测绕组温度的变化情况。

(2)油温监测:通过安装油温传感器,监测变压器油温的变化情况,进而判断变压器的运行状况。

1.2 气体检测法变压器故障时,会产生一些特殊的气体,如氢气、甲烷、乙烯等。

因此,通过监测变压器内的气体变化情况,可以判断变压器故障的类型和程度。

常用的气体检测法包括:(1)氢气检测:氢气检测是监测变压器内部故障的一种有效方法。

通过监测变压器内部氢气浓度的变化,可以判断变压器绝缘材料的老化、某一部分绕组的短路等情况。

(2)热失控检测:如果变压器内部存在热失控现象,会产生大量的乙烯和甲烷等气体,因此可以通过检测变压器内部乙烯和甲烷的浓度变化来判断变压器是否存在热失控现象。

1.3 振动检测法变压器在运行过程中,受到负荷的影响,会产生一定的振动。

因此,通过监测变压器的振动情况,可以判断变压器的运行状况。

常用的振动检测法包括:(1)加速度传感器:通过在变压器周围固定加速度传感器,监测变压器的振动情况,进而判断变压器的安装质量和工作状态。

(2)声波传感器:通过安装声波传感器,检测变压器内部的噪声情况,可以判断变压器内部是否存在某种故障。

电力变压器在线监测与故障诊断

电力变压器在线监测与故障诊断

PART THREE
基于信号处理的方法:利用信号处理技术,提取故障特征并进行分类。 基于知识的方法:利用专家系统、模糊逻辑等知识库技术进行故障诊断。
基于模型的方法:建立电力变压器数学模型,通过模型参数的变化进行故障诊断。
基于人工智能的方法:利用神经网络、深度学习等技术进行故障诊断。
原理:通过分析变压器油中溶解气 体的成分和浓度来判断变压器的故 障类型和严重程度。
干扰因素多:电力变压器运行环境复杂,存在多种干扰因素,对在线监测设备的稳定性和准 确性造成影响。
设备老化和维护问题:电力变压器设备老化、维护不当等问题,导致在线监测设备易出现故 障,影响监测效果。
数据分析难度大:电力变压器产生的数据量庞大,准确分析这些数据对技术和算法要求极高, 目前还存在一定难度。
PART FOUR
应用场景:介绍电力变压器 在线监测与故障诊断的应用 领域,如电力系统、石油化 工等。
案例概述:列举几个电力变 压器在线监测与故障诊断的 典型案例,包括监测方案、 故障诊断方法、实施效果等。
应用背景:介绍油中溶解气体监测在电力变压器在线监测中的重要地位和作用。
监测原理:简述油中溶解气体的产生机理和监测方法。
案例背景:某变电站主变压器出现异常振动,需要进行在线监测与故障诊断。
监测方案:采用振动分析技术,对变压器的振动信号进行实时采集和分析。 故障诊断:通过分析振动信号,诊断出变压器存在局部放电故障。 处理措施:及时停运变压器,进行维修和更换部件,确保设备正常运行。
PART FIVE
监测技术不成熟:目前电力变压器在线监测技术尚未完全成熟,无法准确判断所有故障。
优点:能够早期发现变压器内部的 潜在故障。
添加标题
添加标题

变压器故障原因检查方法

变压器故障原因检查方法

变压器故障原因检查方法变压器是电力系统中常见的电力设备,但在使用过程中有时会出现故障,影响电力系统的正常运行。

为了保证变压器的正常运转,需要定期检查并排除故障。

下面将介绍一些常见的变压器故障原因检查方法。

1. 外部因素检查:首先,检查变压器周围环境是否存在污染物、腐蚀性气体、潮湿等。

如果存在这些外部因素,可能会引起变压器绝缘水平降低,导致故障。

通过检查变压器周围环境是否干净、干燥,可以初步排除这些因素对变压器故障的影响。

2. 绝缘检查:绝缘是变压器正常运行的重要保证。

通过检查变压器的绝缘电阻、绝缘材料是否受潮、受热等情况,可以判断绝缘是否正常。

常用的检测方法包括绝缘电阻测量、局部放电检测等。

如果发现绝缘电阻异常低或局部放电现象,可能表示绝缘已经受损,需要进行绝缘处理或更换绝缘材料。

3. 线圈检查:变压器的线圈是关键部件,如果出现线圈接触不良、绕组短路等情况,将严重影响变压器的工作稳定性和安全性。

检查变压器线圈的接触情况、绕组间的绝缘状况,可以排除这些故障。

常用的线圈检查方法包括观察线圈外观是否受损、使用热红外热像仪检测线圈热点等。

4. 冷却系统检查:变压器冷却系统的正常运行对保证变压器性能和寿命具有重要影响。

检查冷却系统的冷却剂供应、冷却器是否通畅、风扇是否正常工作等情况,可以判断冷却系统的运行状态。

异常的冷却系统可能导致变压器过热,进而引发其他故障。

5. 油质检查:变压器的绝缘油是绝缘和冷却的重要介质,检查变压器绝缘油的质量和含水率,可以判断绝缘油是否需要更换。

通常需要进行油样抽取和实验室测试。

若发现绝缘油中含有杂质、水分过高等,可能会影响绝缘油的绝缘性能,需要及时更换。

综上所述,变压器故障原因的检查方法主要从外部因素、绝缘、线圈、冷却系统和油质几个方面进行。

通过定期检查并排除故障,可以确保变压器的正常运行,提高电力系统的可靠性和稳定性。

变压器检测方法范文

变压器检测方法范文

变压器检测方法范文变压器是电力系统中常见的电气设备之一,用于改变电压的大小,实现电能的传输和分配。

为了保证变压器的正常运行,需要进行定期的检测和维护。

本文将详细介绍变压器的检测方法。

一、外观检查外观检查是变压器检测的第一步,通过对变压器外部的检查可以初步判断变压器的工作状态。

外观检查主要包括以下内容:1.检查变压器是否存在漏油现象,如发现漏油,需要及时进行补充或更换变压器油。

2.检查变压器外壳是否存在破损或变形情况,如存在需要进行修复或更换。

3.检查变压器绝缘外壳是否正常,如存在破损或腐蚀需要及时进行修复或更换。

二、温度检测变压器的温度检测是非常重要的,可以判断变压器的运行是否正常,是否存在异常情况。

温度检测主要包括以下内容:1.使用红外线测温仪对变压器的各部位进行测温,记录下各部位的温度数据。

2.对变压器的冷却器、油温计、温度表等设备进行检查和测试,确保其正常工作。

三、油质检测变压器油是变压器正常运行的重要部分,油质的好坏直接影响到变压器的工作状态。

油质检测主要包括以下内容:1.取样检测:定期对变压器的油进行取样检测,了解油质是否正常,是否存在污染物或水分等情况。

2.闪点测定:通过闪点测定仪对变压器油进行测试,确保其闪点符合标准要求。

3.凝点测定:通过凝点测定仪对变压器油进行测试,确保其凝点符合标准要求。

四、电性能检测电性能检测是对变压器内部电气元件的工作状况进行检测,主要包括以下内容:1.绝缘电阻测定:使用绝缘电阻测试仪对变压器的绝缘电阻进行测定,确保其绝缘性能良好。

2.交流电阻测定:使用交流电阻测试仪对变压器的电阻进行测定,确保其内部电阻正常。

3.唤醒电流测试:对变压器的唤醒电流进行测试,判断变压器的状态是否正常。

五、机械检测机械检测主要是对变压器的机械部件进行检查和测试,确保其正常工作。

机械检测主要包括以下内容:1.检查变压器的冷却器和风扇是否正常工作,确保变压器散热良好。

2.检查变压器的绝缘件是否正常,如绝缘垫片、绝缘材料等,确保其完好。

变压器故障检测与诊断技术研究现状

变压器故障检测与诊断技术研究现状

变压器故障检测与诊断技术研究现状摘要:随着电力需求的日渐增加和电网构成的日趋复杂,为了满足电力供配电需求,电网中涉及的电力设备和设施越来越多。

大型变压器在电网中兼具电能传输、电力分配和电压转换等多重功能,若出现故障,将会影响正常的供配电,给人们的生产生活带来极为不利的影响。

因此,为确保大型变压器在电网中正常工作,提高其运行可靠性,日常工作中要利用现代化技术来进行变压器的状态监测和故障诊断,从而快速处理变压器的异常情况,使其第一时间恢复正常运行。

关键词:变压器故障检测诊断技术中图分类号:TM411 文献标识码:A引言如今,电力系统在社会发展中十分重要,电力变压器是电力系统中最重要的设备之一。

它主要负责电力传输、分配电压及转换电压等功能,它的安全能够保障电力系统的正常运行。

因此电力工作人员必须减少电力变压器的故障发生,防止电力变压器事故。

本文运用现代技术和科学的方法,对电力变压器故障进行详细分析和做出解决方案,提高电力产业的发展。

1电力变压器故障的原因分析1.1电力系统存在电路温度过高电力系统正常运转情况下,如果供电线路温度过高,将会造成电力变压器严重的故障,甚至会造成大面积停电。

在变压器正常运转时,由于各个线圈间的电磁感应,使线圈产生感应电流,从而是供线电路温度过高,就造成线路短路,对变压器的正常工作会造成严重影响,对电力系统造成不良后果。

1.2电力变压器存在漏油现象由于电力变压器长时间的超负荷工作,就会使线路损坏,甚至造成漏油现象。

如果漏油现象不能够及时解决,会使电力变压器运转不流畅,造成机器间歇性运转,产生电力系统电压不稳定等问题,因此需要及时检查出漏油现象和找到解决办法,减少变压器故障,提高电力系统用电需求。

1.3电力变压器监测不准确随着经济水平的发展,计算机技术应用到各个行业领域中。

目前的电力系统仍然是传统的视频监控,并不能够及时检测出变压器故障,需要加强电子设备的使用和计算机技术应用,实时监测电力系统,并通过数据参数显示,能够准确查找到变压器的故障地点,并进行检修,避免浪费机器检修时间,提高电力变压器的工作效率。

大型变压器故障诊断技术研究

大型变压器故障诊断技术研究

利用高效液相色谱分析技术测定油中糠醛含量,可发 现下列缺陷情况: • (1)已知内部存在故障,判断是否涉及固体绝缘; • (2)是否存在引起绕组绝缘局部老化的低温过热; • (3)判断运行年久设备的绝缘老化程度。 •
《规程》建议在以下情况下检测油中糠醛含量: (1)油中气体总烃超标或CO、CO2过高; (2)500kV变压器和电抗器及150MVA以上升压变压 器投运2-3年后; • (3)需要了解绝缘老化情况。 • • •
• 2 诊断性检测 • (1)变压器绕组绝缘电阻、吸收比、泄漏电流
绝缘电阻略有降低,吸收比和泄漏电流变化不大。
• 2 诊断性检测 • (2)变压器绕组直流电阻
直阻没有明显变化。
• 2 诊断性检测 • (3)变压器油中色谱分析
油色谱试验,气体含量超标,乙炔出现,说明发生了内部绝缘损伤、发生了高能放电。
• 优点:(1)取样方便,用油样量少。 • (2)不需变压器停运。 • (3)取油样不需要特别的容器,保存方便。 • (4)糠醛为高沸点液态产物,不易逸散损 失。 • (5)油老化不产生糠醛。 • 缺点:当对油在进行脱气或再生处理时,如油通 过硅胶吸附,则会损失部分糠醛,造成测量不准 确。
• 油中糠醛含量参考值
• (4)频响曲线相关系数是绕组变形诊断的必要判 据,峰值点数的减少,移动变化是变形诊断的充 分判据,二者应综合应用、全面分析。 • (5)完好的变压器绕组对于同一相来说,不同分 接位置的频响曲线相关性很好,若调压绕组发生 变形或分接开关有故障,位置装错,则频响曲线 相关性会变坏。因此比较同一相不同分接位置的 频响相关性,可以诊断调压绕组、分接开关的变 形和故障。 • (6)绕组频谱曲线出现严重的毛刺,表明分接开 关触头有严重烧伤,绕组焊头、导电杆接触不良二〇一四年三月

常用变压器在电力系统中的故障检测方法

常用变压器在电力系统中的故障检测方法

常用变压器在电力系统中的故障检测方法摘要变压器是电力系统中重要的电气设备,其运行状态直接关系着整个电力系统运行的稳定性、安全性和可靠性。

这就要求,在电力系统运行维护和管理的过程中,要注重对变压器的日常维护和故障检测,以保障变压器的正常运行。

本文就电力系统变压器故障常用的检测方法进行探索分析,以期在变压器故障检测中提供相应有效的参考。

关键词电力系统;变压器故障;检测方法变压器对电力系统的正常运行起着举足轻重的作用,一旦在运行过程中发生绕组故障、绝缘故障等,就会严重影响整体电力系统的稳定运行。

因此,在电力系统运行维护和管理过程中,要综合应用各种检测技术,有效检测出变压器在运行过程中存在的故障问题,以便采取有针对性的解决策略,提高变压器运行的安全系数及电力系统的运行质量。

1 电力系统变压器故障原因及故障检测的重要性1.1 电力系统变压器故障原因随着我国经济社会的迅速发展以及城市现代化进程的逐步推进,人们生产生活对电力提出了更高的要求,不仅要求其具有充足的供给量,亦要求电力供给的稳定性、安全性和可靠性。

这就造成了电力系统变压器在运行的过程中承载着更大的运行压力,有些甚至长期处于超负荷的运行状态,随着运行时间的推移,变压器的绝缘体会逐渐发生老化,绝缘性能逐渐下降;同时变压器的长时间、超负荷运行也会造成内部元件使用寿命缩短,发生提前老化现象,一旦没有及时进行检修和更换,就很容易引发故障,影响电力系统变压器的正常运行,进而影响到电力系统运行的稳定性、安全性和可靠性。

1.2 电力系统变压器故障检测的重要性在电力系统电气设备日常维护和检测过程中,加强对电力系统变压器的故障检测具有重要作用。

具体体现在:一是电力系统变压器故障检测是进行变压器故障诊断的必要前提,当电力系统出现故障问题时,只有通过使用相关检测技术,才能准确判断故障产生原因,对变压器故障进行精确的诊断,以便于采取进一步的解决措施;二是电力系统变压器故障检测是电力系统运行管理的重要构成部分,其直接关系着整个电力系统的管理质量和管理水平;三是电力系统变压器故障检测是提高变压器运行安全系数的重要保障,通过对变压器故障的有效检测,可以精准判断出其存在的故障类型及原因,采用相应的防治措施,以降低电力系统运行过程中安全事故的发生率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

毕业设计题目:变压器故障检测技术--典型故障分析系别:电气系专业:班级:姓名:学号:指导老师:变压器故障检测技术--典型故障分析摘要电力变压器故障检测主要有电气量检测和化学检测方法。

化学检测主要是通过变压器油中特征气体的含量、产气速率和三比值法进行分析判断,它对变压器的潜伏性故障及故障发展程度的早期发现具有有效性。

具体应用中要根据故障或缺陷的不同发展阶段,采用不同的分析方法,结合设备的实际运行状况及外部电气试验数据,充分发挥油化学检测的灵敏性,正确评判设备状况或制定针对性的检修策略。

实际应用过程中,为了更准确的诊断变压器的内部故障,色谱分析应根据设备历史运行状况、特征气体的含量等采用不同的分析模型确定设备运行是否属于正常或存在潜伏性故障以及故障类别。

电力变压器是一种改变交流电压大小静止的电力设备,是电力系统中核心设备之一,在电能的传输和配送过程中,电力变压器是能量转换、传输的核心,是国民经济各行各业和千家万户能量来源的必经之路。

如果变压器发生故障,将影响电力系统的安全稳定运行电力系统中很重要的设备,一旦发生事故,将造成很大的经济损失。

分析各种电力变压器事故,找出原因,总结出处理事故的办法,把事故损失控制在最小范围内,尽量减少对系统的损害。

由于每台变压器负荷大小、冷却条件及季节不同,运行中不仅要以上层油温允许值为依据,还应根据以往运行经验及在上述情况下与上次的油温比较。

如油温突然增高,则应检查冷却装置是否正常,油循环是否破坏等,来判断变压器内部是否有故障。

变压器的安全运行管理工作是我们日常工作的重点,通过对变压器的异常运行情况、常见故障分析的经验总结,将有利于及时、准确判断故障原因、性质,及时采取有效措施,确保设备的安全运行变压器是输配电系统中极其重要的电器设备,根据运行维护管理规定变压器必须定期进行检查,以便及时了解和掌握变压器的运行情况,及时采取有效措施,力争把故障消除在萌芽状态之中,从而保障变压器的安全运行。

现根据对变压器的运行、维护管理经验。

目录摘要1电力变压器的内部故障类型 (1)1.1过热性故障 (1)1.2放电性故障 (1)1.3变压器绝缘受潮 (1)2色谱分析诊断的基本程序 (2)2.1变压器故障的油中气体色谱检测 (2)2.2特征气体的含量 (3)2.3根据气体含量变化分析判断 (3)3油中主要气体含量故障分析方法 (5)3.1变压器的注意值 (5)3.2不超过注意值 (5)3.3应用举例 (6)4故障产气速率判断法 (8)4.1不超过注意值 (8)4.2根据产气速率判断故障的方法 (8)5根据三比值法分析判断法 (10)5.1三比值判断法 (10)5.2应用举.................................................. :••“ (10)6在线监测技术 (11)6.1油中溶解性气体分析及检测 (11)6.2局部放电在线检测技术 (11)6.3绕组温度在线检测技术 (11)7结束语 (13)参考文献 (14)致谢 (15)1电力变压器的内部故障类型1.1过热性故障是由于设备的绝缘性能恶化、油等绝缘材料裂化分解。

又分为裸金属过热和固体绝缘过热两类。

裸金属过热与固体绝缘过热的区别是以CO和C02的含量为准,前者含量较低,后者含量较高。

1.2放电性故障是设备内部产生电效应(即放电)导致设备的绝缘性能恶化。

又可按产生电效应的强弱分为高能放电(电弧放电)、低能量放电(火花放电)和局部放电三种。

1.2.1发生电弧放电时发生电弧放电时产生气体主要为乙炔和氢气,其次是甲烷和乙烯气体。

这种故障在设备中存在时间较短,预兆又不明显,因此一般色谱法较难预测。

1.2.2火花放电是一种间歇性的放电故障。

常见于套管引线对电位未固定的套管导电管,均压圈等的放电;引线局部接触不良或铁心接地片接触不良而引起的放电;分接开关拨叉或金属螺丝电位悬浮而引起的放电等。

产生气体主要为乙炔和氢气,其次是甲烷和乙烯气体,但由于故障能量较低,一般总烃含量不高。

1.2.3局部放电主要发生在互感器和套管上。

由于设备受潮,制造工艺差或维护不当,都会造成局部放电。

产生气体主要是氢气,其次是甲烷。

当放电能量较高时,也会产生少量的乙炔气体。

1.3变压器绝缘受潮变压器绝缘受潮时,其特征气体H2含量较高,而其它气体成分增加不明显。

值得注意的是,芳烃含量问题。

因为它具有很好的“抗析气”性能。

不同牌号油含芳烃量不同,在电场作用下产生的气体量不同。

芳烃含量少的油“抗析气”性能较差,故在电场作用下易产生氢和甲烷,严重时还会生成蜡状物质;而芳烃含量较多的绝缘油“抗析气”性能较好,产生的氢气和甲烷就少些,因此,具体判断时要考虑这一因素的影响2色谱分析诊断的基本程序2.1变压器故障的油中气体色谱检测目前,在变压器故障诊断中,单靠电气试验方法往往很难发现某些局部故障和发热缺陷,而通过变压器油中气体的色谱分析这种化学检测的方法,对发现变压器内部的某些潜伏性故障及其发展程度的早期诊断非常灵敏而有效,这已为大量故障诊断的实践所证明。

油色谱分析的原理是基于任何一种特定的烃类气体的产生速率随温度而变化,在特定温度下,往往有某一种气体的产气率会出现最大值;随着温度升高,产气率最大的气体依次为CH4 C2H6 C2H4 C2H2这也证明在故障温度与溶解气体含量之间存在着对应的关系。

而局部过热、电晕和电弧是导致油浸纸绝缘中产生故障特征气体的主要原因。

变压器在正常运行状态下,由于油和固体绝缘会逐渐老化、变质,并分解出极少量的气体(主要包括氢H2、甲烷CH4乙烷C2H6乙烯C2H4乙炔C2H2 一氧化碳CO 二氧化碳CO2等多种气体)。

当变压器内部发生过热性故障、放电性故障或内部绝缘受潮时,这些气体的含量会迅速增加。

这些气体大部分溶解在绝缘油中,少部分上升至绝缘油的表面,并进入气体继电器。

经验证明,油中气体的各种成分含量的多少和故障的性质及程度直接有关。

因此在设备运行过程中,定期测量溶解于油中的气体成分和含量,对于及早发现充油电力设备内部存在的潜伏性故障有非常重要的意义和现实的成效,在1997 年颁布执行的电力设备预防性试验规程中,已将变压器油的气体色谱分析放到了首要的位置,并通过近些年的普遍推广应用和经验积累取得了显著的成效。

电力变压器的内部故障主要有过热性故障、放电性故障及绝缘受潮等多种类型。

据有关资料介绍,在对359台故障变压器的统计表明:过热性故障占63%; 高能量放电故障占18.1%;过热兼高能量放电故障占10%;火花放电故障占7%; 受潮或局部放电故障占1. 9%。

而在过热性故障中,分接开关接触不良占50%; 铁心多点接地和局部短路或漏磁环流约占33% ;导线过热和接头不良或紧固件松动引起过热约占14. 4% ;其余2. 1%为其他故障,如硅胶进入本体引起的局部油道堵塞,致使局部散热不良而造成的过热性故障。

而电弧放电以绕组匝、层间绝缘击穿为主,3其次为引线断裂或对地闪络和分接开关飞弧等故障。

火花放电常见于套管引线对电位末固定的套管导电管、均压圈等的放电;引线局部接触不良或铁心接地片接触不良而引起的放电;分接开关拨叉或金属螺丝电位悬浮而引起的放电等。

针对上述故障,根据色谱分析数据进行变压器内部故障诊断时,应包括:(1)分析气体产生的原因及变化。

⑵ 判定有无故障及故障的类型。

如过热、电弧放电、火花放电和局部放电等。

(3)判断故障的状况。

如热点温度、故障回路严重程度以及发展趋势等。

(4)提出相应的处理措施。

如能否继续运行,以及运行期间的技术安全措施和监视手或是否需要吊心检修等。

若需加强监视,则应缩短下次试验的周期。

2.2特征气体的含量首先看特征气体的含量。

若H2、C2H2总烃有一项大于规程规定的注意值的20%应先根据特征气体含量作大致判断,主要的对应关系是:若有乙炔,应怀疑电弧或火花放电;氢气很大,应怀疑有进水受潮的可能;总烃中烷烃和烯烃过量而炔烃很小或无,则是过热的特征。

计算产生速率,评估故障发展的快慢。

通过分析的气体组分含量,进行三比值计算,确定故障类别。

核对设备的运行历史,并且通过其它试验进行综合判断。

2.3根据气体含量变化分析判断(1)氢气H2变化变压器在高、中温过热时,H2 —般占氢烃总量的27%以下,而且随温度升高,H2的绝对含量有所增长,但其所占比例却相对下降。

变压器无论是热故障还是电故障,最终都将导致绝缘介质裂解产生各种特征气体。

由于碳氢键之间的键能低,生成热小,在绝缘的分解过程中,一般总是先生成H2,因此H2是各种故障特征气体的主要组成成分之一。

变压器内部进水受潮是一种内部潜伏性故障,其特征气体H2含量很高。

客观上如果色谱分析发现H2含量超标,而其他成分并没有增加时,可大致先判断为设备含有水分,为进一步判别,可加做微水分析。

导致水分分解出H2有两种可能:一是水分和铁产生化学反应;二是在高电场作用下水本身分子分解。

设备受潮时固体绝缘材料含水量比油中含水量要大100多倍,而H2含量高,大多是由于油、纸绝缘内含有气体和水分,所以在现场处理设备受潮时,仅靠采用真空滤油法不能持久地降低设备中的含水量,原因在于真空滤油对于设备整体的水分影响不大。

另外,还有一种误判断的情况,如某变压器厂的产品一阶段曾连续十几台变压器油色谱中H2高达1000t2L/L以上。

而取相同油样分送三处外单位测试,H2含量却均正常。

于是对标气进行分析,氢气峰高竟达216mm而正常情况仅13mm 左右。

以上分析说明是气相色谱仪发生异常,经检查与分离柱有关,因分离柱长期使用,特别是用振荡脱气法脱气吸附了油,当吸附达到一定程度,便在一定条件下释放出来,使分析发生误差,经更换分离柱后恢复正常。

(2)乙炔C2H2变化。

C2H2的产生与放电性故障有关,当变压器内部发生电弧放电时,C2H2一般占总烃的20% --70 %, H2占氢烃总量的30%〜90%,并且在绝大多数情况下,C2H4 \含量高于CH4当C2H2含量占主要成分且超标时,则很可能是设备绕组短路或分接开关切换产生弧光放电所致。

如果其他成分没超标,而C2H2超标且增长速率较快,则可能是设备内部存在高能量放电故障。

(3)甲烷CH4和乙烯C2H4变化。

在过热性故障中,当只有热源处的绝缘油分解时,特征气体CH4和C2H4两者之和一般可占总烃的80%以上,且随着故障点温度的升高,C2H4所占比例也增加。

另外,丁腈橡胶材料在变压器油中将可能产生大量的CH4 丁青在变压器油中产生甲烷的本质是橡胶将本身所含的CH4释放到油中,而不是将油催化裂介为CH4硫化丁腈橡胶在油中释放CH4的主要成分是硫化剂,其次是增塑剂、硬脂酸等含甲基的物质,而释放量取决于硫化条件。

(4)一氧化碳CO和二氧化碳CO2变化。

相关文档
最新文档