滞回比较器详解

合集下载

反相滞回比较器的特点

反相滞回比较器的特点

反相滞回比较器的特点反相滞回比较器是一种常见的电路,它的主要作用是将输入信号与参考电压进行比较,从而输出高电平或低电平信号。

这种电路的特点是具有滞回特性,即当输入信号超过一定阈值时,输出信号会发生突变,从而实现了信号的判定和控制。

下面将从反相滞回比较器的原理、特点和应用三个方面进行详细介绍。

一、反相滞回比较器的原理反相滞回比较器的基本原理是利用运放的反相输入端和正相输入端之间的差异,将输入信号与参考电压进行比较,从而输出高电平或低电平信号。

具体来说,当输入信号大于参考电压时,反相输入端的电压高于正相输入端的电压,运放的输出端输出低电平信号;当输入信号小于参考电压时,反相输入端的电压低于正相输入端的电压,运放的输出端输出高电平信号。

这种电路的滞回特性是通过反馈电阻和二极管等元件实现的,当输出信号发生变化时,反馈电阻和二极管会对输入信号进行反馈,从而使得输出信号发生滞回。

1.具有高精度和高稳定性。

反相滞回比较器采用运放作为核心元件,具有高精度和高稳定性,能够实现精确的信号比较和控制。

2.具有滞回特性。

反相滞回比较器的滞回特性可以使得输出信号发生突变,从而实现信号的判定和控制。

这种特性在一些需要控制阈值的应用中非常有用。

3.具有广泛的应用范围。

反相滞回比较器可以应用于电子测量、自动控制、信号处理等领域,具有广泛的应用范围。

4.具有简单的电路结构。

反相滞回比较器的电路结构相对简单,易于实现和调试,成本较低。

5.具有较高的抗干扰能力。

反相滞回比较器采用差分输入方式,具有较高的抗干扰能力,能够有效地抵抗外界干扰信号。

三、反相滞回比较器的应用1.电子测量。

反相滞回比较器可以应用于电子测量中,用于比较输入信号与参考电压的大小,从而实现精确的测量和控制。

2.自动控制。

反相滞回比较器可以应用于自动控制系统中,用于控制阈值和判定输入信号的大小,从而实现自动控制和调节。

3.信号处理。

反相滞回比较器可以应用于信号处理中,用于比较输入信号与参考电压的大小,从而实现信号的滤波、放大和补偿等处理。

8.8.2 滞回比较器

8.8.2 滞回比较器

2020/6/4
8
模拟电子技术基础
8.8.2 滞回比较器
2020/6/4
1
滞回比较器
1. 电路组成 2. 性能分析 (1)阈值电压UTH的估算
根据运放“虚断”和“临界 条件”列出3个方程:
可得到比较器阈值电压的表达式为:
2020/6/4
2
滞回比较器
由于uO的取值极性不同,阈值电压分别为: 当uO=+UZ时,
当uO=-UZ时,
(2)工作原理与电压传输特性 由于UR的取值不同,UTH1和
UTH2的值可正可负。
2020/6/4
3
(3)输出波形
滞回比较器
(4)电路特点 有较强的抗干扰能力。
2020/6/4
4
滞回比较器
例8.8.1 如图所示,稳压管双向限幅电压为9V。
(1)电路由哪
几部分组成?
(2)若u1=u2=0
时,uO= +9V,若
只有当uO1=u+2=1.5V时,uO才能由+9V变为-9V。
当uO1=1.5V时,解得t=1.5s
2020/6/4
6
滞回比较器
(3) 只有当uO1=u+2=-1.5V,uO才能由-9V 变为+9V。
当uO1=-1.5V时,解得t=3s
2020/6/4
7
滞回比较器 (4)uO1和uO的波形如图所示。
输入电压u1= -2V,
u2=09V。
(3)在uO由+9V变为-9V的瞬间,再接入u2=+2V,
问此后经过多长时间uO由-9V变为+9V ?
2020/6/4 (4)画出uO1和uO的波形。
5

滞回比较器原理

滞回比较器原理

滞回比较器原理滞回比较器是一种常见的电子元件,用于电子电路中比较两个电压的大小关系,并输出相应的信号。

它的原理基于滞回效应,通过设置阈值来判断输入信号的高低电平。

滞回比较器通常由一个比较器和一个正反馈网络组成。

比较器是一个电子元件,可以将输入信号与参考电压进行比较,并输出高电平或低电平的信号。

而正反馈网络则是为了引入滞回效应,使得比较器的输出信号在达到阈值后保持稳定的状态。

滞回比较器的工作原理如下:当输入信号的电压超过阈值电压时,比较器的输出信号会发生翻转,从高电平变为低电平或从低电平变为高电平。

而当输入信号的电压低于阈值电压时,比较器的输出信号保持不变。

这种在阈值电压上下产生不同输出的现象就是滞回效应。

滞回比较器在电子电路中有广泛的应用。

首先,它可以用作触发器,用于控制数字电路中的时序问题。

比如,在计数器中,滞回比较器可以用来检测计数值是否达到设定的阈值,从而触发相应的操作。

其次,滞回比较器也常用于电压检测和开关控制。

比如,在电源管理电路中,滞回比较器可以用来检测电池电压是否低于安全阈值,从而触发低电量警报或关闭设备。

除了以上应用,滞回比较器还可以用于信号整形和滤波。

在信号处理中,滞回比较器可以将输入信号转换为方波信号,从而方便后续的数字处理。

此外,滞回比较器还可以用于去除信号中的噪声和干扰,提高信号质量和可靠性。

要想实现一个滞回比较器,需要根据具体的应用需求来选择合适的比较器和正反馈网络。

比较器的选择要考虑工作电压范围、响应时间、功耗等因素,正反馈网络的设计要考虑阈值电压、滞回量和稳定性等因素。

此外,还需要注意信号的输入电平和输出电平的匹配,以确保整个电路的正常工作。

总结起来,滞回比较器是一种常见的电子元件,基于滞回效应来比较输入信号的电压大小。

它的工作原理是通过比较器和正反馈网络的相互作用来实现的。

滞回比较器在电子电路中有广泛的应用,如触发器、电压检测和开关控制、信号整形和滤波等。

在设计滞回比较器时,需要考虑比较器和正反馈网络的选择和设计,以及输入输出电平的匹配。

理解滞回比较器 -回复

理解滞回比较器 -回复

理解滞回比较器-回复什么是滞回比较器?滞回比较器也被称为突变比较器或带滞回的比较器。

它是一种基础的电子元件,被广泛应用于电子电路中,用于检测电压的变化并产生相应的输出信号。

滞回比较器的主要特点是具有一个或多个滞回阈值,允许输入信号的电压在升高和降低过程中触发不同的阈值来产生稳定的输出。

滞回比较器的工作原理滞回比较器的工作原理可以通过一个简单的非反相比较器电路来解释。

这种电路包括一个比较器、两个输入端口(正和负)以及一个输出端口。

输入信号将与一个参考电压在比较器中进行比较。

当输入信号电压高于参考电压时,比较器的输出将高电平(通常为正电压);当输入信号电压低于参考电压时,输出将低电平(通常为零电压或接近于负电压)。

然而,滞回比较器的关键之处在于它具有滞回特性,也就是阈值的差异。

滞回比较器的高阈值和低阈值不同,这使得输出信号独立于输入信号的速率变化。

如果我们将输入信号增加或减小,滞回比较器只有在输入电压高于(或低于)特定阈值时才会改变输出状态。

这种特性是通过内部反馈回路和阻尼电容来实现的。

当输入信号跨过滞回阈值时,反馈电容存储了正或负电荷,这样电路就能保持特定的输出状态。

滞回比较器的应用滞回比较器在现代电子电路中有着广泛的应用,常用于以下几个方面:1. 触发器和频率比较器:滞回比较器可用作触发器电路,用于将输入信号从一个状态传送到另一个状态。

此外,它还可用作频率比较器,以检测和计算信号的频率。

2. 稳压器:滞回比较器可以用来控制稳压器电路,以稳定输出电压并提供保护功能。

通过与稳压器电路结合使用,滞回比较器能够在输出电压超出设定范围时自动进行断电或保护。

3. 触发电路:在数字电子电路中,滞回比较器可以用于触发信号的产生和传输,例如在计数器电路或时序电路中。

4. 电源管理:滞回比较器可以被用作电源管理电路的一部分,用于电池充电和放电控制,以及开关模式电源和逆变器等应用中。

总结滞回比较器是一种非常有用的电子元件,在电子电路中的应用非常广泛。

滞回比较器电路

滞回比较器电路

滞回比较器电路一、引言滞回比较器电路是一种常见的电子电路,它可以将输入信号与参考电压进行比较,并输出高或低电平信号。

在实际应用中,滞回比较器电路被广泛用于模拟信号处理、数字信号处理、自动控制等领域。

二、滞回比较器的基本原理滞回比较器的基本原理是利用正反馈作用实现的。

当输入信号超过参考电压时,输出端产生高电平信号;当输入信号低于参考电压时,输出端产生低电平信号。

在这个过程中,通过控制反馈路径和正反馈路径之间的阈值差值来实现滞回特性。

三、滞回比较器的基本结构滞回比较器通常由一个比较器和一个正反馈网络组成。

其中,比较器可以采用运算放大器或者其他集成芯片实现;正反馈网络则由一个或多个阻抗元件和一个开关元件组成。

四、常见的滞回比较器结构1. 双向滞回比较器:双向滞回比较器是一种具有两个阈值水平的滞回比较器。

它可以将输入信号与两个参考电压进行比较,并输出高或低电平信号。

在实际应用中,双向滞回比较器常用于模拟信号处理和自动控制系统中。

2. 单向滞回比较器:单向滞回比较器是一种具有一个阈值水平的滞回比较器。

它可以将输入信号与一个参考电压进行比较,并输出高或低电平信号。

在实际应用中,单向滞回比较器常用于数字信号处理和自动控制系统中。

五、滞回比较器的应用1. 模拟信号处理:在模拟信号处理领域,滞回比较器被广泛应用于振荡电路、滤波电路、幅度限制电路等方面。

例如,在振荡电路中,可以利用双向滞回比较器实现正弦波振荡;在幅度限制电路中,可以利用单向滞回比较器对输入信号进行限幅处理。

2. 数字信号处理:在数字信号处理领域,滞回比较器被广泛应用于数据转换、数字调制解调等方面。

例如,在数据转换中,可以利用双向滞回比较器将模拟量转换为数字量;在数字调制解调中,可以利用单向滞回比较器对数字信号进行解调处理。

3. 自动控制:在自动控制领域,滞回比较器被广泛应用于温度控制、电压控制、电流控制等方面。

例如,在温度控制中,可以利用双向滞回比较器实现温度的精确控制;在电压控制中,可以利用单向滞回比较器实现电压的稳定输出。

滞回比较器原理

滞回比较器原理

滞回比较器原理
滞回比较器是一种电子设备,主要用于比较两个电压信号的大小,并根据比较结果输出高或低电平信号。

滞回比较器的原理是通过正反馈来达到滞回效果,即输出信号在输入信号改变方向时,需要经过一个特定的阈值才能改变状态。

滞回比较器通常由一个差分放大器和一个参考电压源组成。

差分放大器根据输入信号的差异来控制输出信号,参考电压源则用于设置一个固定的阈值。

当输入信号大于阈值时,输出信号为高电平;当输入信号小于阈值时,输出信号为低电平。

滞回比较器的关键在于它的正反馈作用,这意味着一旦输出状态改变,它会继续保持新的状态,即使输入信号回到阈值附近也不会改变。

这种滞回效应可以避免输入信号的噪声导致频繁的输出状态变化,提高系统的稳定性。

滞回比较器广泛应用于模拟电路和数字电路中,常见的应用包括报警系统、自动控制系统、电力电子等。

它可以根据输入信号的特性,产生相应的输出信号,用于触发其他设备或控制电路的操作。

总之,滞回比较器通过正反馈原理和阈值设置,实现了对输入信号的比较和输出控制。

它在电子系统中具有重要的作用,能够提高系统的稳定性和可靠性。

电路中的滞回与比较器

电路中的滞回与比较器

电路中的滞回与比较器在电子学中,滞回是指当输入信号经过一个特定的电路后,输出信号的响应呈现出一种非线性的特性。

而比较器是一种将输入电压与某一个标准电压进行比较,并输出高电平或低电平的电路。

本文将介绍滞回现象与比较器的工作原理以及应用。

一、滞回现象滞回现象在日常生活中也有很多实例,比如温控器中的滞回现象使得温度在达到设定值后不会立即停止加热或制冷,而会有一段时间的延迟。

在电路中,滞回现象是由于非线性元件(如二极管、变压器等)或者反馈回路的存在造成的。

在滞回现象中,输入信号的变化与输出信号的变化之间存在一定的差异以及延迟。

当输入信号从低电平逐渐增加到高电平时,输出信号不会立即跟随上升,而是在一段电压范围内保持不变,称为上升滞回。

同样地,当输入信号从高电平逐渐降低到低电平时,输出信号也不会立即跟随下降,而是在一段电压范围内保持不变,称为下降滞回。

滞回现象使得电路具有一定的记忆性能,有助于稳定和控制系统。

二、比较器的工作原理比较器是一种常见的电路元件,它能够将输入信号与某一参考电压进行比较,并输出相应的高电平或低电平信号。

比较器一般由一个运放和一些外围元件组成,如负反馈电阻、正反馈电阻等。

当输入信号大于参考电压时,比较器的输出信号会变为高电平。

而当输入信号小于参考电压时,比较器的输出信号则变为低电平。

通过这种方式,比较器能够对输入信号进行被动比较,从而实现不同电压范围的判断和控制。

三、比较器的应用比较器作为一种常用的电路元件,被广泛应用于各个领域。

其中一个典型的应用是在模拟转数字转换电路(ADC)中,比较器用于将模拟输入信号与参考电压进行比较,从而将模拟信号转换为数字信号。

比较器还被用于电压检测和电压比较,以及模拟信号的门限控制和判断。

对于电池管理电路,比较器可以用于判断电池的电压是否低于某一门槛值,从而提醒用户更换电池。

此外,比较器也常用于信号处理领域中的阈值检测、波形整形以及触发器的设计等。

通过合理地选择参考电压和外围元件的参数,比较器能够实现不同应用场景下的各种功能。

滞回比较器计算

滞回比较器计算

滞回比较器是一种具有滞回特性的比较器电路,它在输入信号跨越某一阈值时能够产生一个输出信号,并且当输入信号回到阈值以下时,输出信号不会立即消失,而是需要一定的时间才能恢复到原始状态。

滞回比较器通常用于消除电路中的噪声和干扰,提高电路的稳定性。

滞回比较器的计算主要包括阈值电压和滞回区宽度的确定。

阈值电压是输入信号达到或超过该电压时,比较器输出发生跳变的电压值。

滞回区宽度是当输入信号在阈值电压附近波动时,输出信号保持不变的最大范围。

在实际应用中,滞回比较器的计算需要考虑电路参数、电源电压、温度等因素的影响。

通常需要根据设计要求和实际情况,通过调整电路参数来获得最佳的性能指标。

同时,为了减小误差和提高精度,还需要对滞回比较器进行校准和补偿。

总的来说,滞回比较器的计算需要根据具体的应用场景和需求进行设计和优化,以确保其具有较好的性能指标和稳定性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

滞回比较器详解 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】
滞回比较器
关于比较器滞回的讨论需要从“滞回”的定义开始, 与许多其它技术术语一样, “滞回”源于希腊语, 含义是“延迟”或“滞后”, 或阻碍前一状态的变化。

工程中, 常用滞回描述非对称
绝大多数比较器中都设计带有滞回电路, 通常滞回电压为5mV到10mV。

内部滞回电路可以避免由于输入端的寄生反馈所造成的比较器输出振荡。

但是内部滞回电路虽然可以使比较器免于自激振荡, 却很容易被外部振幅较大的噪声淹没。

这种情况下需要增加外部滞回, 以提高系统的抗干扰性能。

首先, 看一下比较器的传输特性。

图1所示是内部没有滞回电路的理想比较器的传输特性, 图2所示为实际比较器的传输特性。

从图2可以看出, 实际电压比较器的输出是在输入电压(VIN)增大到2mV
时才开始改变。

图1. 理想比较器的传输特性
图2. 实际比较器的传输特性
运算放大器在开环
图3. 无滞回电路时比较器输出的模糊状态和频繁跳变
举个例子, 考虑图4所示简单电路, 其传输特性如图5所示。

比较器的反相输入电压从0开始线
性变化,
由分压电阻R1、R2构成正反馈。

当输入电压从1点开始增加(图6), 在输入电压超过同相阈值
VTH+ = VCCR2/(R1 + R2)之前, 输出将一直保持为VCC。

在阈值点, 输出电压迅速从VCC跳变为
VSS,
因为, 此时反相端输入电压大于同相端的输入电压。

输出保持为低电平, 直到输入经过新的阈值点5 ,
VTH- = VSSR2/(R1 + R2)。

在5点, 输出电压迅速跳变回VCC, 因为这时同相输入电压高于反相输
入电压。

图4. 具有滞回的简单电路
图5. 图4电路的传输特性
图6. 图4电路的/输出电压波形
图4所示电路中的输出电压VOUT与输入电压VIN的对应关系表明, 输入电压至少变化2VTH 时, 输出电压才会变化。

因此, 它不同于图3的响应情况(放大器无滞回), 即对任何小于2VTH的噪声或干扰都不会导致输出的迅速变化。

在实际应用中, 正、负电压的阈值可以通过选择适合的反馈设置。

其它设置可以通过增加不同阈值电压的滞回电路获得。

图7电路使用了两个MOSFET和一个电阻网络调节正负极性的阈值。

与图4所示比较器不同, 电阻反馈网络没有加载到负载环路, 图8给出了
输入信号变化时的输出响应。

图7. 通过外部MOSFET和电阻构成滞回电路
图8. 图7电路的输入/输出电压波形
比较器内部的输出配置不同, 所要求的外部滞回电路也不同。

例如, 具有内部上拉电阻的比较器,
可以在输出端和同相输入端直接加入正反馈电阻。

输入分压网络作用在比较器的同相输入端,
反相输入电压为一固定的参考电平(如图9)。

图9. 在带有上拉电阻的比较器中加滞回电路
如上所述, 具有内部滞回的比较器提供两个门限:一个用于输入上升电压(VTHR),一个用于检测输入下降电压(VTHF), 对应于图8的VTH1和VTH2。

两个门限的差值为滞回带(VHB)。

当比较器的输入电压相等时, 滞回电路会使一个输入迅速跨越另一输入, 从而使比较器避开产生振荡的区域。

图10所示为比较器反相输入端电压固定, 同相输入端电压变化时的工作过程,交换两个输入可以得到相似波形, 但是输
出电压极性相反。

图10. 图9电路的输入/输出电压波形
根据输出电压的两个极限值(两个电源摆幅), 可以很容易地计算反馈分压的电阻值。

内部有4mV滞回和输出端配有上拉电阻的比较器 -- 如Maxim的MAX9015、MAX9017和MAX9019等。

这些比较器设计用于电压摆幅为VCC和0V的单电源系统。

可以按照以下步骤, 根据给定的电源电压、电压滞回(VHB)和基准电压(VREF), 选择并计算需要的元件:
第1步
选择R3, 在触发点流经R3的电流为(VREF - VOUT)/R3。

考虑到输出的两种可能状态, R3由如
下两式求得:
R3 = VREF/IR3和R3 = (VCC - VREF)/IR3.
取计算结果中的较小阻值, 例如, VCC = 5V, IR3 = μA, 使用MAX9117比较器(VREF = , 则计算
结果为6.2M和19M, 选则R3为6.2M。

第2步
选择滞回电压(VHB)。

在本例中, 选择滞回电压为50mV。

第3步
R1可按下式计算。

对于这个例子, R1的值为:
第4步
VIN上升门限(VTHR)的选择, 例如:
在该门限点, 当输入电压VIN超过阈值时, 比较器输出由低电平变到高电平。

本例中, 选择
VTHR = 3V。

第5步
计算R2, R2可按下式计算:
本例中, R2的值为。

第6步
按如下步骤验证电压和滞回电压:VIN上升门限 = , 等于VREF乘以R1,
除以R1、R2和R3并联后的阻值。

VIN下降门限 = 。

因此, 滞回电压 = VTHR - VTHF = 50mV.
最后, 开漏结构的比较器内部滞回电压为4mV (MAX9016、MAX9018、MAX9020),
需要外接上拉电阻, 如图11所示。

外加滞回可以通过正反馈产生, 但是计算公式与上拉输出的情况
稍有不同。

滞回电压 = VTHR - VTHF = 50mV。

按如下步骤计算电阻值:
第1步
选择R3, 在IN_+端的漏电流小于2nA, 所以通过R3的电流至少为μA, 以减小漏电流引起的误差。

R3可由R3 = VREF/IR3或R3 = [(VCC - VREF)/IR3] - R4两式求得, 取其较小值。

例如, 使用MAX9118 (VREF=, VCC = 5V, IR3 = μA, R4 = 1M, 计算结果为6.2M和18M, 则R3选6.2M。

第2步
选择需要的滞回电压 (VHB)。

第3步
选择R1, R1可按下式计算:
在此例中, R1为:
第4步
选择VIN上升门限(VTHR), 如下式:
在该门限点, 当输入电压VIN超过阈值时, 比较器输出由低电平变到高电平。

本例中, 选择
VTHR = 3V。

第5步
计算R2, 如下式:
本例中, R2的值为。

第6步
按如下步骤验证触发电压和滞回电压:
图11. 在输出为开漏结构的比较器中加滞回电路。

相关文档
最新文档