中考数学相似综合练习题及答案解析
2025届中考数学复习专项(相似三角形-手拉手旋转型综合应用)练习(附答案)

2025届中考数学复习专项(相似三角形-手拉手旋转型综合应用)练习1.如图(1)以O点为位似中心在y轴的左侧将△OBC放大到两倍(即新图与原图的相似比为2),画出ΔOB1C1;(2)点B的对应点B1的坐标是,点C的对应点C1的坐标是.2.如图,在△ABC和△ADE中,∠BAD=∠CAE,∠ABC=∠ADE.(1)求证:△ABC∽△ADE;(2)判断△ABD与△ACE是否相似?并证明.3.如图1,在Rt△ABC中,∠B=90°,AB=4,BC=2,点D、E分别是边BC,AC的中点,连接DE.(1)求:的值;(2)将△CDE绕点C逆时针方向旋转一定的角度,的大小有无变化?请仅就图2的情形给出证明.4.如图,在△ABC与△DEC中,已知∠ACB=∠DCE=90°,AC=6,BC=3,CD=5,CE=2.5,连接AD,BE.(1)求证:△ACD∽△BCE;(2)若∠BCE=45°,求△ACD的面积.5.问题背景:如图(1),已知△ABC∽△ADE,求证:△ABD∽△ACE;尝试应用:如图(2),在△ABC和△ADE中,∠BAC=∠DAE=90°,∠ABC=∠ADE =30°,AC与DE相交于点F.点D在BC边上,,求的值.6.如图,在△ABC与△ADE中,∠ACB=∠AED=90°,∠ABC=∠ADE,连接BD、CE,求证:(1)△ABC∽△ADE(2)若AC:BC=3:4,求BD:CE为多少7.【问题背景】如图1,在Rt△ABC和Rt△ADE中,AB=AC,AD=AE,由已知可以得到:①△ ≌△ ;②△ ∽△ .【尝试应用】如图2,在△ABC和△ADE中,∠ACB=∠AED=90°,∠ABC=∠ADE =30°,求证:△ACE∽△ABD.【问题解决】如图3,在△ABC和△ADE中,∠BAC=∠DAE=90°,∠ABC=∠ADE =30°,AC与DE相交于点F,点D在BC上,,求的值.8.如图,点B在线段CD上,在CD的同一侧作两个等腰直角△ABC和△BDE,且∠ACB =∠BED=90°,AD与CE,BE分别交于点P,M,连接PB.(1)若AD=k•CE,则k的值是;(2)求证:△BMP∽△DME;(3)若BC=,P A=3,求PM的长.9.如图1,在Rt△ABC中,AC=BC=5,等腰直角△BDE的顶点D,E分别在边BC,AB 上,且BD=,将△BDE绕点B按顺时针方向旋转,记旋转角为α(0°≤α<360°).(1)问题发现当α=0°时,的值为,直线AE,CD相交形成的较小角的度数为;(2)拓展探究试判断:在旋转过程中,(1)中的两个结论有无变化?请仅就图2的情况给出证明:(3)问题解决当△BDE旋转至A,D,E三点在同一条直线上时,请直接写出△ACD的面积.。
中考数学 相似综合试题含详细答案

中考数学相似综合试题含详细答案一、相似1.如图所示,△ABC中,AB=AC,∠BAC=90°,AD⊥BC,DE⊥AC,△CDE沿直线BC翻折到△CDF,连结AF交BE、DE、DC分别于点G、H、I.(1)求证:AF⊥BE;(2)求证:AD=3DI.【答案】(1)证明:∵在△ABC中,AB=AC,∠BAC=90°,D是BC的中点,∴AD=BD=CD,∠ACB=45°,∵在△ADC中,AD=DC,DE⊥AC,∴AE=CE,∵△CDE沿直线BC翻折到△CDF,∴△CDE≌△CDF,∴CF=CE,∠DCF=∠ACB=45°,∴CF=AE,∠ACF=∠DCF+∠ACB=90°,在△ABE与△ACF中,,∴△ABE≌△ACF(SAS),∴∠ABE=∠FAC,∵∠BAG+∠CAF=90°,∴∠BAG+∠ABE=90°,∴∠AGB=90°,∴AF⊥BE(2)证明:作IC的中点M,连接EM,由(1)∠DEC=∠ECF=∠CFD=90°∴四边形DECF是正方形,∴EC∥DF,EC=DF,∴∠EAH=∠HFD,AE=DF,在△AEH与△FDH中,∴△AEH≌△FDH(AAS),∴EH=DH,∵∠BAG+∠CAF=90°,∴∠BAG+∠ABE=90°,∴∠AGB=90°,∴AF⊥BE,∵M是IC的中点,E是AC的中点,∴EM∥AI,∴,∴DI=IM,∴CD=DI+IM+MC=3DI,∴AD=3DI【解析】【分析】(1)根据翻折的性质和SAS证明△ABE≌△ACF,利用全等三角形的性质得出∠ABE=∠FAC,再证明∠AGB=90°,可证得结论。
(2)作IC的中点M,结合正方形的性质,可证得∠EAH=∠HFD,AE=DF,利用AAS证明△AEH与△FDH全等,再利用全等三角形的性质和中位线的性质解答即可。
中考数学压轴题专题相似的经典综合题含详细答案.doc

中考数学压轴题专题相似的经典综合题含详细答案一、相似1.如图,在□ ABCD中,对角线 AC、 BD 相交于点O,点 E、 F 是 AD 上的点,且AE=EF=FD.连结 BE、 BF。
使它们分别与AO 相交于点G、 H(1)求 EG : BG 的值(2)求证: AG=OG(3)设 AG =a ,GH =b,HO =c,求 a : b : c 的值【答案】(1)解:∵四边形 ABCD是平行四边形,∴AO=AC, AD=BC, AD∥ BC,∴△ AEG∽ △CBG,∴==.∵AE=EF=FD,∴BC=AD=3AE,∴GC=3AG, GB=3EG,∴EG: BG=1: 3(2)解:∵ GC=3AG(已证),∴AC=4AG,∴AO=AC=2AG,∴GO=AO﹣ AG=AG(3)解:∵ AE=EF=FD,∴BC=AD=3AE,AF=2AE.∵AD∥ BC,∴△ AFH∽ △ CBH,∴===,∴= ,即 AH=AC.∵AC=4AG,∴a=AG=AC,b=AH﹣AG= AC﹣AC=AC,c=AO﹣AH= AC﹣AC=AC,∴a: b: c=::=5:3: 2【解析】【分析】( 1)根据平行四边形的性质可得AO= AC, AD=BC, AD∥BC,从而可证得△ AEG∽ △CBG,得出对应边成比例,由 AE=EF=FD可得 BC=3AE,就可证得 GB=3EG,即可求出 EG: BG 的值。
(2)根据相似三角形的性质可得 GC=3AG,就可证得 AC=4AG,从而可得 AO=2AG,即可证得结论。
(3)根据平行可证得三角形相似,再根据相似三角形的性质可得AG= AC, AH= AC,结合AO= AC,即可得到用含AC 的代数式分别表示出a、 b、 c,就可得到a: b: c 的值。
2.已知直线 y=kx+b 与抛物线y=ax2( a>0)相交于 A、 B 两点(点 A 在点 B 的左侧),与y 轴正半轴相交于点 C,过点 A 作 AD⊥ x 轴,垂足为 D.(1)若∠ AOB=60°, AB∥ x 轴, AB=2,求 a 的值;(2)若∠ AOB=90°,点 A 的横坐标为﹣ 4, AC=4BC,求点 B 的坐标;(3)延长 AD、 BO 相交于点 E,求证: DE=CO.【答案】( 1)解:如图1,∵抛物线 y=ax2的对称轴是y 轴,且 AB∥ x 轴,∴A 与 B 是对称点, O 是抛物线的顶点,∴OA=OB,∵∠ AOB=60 ,°∴△ AOB 是等边三角形,∵A B=2, AB⊥ OC,∴A C=BC=1,∠ BOC=30 ,°∴O C=,∴A(-1,),把 A( -1,)代入抛物线y=ax2( a> 0)中得: a=;(2)解:如图 2,过 B 作 BE⊥ x 轴于 E,过 A 作 AG⊥ BE,交 BE 延长线于点 G,交 y 轴于F,∵C F∥ BG,∴,∵A C=4BC,∴=4,∴A F=4FG,∵A 的横坐标为 -4,∴B 的横坐标为1,∴A(-4, 16a), B( 1, a),∵∠ AOB=90 ,°∴∠ AOD+∠ BOE=90 ,°∵∠ AOD+∠ DAO=90 ,°∴∠ BOE=∠DAO,∵∠ ADO=∠ OEB=90 ,°∴△ ADO∽ △ OEB,∴,∴,∴16a2=4,a=±,∵a> 0,∴a= ;∴B( 1,);(3)解:如图 3,设AC=nBC,由( 2)同理可知: A 的横坐标是 B 的横坐标的n 倍,则设 B(m, am2),则 A( -mn , am2n 2),∴AD=am2n 2,过B 作 BF⊥ x 轴于 F,∴DE∥BF,∴△ BOF∽ △ EOD,∴,∴,∴, DE=am2n ,∴,∵OC∥ AE,∴△ BCO∽ △ BAE,∴,∴,=am2n,∴CO=∴DE=CO.【解析】【分析】( 1)抛物线 y=ax2关于 y 轴对称,根据 AB∥ x 轴,得出 A 与 B 是对称点,可知 AC=BC=1,由∠AOB=60°,可证得△ AOB 是等边三角形,利用解直角三角形求出OC的长,就可得出点 A 的坐标,利用待定系数法就可求出 a 的值。
中考数学专题复习相似的综合题及详细答案

一、相似真题与模拟题分类汇编(难题易错题)1.已知线段a,b,c满足,且a+2b+c=26.(1)判断a,2b,c,b2是否成比例;(2)若实数x为a,b的比例中项,求x的值.【答案】(1)解:设,则a=3k,b=2k,c=6k,又∵a+2b+c=26,∴3k+2×2k+6k=26,解得k=2,∴a=6,b=4,c=12;∴2b=8,b2=16∵a=6,2b=8,c=12,b2=16∴2bc=96,ab2=6×16=96∴2bc=ab2a,2b,c,b2是成比例的线段。
(2)解:∵x是a、b的比例中项,∴x2=6ab,∴x2=6×4×6,∴x=12.【解析】【分析】(1)设已知比例式的值为k,可得出a=3k,b=2k,c=6k,再代入a+2b+c=26,建立关于k的方程,求出kl的值,再求出2b、b2,然后利用成比例线段的定义,可判断a,2b,c,b2是否成比例。
(2)根据实数x为a,b的比例中项,可得出x2=ab,建立关于x的方程,求出x的值。
2.如图,在一个长40 m、宽30 m的矩形小操场上,王刚从A点出发,沿着A→B→C的路线以3 m/s的速度跑向C地.当他出发4 s后,张华有东西需要交给他,就从A地出发沿王刚走的路线追赶,当张华跑到距B地2 m的D处时,他和王刚在阳光下的影子恰好落在一条直线上.(1)此时两人相距多少米(DE的长)?(2)张华追赶王刚的速度是多少?【答案】(1)解:在Rt△ABC中:∵AB=40,BC=30,∴AC=50 m.由题意可得DE∥AC,∴Rt△BDE∽Rt△BAC,∴ = ,即 = .解得DE= m.答:此时两人相距 m.(2)解:在Rt△BDE中:∵DB=2,DE=,∴BE=2 m.∴王刚走的总路程为AB+BE=42 m.∴王刚走这段路程用的时间为 =14(s).∴张华用的时间为14-4=10(s),∵张华走的总路程为AD=AB-BD=40-2=37(m),∴张华追赶王刚的速度是37÷10≈3.7(m/s).答:张华追赶王刚的速度约是3.7m/s.【解析】【分析】(1)在Rt△ABC中,根据勾股定理得AC=50 m,利用平行投影的性质得DE∥AC,再利用相似三角形的性质得出对应边的比相等可求得DE长.(2)在Rt△BDE中,根据勾股定理得BE=2 m,根据题意得王刚走的总路程为42 m,根据时间=路程÷速度求得王刚用的时间,减去4即为张华用的时间,再根据速度=路程÷时间解之即可得出答案.3.如图1,过等边三角形ABC边AB上一点D作交边AC于点E,分别取BC,DE 的中点M,N,连接MN.(1)发现:在图1中, ________;(2)应用:如图2,将绕点A旋转,请求出的值;(3)拓展:如图3,和是等腰三角形,且,M,N分别是底边BC,DE的中点,若,请直接写出的值.【答案】(1)(2)解:如图2中,连接AM、AN,,都是等边三角形,,,,,,,,,,∽,(3)解:如图3中,连接AM、AN,延长AD交CE于H,交AC于O,,,,,,,,,,,,,,,∽,,,,,,≌,,,,,,,,,,【解析】【解答】解:(1)如图1中,作于H,连接AM,,,,时等边三角形,,,,,平分线段DE,,、N、M共线,,四边形MNDH时矩形,,,故答案为:;【分析】(1)作DH ⊥BC 于H,连接AM.证四边形MNDH时矩形,所以MN=DH,则MN:BD=DH:BD=sin60°,即可求解;(2)利用△ABC ,△ADE 都是等边三角形可得AM:AB=AN:AD,易得∠BAD = ∠MAN ,从而得△ BAD ∽△ MAN,则NM:BD=AM:AB=sin60°,从而求解;(3)连接AM、AN,延长AD交CE于H,交AC于O.先证明△BAD ∽△MAN可得NM:BD=AM:AB=sin∠ABC;再证明△ BAD ≌△ CAE,则∠ ABD = ∠ ACE ,进而可得∠ ABC = 45°,可求出答案.4.如图,在中,,于点,点在上,且,连接.(1)求证:(2)如图,将绕点逆时针旋转得到(点分别对应点),设射线与相交于点,连接,试探究线段与之间满足的数量关系,并说明理由.【答案】(1)证明:在Rt△AHB中,∠ABC=45°,∴AH=BH,在△BHD和△AHC中,,∴△BHD≌△AHC,∴(2)解:方法1:如图1,∵△EHF是由△BHD绕点H逆时针旋转30°得到,∴HD=HF,∠AHF=30°∴∠CHF=90°+30°=120°,由(1)有,△AEH和△FHC都为等腰三角形,∴∠GAH=∠HCG=30°,∴CG⊥AE,∴点C,H,G,A四点共圆,∴∠CGH=∠CAH,设CG与AH交于点Q,∵∠AQC=∠GQH,∴△AQC∽△GQH,∴,∵△EHF是由△BHD绕点H逆时针旋转30°得到,由(1)知,BD=AC,∴EF=AC∴即:EF=2HG.方法2:如图2,取EF的中点K,连接GK,HK,∵△EHF是由△BHD绕点H逆时针旋转30°得到,∴HD=HF,∠AHF=30°∴∠CHF=90°+30°=120°,由(1)有,△AEH和△FHC都为等腰三角形,∴∠GAH=∠HCG=30°,∴CG⊥AE,由旋转知,∠EHF=90°,∴EK=HK= EF∴EK=GK= EF,∴HK=GK,∵EK=HK,∴∠FKG=2∠AEF,∵EK=GK,∴∠HKF=2∠HEF,由旋转知,∠AHF=30°,∴∠AHE=120°,由(1)知,BH=AH,∵BH=EH,∴AH=EH,∴∠AEH=30°,∴∠HKG=∠FKG+∠HKF=2∠AEF+2∠HEF=2∠AEH=60°,∴△HKG是等边三角形,∴GH=GK,∴EF=2GK=2GH,即:EF=2GH.【解析】【分析】(1)根据等腰直角三角形的性质得出AH=BH,然后由SAS判断出△BHD≌△AHC,根据全等三角形对应角相等得出答案;(2)方法1:如图1,根据旋转的性质得出HD=HF,∠AHF=30°根据角的和差得出∠CHF=90°+30°=120°,由(1)有,△AEH和△FHC都为等腰三角形,根据等腰三角形若顶角相等则底角也相等得出∠GAH=∠HCG=30°,根据三角形的内角和得出CG⊥AE,从而得出点C,H,G,A四点共圆,根据圆周角定理同弧所对的圆周角相等得出∠CGH=∠CAH,根据对顶角相等得出∠AQC=∠GQH,从而得出△AQC∽△GQH,根据全等三角形对应边成比例得出 A C∶ H G = A Q∶ G Q = 1 ∶sin 30 ° = 2,根据旋转的性质得出EF=BD,由(1)知,BD=AC,从而得出EF=ACEF=BD,由E F∶ H G = A C∶ G H = A Q∶ G Q = 1∶ sin 30 ° = 2得出结论;方法2:如图2,取EF的中点K,连接GK,HK,根据旋转的性质得出HD=HF,∠AHF=30°根据角的和差得出∠CHF=90°+30°=120°,由(1)有,△AEH和△FHC都为等腰三角形,根据等腰三角形若顶角相等则底角也相等得出∠GAH=∠HCG=30°,根据三角形的内角和得出CG⊥AE,由旋转知,∠EHF=90°,根据直角三角形斜边上的中线等于斜边的一半得出EK=HK= EF,EK=GK= EF,从而得出HK=GK,根据等边对等角及三角形的外角定理得出∠FKG=2∠AEF,∠HKF=2∠HEF,由旋转知,∠AHF=30°,故∠AHE=120°,由(1)知,BH=AH,根据等量代换得出AH=EH,根据等边对等角得出∠AEH=30°,∠HKG=∠FKG+∠HKF=2∠AEF+2∠HEF=2∠AEH=60°,根据有一个角为60°的等腰三角形是等边三角形得出△HKG是等边三角形,根据等边三角形三边相等得出GH=GK,根据等量代换得出EF=2GK=2GH。
中考数学复习《相似》专项综合练习含答案

中考数学复习《相似》专项综合练习含答案一、相似1.如图,已知A(﹣2,0),B(4,0),抛物线y=ax2+bx﹣1过A、B两点,并与过A点的直线y=﹣ x﹣1交于点C.(1)求抛物线解析式及对称轴;(2)在抛物线的对称轴上是否存在一点P,使四边形ACPO的周长最小?若存在,求出点P的坐标,若不存在,请说明理由;(3)点M为y轴右侧抛物线上一点,过点M作直线AC的垂线,垂足为N.问:是否存在这样的点N,使以点M、N、C为顶点的三角形与△AOC相似,若存在,求出点N的坐标,若不存在,请说明理由.【答案】(1)解:把A(-2,0),B(4,0)代入抛物线y=ax2+bx-1,得解得∴抛物线解析式为:y= x2−x−1∴抛物线对称轴为直线x=- =1(2)解:存在使四边形ACPO的周长最小,只需PC+PO最小∴取点C(0,-1)关于直线x=1的对称点C′(2,-1),连C′O与直线x=1的交点即为P 点.设过点C′、O直线解析式为:y=kx∴k=-∴y=- x则P点坐标为(1,- )(3)解:当△AOC∽△MNC时,如图,延长MN交y轴于点D,过点N作NE⊥y轴于点E∵∠ACO=∠NCD,∠AOC=∠CND=90°∴∠CDN=∠CAO由相似,∠CAO=∠CMN∴∠CDN=∠CMN∵MN⊥AC∴M、D关于AN对称,则N为DM中点设点N坐标为(a,- a-1)由△EDN∽△OAC∴ED=2a∴点D坐标为(0,- a−1)∵N为DM中点∴点M坐标为(2a,a−1)把M代入y= x2−x−1,解得a=4则N点坐标为(4,-3)当△AOC∽△CNM时,∠CAO=∠NCM∴CM∥AB则点C关于直线x=1的对称点C′即为点N由(2)N(2,-1)∴N点坐标为(4,-3)或(2,-1)【解析】【分析】(1)根据点A、B的坐标,可求出抛物线的解析式,再求出它的对称轴即可解答。
(2)使四边形ACPO的周长最小,只需PC+PO最小,取点C(0,-1)关于直线x=1的对称点C′(2,-1),连C′O与直线x=1的交点即为P点,利用待定系数法求出直线C′O的解析式,再求出点P的坐标。
完整版)九年级数学相似三角形综合练习题及答案

完整版)九年级数学相似三角形综合练习题及答案1.填空题:1) 若$a=8$cm,$b=6$cm,$c=4$cm,则$a$、$b$、$c$的第四比例项$d=\underline{12}$;$a$、$c$的比例中项$x=\underline{5}$。
2) $(2-x):x=x:(1-x)$。
则$x=\underline{1}$。
3) 在比例尺为1:的地图上,距离为3cm的两地实际距离为\underline{30}公里。
4) 圆的周长与其直径的比为\underline{$\pi$}。
5) $\frac{a^5-ab}{b^3}=\frac{a^4}{b^2}$,则$\frac{a}{b}=\underline{a^2}$。
6) 若$a:b:c=1:2:3$,且$a-b+c=6$,则$a=\underline{2}$,$b=\underline{1}$,$c=\underline{3}$。
7) 如图1,则$\frac{AB}{AC}=\frac{BC}{CE}=\underline{\frac{3}{2}}$;若$BD=10$cm,则$AD=\underline{6}$cm;若$\triangle ADE$的周长为16cm,则$\triangle ABC$的周长为\underline{24}cm。
8) 若点$c$是线段$AB$的黄金分割点,且$AC>CB$,则$\frac{AC}{AB}=\underline{\frac{1+\sqrt{5}}{2}}$,$\frac{CB}{AB}=\underline{\frac{\sqrt{5}-1}{2}}$。
2.选择题:1) 根据$ab=cd$,共可写出以$a$为第四比例项的比例式的个数是()A.$1$,B.$2$,C.$3$,D.$4$。
答案:B。
2) 若线段$a$、$b$、$c$、$d$成比例,则下列各式中一定能成立的是()A.$abcd=1$,B.$a+b=c+d$,C.$\frac{a}{b}=\frac{c}{d}$,D.$a^2+b^2=c^2+d^2$。
2023年中考数学----《相似综合》知识点总结与专项练习题(含答案解析)

2023年中考数学----《相似综合》知识点总结与专项练习题(含答案解析)知识点总结1. 比例的性质:①基本性质:两内项之积等于量外项之积。
即若d c b a ::=,则ad bc =。
②合比性质:若d c b a =,则dd c b b a +=+。
③分比性质:若d c b a =,则dd c b b a −=−。
④合分比性质:若d c b a =,则dc d c b a b a −+=−+。
⑤等比性质:若n m d c b a ===...,则n m d c b a n d b m c a ====++++++.........。
2. 平行线分线段成比例:三条平行线被两条直线所截,所得的对应线段成比例。
即如图:有EFDE BC AB =; DFDE AC AB =; DFEF AC BC =。
推论:①平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例。
②如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边。
③平行于三角形的一边,并且和其他两边(或两边的延长线)相交的直线,所截得的三角形的三边与原三角形的三边对应成比例。
3. 相似三角形的性质:①相似三角形的对应角相等,对应边的比相等。
对应边的比叫做相似比。
②相似三角形的周长比等于相似比,面积比等于相似比的平方。
相似三角形的对应线段(对应中线、对应角平分线、对应边上的高)的比也等于相似比。
4.相似三角形的判定:①平行线法判定:平行于三角形一边的直线与三角形的另两边或另两边的延长线相交所构成的三角形与原三角形相似。
②对应边判定:三组对应边的比相等的两个三角形相似。
③两边及其夹角判定法:两组对应边的比相等,且这两组对应边的夹角相等的两个三角形相似。
④两角判定:有两组角(三组角)对应相等的两个三角形相似。
练习题1.如图,在Rt△ABC中,∠ABC=90°,E是边AC上一点,且BE=BC,过点A作BE的垂线,交BE的延长线于点D,求证:△ADE∽△ABC.【分析】根据等腰三角形的性质可得∠C=∠CEB=∠AED,由AD⊥BE可得∠D=∠ABC=90°,即可得△ADE∽△ABC.【解答】证明:∵BE=BC,∴∠C=∠CEB,∵∠CEB =∠AED ,∴∠C =∠AED ,∵AD ⊥BE ,∴∠D =∠ABC =90°,∴△ADE ∽△ABC .2.如图,在△ABC 与△A ′B ′C ′中,点D 、D ′分别在边BC 、B ′C ′上,且△ACD ∽△A ′C ′D ′,若 ,则△ABD ∽△A ′B ′D ′. 请从①''''=D C D B CD BD ;②''''=D C B A CD AB ;③∠BAD =∠B ′A ′D ′这3个选项中选择一个作为条件(写序号),并加以证明.【分析】利用相似三角形的判定:两角对应相等的两个三角形相似可证明.【解答】解:③.理由如下:∵△ACD ∽△A ′C ′D ′,∴∠ADC =∠A 'D 'C ',∴∠ADB =∠A 'D 'B ',又∵∠BAD =∠B ′A ′D ′,∴△ABD ∽△A 'B 'D '.同理,选①也可以.故答案是:③(答案不唯一).3.如图所示,在等腰三角形ABC 中,AB =AC ,点E ,F 在线段BC 上,点Q 在线段AB 上,且CF =BE ,求证:(1)∠CAE=∠BAF;(2)CF•FQ=AF•BQ.【分析】(1)根据等腰三角形的性质得到∠B=∠C,利用SAS证明△ACE≌△ABF,根据全等三角形的性质即可得解;(2)利用全等三角形的性质,结合题意证明△ACE∽AFQ,△CAF∽△BFQ,根据相似三角形的性质即可得解.【解答】证明:(1)∵AB=AC,∴∠B=∠C,∵CF=BE,∴CF﹣EF=BE﹣EF,即CE=BF,在△ACE和△ABF中,,∴△ACE≌△ABF(SAS),∴∠CAE=∠BAF;(2)∵△ACE≌△ABF,∴AE=AF,∠CAE=∠BAF,∵AE2=AQ•AB,AC=AB,∴=,∴△ACE∽△AFQ,∴∠AEF=∠BQF,∵AE=AF,∴∠AEF=∠AFE,∴∠BQF=∠AFE,∵∠B=∠C,∴△CAF∽△BFQ,∴=,即CF•FQ=AF•BQ.4.如图,在矩形ABCD中,AB=8,AD=4,点E是DC边上的任一点(不包括端点D,C),过点A作AF⊥AE交CB的延长线于点F,设DE=a.(1)求BF的长(用含a的代数式表示);(2)连接EF交AB于点G,连接GC,当GC∥AE时,求证:四边形AGCE是菱形.【分析】(1)根据矩形的性质可得∠ADE=∠ABF,∠∠DAE+∠BAE=90°,结合题干AF⊥AE可得∠BAF+∠BAE=90°,进而可得∠DAE=∠BAF,进而可得△ADE∽△ABF,利用相似三角形的性质可得BF的长度;(2)先根据AG∥CE,GC∥AE进而可得四边形AGCE是平行四边形,通过勾股定理可得GF2、EF2、AE2,再过点G作GM⊥AF于点M,易得△MGF∽△AEF,进而利用相似三角形的性质可得GM的长,即可得GM=GB,进而可得GF是∠AFB的角平分线,最后利用角平分线得性质可得EA=EC,即可得平行四边形AGCE是菱形.【解答】(1)解:∵四边形ABCD是矩形,∴∠ADE=∠ABF=∠BAD=90°,∴∠DAE+∠BAE=90°,∵AF⊥AE,∴∠BAF+∠BAE=90°,∴∠DAE=∠BAF,∴△ADE∽△ABF,∴,即,∴BF=2a,(2)证明:∵四边形ABCD是矩形,∴AG∥CE,∵GC∥AE,∴四边形AGCE是平行四边形.∴AG=CE=8﹣a,∴BG=AB﹣AG=8﹣(8﹣a)=a,在Rt△BGF中,GF2=a2+(2a)2=5a2,在Rt△CEF中,EF2=(2a+4)2+(8﹣a)2=5a2+80,在Rt△ADE中,AE2=42+a2=16+a2,如图,过点G作GM⊥AF于点M,∴GM∥AE,∴△MGF∽△AEF,∴,∴,∴=,∴GM =a ,∴GM =BG ,又∵GM ⊥AF ,GB ⊥FC ,∴GF 是∠AFB 的角平分线,∴EA =EC ,∴平行四边形AGCE 是菱形.5.如图,在△ABC 中,点D ,E ,F 分别在边AB ,AC ,BC 上,连接DE ,EF .已知四边形BFED 是平行四边形,41=BC DE . (1)若AB =8,求线段AD 的长.(2)若△ADE 的面积为1,求平行四边形BFED 的面积.【分析】(1)证明△ADE ∽△ABC ,根据相似三角形对应边的比相等列式,可解答;(2)根据相似三角形面积的比等于相似比的平方可得△ABC 的面积是16,同理可得△EFC 的面积=9,根据面积差可得答案.【解答】解:(1)∵四边形BFED 是平行四边形,∴DE ∥BF ,∴DE ∥BC ,∴△ADE ∽△ABC ,∴==,∵AB=8,∴AD=2;(2)∵△ADE∽△ABC,∴=()2=()2=,∵△ADE的面积为1,∴△ABC的面积是16,∵四边形BFED是平行四边形,∴EF∥AB,∴△EFC∽△ABC,∴=()2=,∴△EFC的面积=9,∴平行四边形BFED的面积=16﹣9﹣1=6.6.如图,四边形ABCD为菱形,点E在AC的延长线上,∠ACD=∠ABE.(1)求证:△ABC∽△AEB;(2)当AB=6,AC=4时,求AE的长.【分析】(1)根据两角相等可得两三角形相似;(2)根据(1)中的相似列比例式可得结论.【解答】(1)证明:∵四边形ABCD为菱形,∴∠ACD=∠BCA,∵∠ACD=∠ABE,∴∠BCA=∠ABE,∵∠BAC=∠EAB,∴△ABC∽△AEB;(2)解:∵△ABC∽△AEB,∴=,∵AB=6,AC=4,∴=,∴AE==9.7.如图,矩形ABCD中,点E在DC上,DE=BE,AC与BD相交于点O,BE与AC相交于点F.(1)若BE平分∠CBD,求证:BF⊥AC;(2)找出图中与△OBF相似的三角形,并说明理由;(3)若OF=3,EF=2,求DE的长度.【分析】(1)根据矩形的性质和角平分线的定义,求得∠3=∠6,从而求证BF⊥AC;(2)根据相似三角形的判定进行分析判断;(3)利用相似三角形的性质分析求解.【解答】(1)证明:如图,在矩形ABCD中,OD=OC,AB∥CD,∠BCD=90°,∴∠2=∠3=∠4,∠3+∠5=90°,∵DE=BE,∴∠1=∠2,又∵BE平分∠DBC,∴∠1=∠6,∴∠3=∠6,∴∠6+∠5=90°,∴BF⊥AC;(2)解:与△OBF相似的三角形有△ECF,△BAF理由如下:∵∠1=∠3,∠EFC=∠BFO,∴△ECF∽△OBF,∵DE=BE,∴∠1=∠2,又∵∠2=∠4,∴∠1=∠4,又∵∠BFA=∠OFB,∴△BAF∽△OBF;(3)解:在矩形ABCD中,∠4=∠3=∠2,∵∠1=∠2,∴∠1=∠4.又∵∠OFB=∠BFA,∴△OBF∽△BFA.∵∠1=∠3,∠OFB=∠EFC,∴△OBF∽△ECF.∴,∴,即3CF=2BF,∴3(CF+OF)=3CF+9=2BF+9,∴3OC=2BF+9∴3OA=2BF+9①,∵△ABF∽△BOF,∴,∴BF2=OF•AF,∴BF2=3(OA+3)②,联立①②,可得BF=1±(负值舍去),∴DE=BE=2+1+=3+.8.如图,平行四边形ABCD中,AB=5,BC=10,BC边上的高AM=4,点E为BC边上的动点(不与B、C重合,过点E作直线AB的垂线,垂足为F,连接DE、DF.(1)求证:△ABM∽△EBF;(2)当点E为BC的中点时,求DE的长;(3)设BE=x,△DEF的面积为y,求y与x之间的函数关系式,并求当x为何值时,y有最大值,最大值是多少?【分析】(1)利用两个角对应相等的三角形全等即可证明△ABM∽△EBF;(2)过点E作EN⊥AD于点N,可得四边形AMEN为矩形,从而得到NE=AM=4,AN=ME,再由勾股定理求出BM=3,从而得到ME=AN=2,进而得到DN=8,再由勾股定理,即可求解;(3)延长FE交DC的延长线于点G.根据,可得,再证得△ABM∽△ECG,可得,从而得到,再根据三角形的面积公式,得到函数关系式,再根据二次函数的性质,即可求解.【解答】(1)证明:∵EF⊥AB,AM是BC边上的高,∴∠AMB=∠EFB=90°,又∵∠B=∠B,∴△ABM∽△EBF;(2)解:过点E作EN⊥AD于点N,如图:在平行四边形ABCD中,AD∥BC,又∵AM是BC边上的高,∴AM⊥AD,∴∠AME=∠MAN=∠ANE=90°,∴四边形AMEN为矩形,∴NE=AM=4,AN=ME,在Rt△ABM中,,又∵E为BC的中点,∴,∴ME=AN=2,∴DN=8,在Rt△DNE中,;(3)解:延长FE交DC的延长线于点G,如图:∵sin B==,∴,∴EF=x,∵AB∥CD,∴∠B=∠ECG,∠EGC=∠BFE=90°,又∵∠AMB=∠EGC=90°,∴△ABM∽△ECG,∴,∴,∴GC=(10﹣x),∴DG=DC+GC=5+(10﹣x),∴y=EF•DG=×x•[5+(10﹣x)]=﹣x2+x=﹣(x﹣)2+,∴当x=时,y有最大值为,答:y=﹣x2+x,当x=时,y有最大值为.9.【问题呈现】如图1,△ABC和△ADE都是等边三角形,连接BD,CE.求证:BD=CE.【类比探究】如图2,△ABC 和△ADE 都是等腰直角三角形,∠ABC =∠ADE =90°.连接BD ,CE .请直接写出CE BD 的值.【拓展提升】如图3,△ABC 和△ADE 都是直角三角形,∠ABC =∠ADE =90°,且43==DE AD BC AB .连接BD ,CE . (1)求CEBD 的值; (2)延长CE 交BD 于点F ,交AB 于点G .求sin ∠BFC 的值.【分析】【问题呈现】证明△BAD CAE ,从而得出结论;【类比探究】证明△BAD ∽△CAE ,进而得出结果;【拓展提升】(1)先证明△ABC ∽△ADE ,再证得△CAE ∽△BAD ,进而得出结果;(2)在(1)的基础上得出∠ACE =∠ABD ,进而∠BFC =∠BAC ,进一步得出结果.【解答】【问题呈现】证明:∵△ABC 和△ADE 都是等边三角形,∴AD =AE ,AB =AC ,∠DAE =∠BAC =60°,∴∠DAE ﹣∠BAE =∠BAC ﹣∠BAE ,∴∠BAD =∠CAE ,∴△BAD ≌△CAE (SAS ),∴BD =CE ;【类比探究】解:∵△ABC 和△ADE 都是等腰直角三角形,∴==,∠DAE =∠BAC =45°,∴∠DAE ﹣∠BAE =∠BAC ﹣∠BAE ,∴∠BAD =∠CAE ,∴△BAD ∽△CAE ,∴==;【拓展提升】解:(1)∵==,∠ABC =∠ADE =90°,∴△ABC ∽△ADE ,∴∠BAC =∠DAE ,,∴∠CAE =∠BAD ,∴△CAE ∽△BAD ,∴==;(2)由(1)得:△CAE ∽△BAD ,∴∠ACE =∠ABD ,∵∠AGC =∠BGF ,∴∠BFC =∠BAC ,∴sin ∠BFC ==.10.如图,在矩形ABCD 中,AB =6,BC =4,点M 、N 分别在AB 、AD 上,且MN ⊥MC ,点E 为CD 的中点,连接BE 交MC 于点F .(1)当F 为BE 的中点时,求证:AM =CE ;(2)若BF EF=2,求ND AN的值;(3)若MN ∥BE ,求NDAN 的值. 【分析】(1)根据矩形的性质,利用AAS 证明△BMF ≌△ECF ,得BM =CE ,再利用点E 为CD 的中点,即可证明结论;(2)利用△BMF ∽△ECF ,得,从而求出BM 的长,再利用△ANM ∽△BMC ,得,求出AN 的长,可得答案;(3)首先利用同角的余角相等得∠CBF =∠CMB ,则tan ∠CBF =tan ∠CMB ,得,可得BM 的长,由(2)同理可得答案.【解答】(1)证明:∵F 为BE 的中点,∴BF =EF ,∵四边形ABCD 是矩形,∴AB ∥CD ,AB =CD∴∠BMF =∠ECF ,∵∠BFM =∠EFC ,∴△BMF ≌△ECF (AAS ),∴BM =CE ,∵点E 为CD 的中点,∴CE =DE ,∴BM =CE =DE ,∵AB =CD ,∴AM =CE ;(2)解:∵∠BMF =∠ECF ,∠BFM =∠EFC ,∴△BMF∽△ECF,∴,∵CE=3,∴BM=,∴AM=,∵CM⊥MN,∴∠CMN=90°,∴∠AMN+∠BMC=90°,∵∠AMN+∠ANM=90°,∴∠ANM=∠BMC,∵∠A=∠MBC,∴△ANM∽△BMC,∴,∴,∴,∴DN=AD﹣AN=4﹣=,∴;(3)解:∵MN∥BE,∴∠BFC=∠CMN,∴∠FBC+∠BCM=90°,∵∠BCM+∠BMC=90°,∴∠CBF=∠CMB,∴tan∠CBF=tan∠CMB,∴,∴,∴,∴=,由(2)同理得,,∴,解得AN=,∴DN=AD﹣AN=4﹣=,∴=.11.在四边形ABCD中,∠BAD的平分线AF交BC于F,延长AB到E使BE=FC,G是AF的中点,GE 交BC于O,连接GD.(1)当四边形ABCD是矩形时,如图1,求证:①GE=GD;②BO•GD=GO•FC.(2)当四边形ABCD是平行四边形时,如图2,(1)中的结论都成立.请给出结论②的证明.【分析】(1)连接CG,过点G作GJ⊥CD于点J.证明△EAG≌△DAG(SAS),可得EG=DG,∠AEG =∠ADG,再证明△OBE∽△OGC,推出=,可得结论;(2)过点D作DT⊥BC于点T,连接GT.证明△EAG≌△DAG(SAS),推出EG=DG,∠AEG=∠ADG,再证明△OBE∽△OGT,推出=,可得结论.【解答】(1)证明:连接CG,过点G作GJ⊥CD于点J.∵四边形ABCD是矩形,∴∠BAD=∠ABC=90°,AD=BC,∵AF平分∠BAD,∴∠BAF=∠DAF=45°,∴∠AFB=∠BAF=45°,∴BA=BF,∵BE=CF,∴AE=AB+BE=BF+CF=BC=AD,∵AG=AG,∴△EAG≌△DAG(SAS),∴EG=DG,∠AEG=∠ADG,∵AD∥FC,AG=GF,∴DJ=JC,∵GJ⊥CD,∴GD=GC,∴∠GDC=∠GCD,∵∠ADC=∠BCD=90°,∴∠ADG=∠GCO,∴∠OEB=∠OCG,∵∠BOE=∠GOC,∴△OBE∽△OGC,∴=,∵GC=GD,BE=CF,∴BO•GD=GO•FC;(2)解:过点D作DT⊥BC于点T,连接GT.∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠DAG=∠AFB,∵AF平分∠DAB,∴∠DAG=∠BAF,∴BAF=∠AFB,∴AE =AB +BE =BF +CF =BC =AD , ∵AG =AG ,∴△EAG ≌△DAG (SAS ), ∴∠AEG =∠ADG , ∵AD ∥FT ,AG =GF , ∴DJ =JT , ∵GJ ⊥DT , ∴GD =GT , ∴∠GDT =∠GTD , ∵∠ADT =∠BTD =90°, ∴∠ADG =∠GTO , ∴∠OEB =∠OTG , ∵∠BOE =∠GOT , ∴△OBE ∽△OGT , ∴=,∵GT =GD ,BE =CF , ∴BO •GD =GO •FC . 12.问题背景:一次数学综合实践活动课上,小慧发现并证明了关于三角形角平分线的一个结论.如图1,已知AD 是△ABC 的角平分线,可证CDBDAC AB =.小慧的证明思路是:如图2,过点C 作CE ∥AB ,交AD 的延长线于点E ,构造相似三角形来证明CDBDAC AB =.(1)请参照小慧提供的思路,利用图2证明:CDBDAC AB =; 应用拓展:(2)如图3,在Rt △ABC 中,∠BAC =90°,D 是边BC 上一点.连接AD ,将△ACD 沿AD 所在直线折叠,点C 恰好落在边AB 上的E 点处. ①若AC =1,AB =2,求DE 的长;②若BC =m ,∠AED =α,求DE 的长(用含m ,α的式子表示).【分析】(1)证明△CED ∽△BAD ,由相似三角形的性质得出,证出CE =CA ,则可得出结论;(2)①由折叠的性质可得出∠CAD =∠BAD ,CD =DE ,由(1)可知,,由勾股定理求出BC=,则可求出答案;②由折叠的性质得出∠C =∠AED =α,则tan ∠C =tan α=,方法同①可求出CD =,则可得出答案.【解答】(1)证明:∵CE ∥AB , ∴∠E =∠EAB ,∠B =∠ECB , ∴△CED ∽△BAD , ∴,∵∠E =∠EAB ,∠EAB =∠CAD , ∴∠E =∠CAD , ∴CE =CA ,(2)解:①∵将△ACD沿AD所在直线折叠,点C恰好落在边AB上的E点处,∴∠CAD=∠BAD,CD=DE,由(1)可知,,又∵AC=1,AB=2,∴,∴BD=2CD,∵∠BAC=90°,∴BC===,∴BD+CD=,∴3CD=,∴CD=;∴DE=;②∵将△ACD沿AD所在直线折叠,点C恰好落在边AB上的E点处,∴∠CAD=∠BAD,CD=DE,∠C=∠AED=α,∴tan∠C=tanα=,由(1)可知,,∴tanα=,∴BD=CD•tanα,又∵BC=BD+CD=m,∴CD•tanα+CD=m,∴CD=,∴DE =.13.【基础巩固】(1)如图1,在△ABC 中,D ,E ,F 分别为AB ,AC ,BC 上的点,DE ∥BC ,BF =CF ,AF 交DE 于点G ,求证:DG =EG .【尝试应用】(2)如图2,在(1)的条件下,连结CD ,CG .若CG ⊥DE ,CD =6,AE =3,求BCDE的值. 【拓展提高】(3)如图3,在▱ABCD 中,∠ADC =45°,AC 与BD 交于点O ,E 为AO 上一点,EG ∥BD 交AD 于点G ,EF ⊥EG 交BC 于点F .若∠EGF =40°,FG 平分∠EFC ,FG =10,求BF 的长.【分析】(1)证明△AGD ∽△AFB ,△AFC ∽△AGE ,根据相似三角形的性质得到=,进而证明结论;(2)根据线段垂直平分线的性质求出CE ,根据相似三角形的性质计算,得到答案;(3)延长GE 交AB 于M ,连接MF ,过点M 作MN ⊥BC 于N ,根据直角三角形的性质求出∠EFG ,求出∠MFN =30°,根据直角三角形的性质、勾股定理计算即可. 【解答】(1)证明:∵DE ∥BC , ∴△AGD ∽△AFB ,△AFC ∽△AGE , ∴=,=,∴=,∵BF =CF , ∴DG =EG ;(2)解:∵DG=EG,CG⊥DE,∴CE=CD=6,∵DE∥BC,∴△ADE∽△ABC,∴===;(3)解:延长GE交AB于M,连接MF,过点M作MN⊥BC于N,∵四边形ABCD为平行四边形,∴OB=OD,∠ABC=∠ADC=45°,∵MG∥BD,∴ME=GE,∵EF⊥EG,∴FM=FG=10,在Rt△GEF中,∠EGF=40°,∴∠EFG=90°﹣40°=50°,∵FG平分∠EFC,∴∠GFC=∠EFG=50°,∵FM=FG,EF⊥GM,∴∠MFE=∠EFG=50°,∴∠MFN=30°,∴MN=MF=5,∴NF==5,∵∠ABC=45°,∴BN=MN=5,∴BF=BN+NF=5+5.14.如图1,在矩形ABCD中,AB=4,BC=6.点E是线段AD上的动点(点E不与点A,D重合),连接CE,过点E作EF⊥CE,交AB于点F.(1)求证:△AEF∽△DCE;(2)如图2,连接CF,过点B作BG⊥CF,垂足为G,连接AG.点M是线段BC的中点,连接GM.①求AG+GM的最小值;②当AG+GM取最小值时,求线段DE的长.【分析】(1)由矩形的性质及直角三角形的性质证出∠DCE=∠AEF,根据相似三角形的判定可得出结论;(2)①连接AM,由直角三角形的性质得出MB=CM=GM=,则点G在以点M为圆心,3为半径的圆上,当A,G,M三点共线时,AG+GM=AM,此时,AG+GM取得最小值,由勾股定理求出AM=5,则可得出答案;②方法一:过点M作MN∥AB交FC于点N,证明△CMN∽△CBF,由相似三角形的性质得出,设AF=x,则BF=4﹣x,得出MN=BF=(4+x),证明△AFG∽△MNG,得出比例线段,列出方程,解得x=1,求出AF=1,由(1)得,设DE=y,则AE=6﹣y,得出方程,解得y=3+或y=3﹣,则可得出答案.方法二:过点G作GH∥AB交BC于点H,证明△MHG∽△MBA,由相似三角形的性质得出,求出GH=,MH=,证明△CHG∽△CBF,得出,求出FB=3,则可得出AF=1,后同方法一可求出DE的长.【解答】(1)证明:∵四边形ABCD是矩形,∴∠A=∠D=90°,∴∠CED+∠DCE=90°,∵EF⊥CE,∴∠CED+∠AEF=90°,∴∠DCE=∠AEF,∴△AEF∽△DCE;(2)解:①连接AM,如图2,∵BG⊥CF,∴△BGC是直角三角形,∵点M是BC的中点,∴MB=CM=GM=,∴点G在以点M为圆心,3为半径的圆上,当A,G,M三点不共线时,由三角形两边之和大于第三边得:AG+GM>AM,当A,G,M三点共线时,AG+GM=AM,此时,AG+GM取得最小值,在Rt△ABM中,AM===5,∴AG+GM的最小值为5.②如图3,过点M作MN∥AB交FC于点N,∴△CMN∽△CBF,∴,设AF=x,则BF=4﹣x,∴MN=BF=(4﹣x),∵MN∥AB,∴△AFG∽△MNG,∴,由(2)可知AG+GM的最小值为5,即AM=5,又∵GM=3,∴AG=2,∴,解得x =1, 即AF =1, 由(1)得,设DE =y ,则AE =6﹣y , ∴,解得:y =3+或y =3﹣, ∵0<6,0<3﹣<6, ∴DE =3+或DE =3﹣.15.已知矩形ABCD ,点E 为直线BD 上的一个动点(点E 不与点B 重合),连接AE ,以AE 为一边构造矩形AEFG (A ,E ,F ,G 按逆时针方向排列),连接DG .(1)如图1,当1==AE AGAB AD 时,请直接写出线段BE 与线段DG 的数量关系与位置关系; (2)如图2,当2==AEAGAB AD 时,请猜想线段BE 与线段DG 的数量关系与位置关系,并说明理由;(3)如图3,在(2)的条件下,连接BG ,EG ,分别取线段BG ,EG 的中点M ,N ,连接MN ,MD ,ND ,若AB =5,∠AEB =45°,请直接写出△MND 的面积.【分析】(1)证明△BAE ≌△DAG ,进一步得出结论; (2)证明BAE ∽△DAG ,进一步得出结论;(3)当点E在线段BD上时,解斜三角形ABE,求得BE=3,根据(2)可得DG=6,从而得出三角形BEG的面积,可证得△MND≌△MNG,△MNG与△BEG的面积比等于1:4,进而求得结果;同理可得点E在DB的延长线时的情形.【解答】解:(1)由题意得:四边形ABCD和四边形AEFG是正方形,∴AB=AD,AE=AG,∠BAD=∠EAG=90°,∴∠BAD﹣∠DAE=∠EAG﹣∠DAE,∴∠BAE=∠DAG,∴△BAE≌△DAG(SAS),∴BE=DG,∠ABE=∠ADG,∴∠ADG+∠ADB=∠ABE+∠ADB=90°,∴∠BDG=90°,∴BE⊥DG;(2)BE=,BE⊥DG,理由如下:由(1)得:∠BAE=∠DAG,∵==2,∴△BAE∽△DAG,∴,∠ABE=∠ADG,∴∠ADG+∠ADB=∠ABE+∠ADB=90°,∴∠BDG=90°,∴BE⊥DG;(3)如图,当B在线段BD上时,作AH⊥BD于H,∵tan∠ABD=,∴设AH=2x,BH=x,在Rt△ABH中,x2+(2x)2=()2,∴BH=1,AH=2,在Rt△AEH中,∵tan∠AEB=,∴,∴EH=AH=2,∴BE=BH+EH=3,∵BD==5,∴DE=BD﹣BE=5﹣3=2,由(2)得:,DG⊥BE,∴DG=2BE=6,∴S△BEG===9,在Rt△BDG和Rt△DEG中,点M是BG的中点,点N是CE的中点,∴DM=GM=,∵NM=NM,∴△DMN≌△GMN(SSS),∵MN是△BEG的中位线,∴MN∥BE,∴△BEG∽△MNG,∴=()2=,∴S△MND=S△MNG=S△BEG=,如图,同上可得:BE=EH﹣BH=2﹣1=1,DG=2BE=2,∴=1,∴S△BEG=,综上所述:△DMN的面积是或.。
2020-2021中考数学相似综合经典题及详细答案

2020-2021中考数学相似综合经典题及详细答案一、相似1.如图,在等腰Rt△ABC中,O为斜边AC的中点,连接BO,以AB为斜边向三角内部作Rt△ABE,且∠AEB=90°,连接EO.求证:(1)∠OAE=∠OBE;(2)AE=BE+ OE.【答案】(1)证明:在等腰Rt△ABC中,O为斜边AC的中点,∴OB⊥AC,∴∠AOB=90°,∵∠AEB=90°,∴A,B,E,O四点共圆,∴∠OAE=∠OBE(2)证明:在AE上截取EF=BE,则△EFB是等腰直角三角形,∴,∠FBE=45°,∵在等腰Rt△ABC中,O为斜边AC的中点,∴∠ABO=45°,∴∠ABF=∠OBE,∵,∴,∴△ABF∽△BOE,∴ = ,∴AF= OE,∵AE=AF+EF,∴AE=BE+ OE.【解析】【分析】(1)利用等腰直角三角形的性质,可证得∠AOB=∠AEB=90°,可得出A,B,E,O四点共圆,再利用同弧所对的圆周角相等,可证得结论。
(2)在AE上截取EF=BE,易证△EFB是等腰直角三角形,可得出BF与BE的比值为,再证明∠ABF=∠OBE,AB与BO的比值为,就可证得AB、BO、BF、BE四条线段成比例,然后利用两组对应边成比例且夹角相等的两三角形相似,可证得△ABF∽△BOE,可证得AF= OE,由AE=AF+EF,可证得结论。
2.如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+c(a>0)与x轴相交于点A(﹣1,0)和点B,与y轴交于点C,对称轴为直线x=1.(1)求点C的坐标(用含a的代数式表示);(2)联结AC、BC,若△ABC的面积为6,求此抛物线的表达式;(3)在第(2)小题的条件下,点Q为x轴正半轴上一点,点G与点C,点F与点A关于点Q成中心对称,当△CGF为直角三角形时,求点Q的坐标.【答案】(1)解:∵抛物线y=ax2+bx+c(a>0)的对称轴为直线x=1,而抛物线与x轴的一个交点A的坐标为(﹣1,0)∴抛物线与x轴的另一个交点B的坐标为(3,0)设抛物线解析式为y=a(x+1)(x﹣3),即y=ax2﹣2ax﹣3a,当x=0时,y=﹣3a,∴C(0,﹣3a)(2)解:∵A(﹣1,0),B(3,0),C(0,﹣3a),∴AB=4,OC=3a,∴S△ACB= AB•OC=6,∴6a=6,解得a=1,∴抛物线解析式为y=x2﹣2x﹣3(3)解:设点Q的坐标为(m,0).过点G作GH⊥x轴,垂足为点H,如图,∵点G与点C,点F与点A关于点Q成中心对称,∴QC=QG,QA=QF=m+1,QO=QH=m,OC=GH=3,∴OF=2m+1,HF=1,当∠CGF=90°时,∵∠QGH+∠FGH=90°,∠QGH+∠GQH=90°,∴∠GQH=∠HGF,∴Rt△QGH∽Rt△GFH,∴ = ,即,解得m=9,∴Q的坐标为(9,0);当∠CFG=90°时,∵∠GFH+∠CFO=90°,∠GFH+∠FGH=90°,∴∠CFO=∠FGH,∴Rt△GFH∽Rt△FCO,∴ = ,即 = ,解得m=4,∴Q的坐标为(4,0);∠GCF=90°不存在,综上所述,点Q的坐标为(4,0)或(9,0).【解析】【分析】(1)根据抛物线是轴对称图形和已知条件可求得抛物线与x轴的另一个交点B的坐标,再用交点式可求得抛物线的解析式,然后根据抛物线与y轴交于点C可得x=0,把x=0代入解析式即可求得点C的坐标;(2)由(1)的结论可求得AB=4,OC=3a,根据三角形ABC的面积=AB•OC=6可求得a的值,则解析式可求解;(3)设点Q的坐标为(m,0).过点G作GH⊥x轴,垂足为点H,根据中心对称的性质可得QC=QG,QA=QF=m+1,QO=QH=m,OC=GH=3。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、相似真题与模拟题分类汇编(难题易错题)1.如图,在⊙O中,直径AB经过弦CD的中点E,点M在OD上,AM的延长线交⊙O于点G,交过D的直线于F,且∠BDF=∠CDB,BD与CG交于点N.(1)求证:DF是⊙O的切线;(2)连结MN,猜想MN与AB的位置有关系,并给出证明.【答案】(1)证明:∵直径AB经过弦CD的中点E,, = ,即是的切线(2)解:猜想:MN∥AB.证明:连结CB.∵直径AB经过弦CD的中点E,∴ = , = ,∴∵∴∴∵∴∵∵∴∴∴MN∥AB.【解析】【分析】(1)要证DF是⊙O的切线,由切线的判定知,只须证∠ODF=即可。
由垂径定理可得AB⊥CD,则∠BOD+∠ODE=,而∠ODF=∠CDF+∠ODE,由已知易得∠BOD=∠CDF,则结论可得证;(2)猜想:MN∥AB.理由:连结CB,由已知易证△CBN∽△AOM,可得比例式,于是由已知条件可转化为,∠ODB是公共角,所以可得△MDN∽△ODB,则∠DMN=∠DOB,根据平行线的判定可得MN∥AB。
2.如图,在一间黑屋子里用一盏白炽灯照一个球.(1)球在地面上的影子是什么形状?(2)当把白炽灯向上平移时,影子的大小会怎样变化?(3)若白炽灯到球心的距离是1 m,到地面的距离是3 m,球的半径是0.2 m,则球在地面上影子的面积是多少?【答案】(1)解:球在地面上的影子的形状是圆.(2)解:当把白炽灯向上平移时,影子会变小.(3)解:由已知可作轴截面,如图所示:依题可得:OE=1 m,AE=0.2 m,OF=3 m,AB⊥OF于H,在Rt△OAE中,∴OA= = = (m),∵∠AOH=∠EOA,∠AHO=∠EAO=90°,∴△OAH∽△OEA,∴,∴OH= == (m),又∵∠OAE=∠AHE=90°,∠AEO=∠HEA,∴△OAE∽△AHE,∴ = ,∴AH= ==2625 (m).依题可得:△AHO∽△CFO,∴ AHCF=OHOF ,∴CF= AH⋅OFOH = 2625×32425=64 (m),∴S影子=π·CF2=π· (64)2 = 38 π=0.375π(m2).答:球在地面上影子的面积是0.375π m2.【解析】【分析】(1)球在灯光的正下方,根据中心投影的特点可得影子是圆.(2)根据中心投影的特点:在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长;所以白炽灯向上移时,阴影会逐渐变小.(3)作轴截面(如图)由相似三角形的判定得三组三角形相似,再根据相似三角形的性质对应边成比例,可求得阴影的半径,再根据面积公式即可求出面积.3.如图1,等腰△ABC中,AC=BC,点O在AB边上,以O为圆心的圆与AC相切于点C,交AB边于点D,EF为⊙O的直径,EF⊥BC于点G.(1)求证:D是弧EC的中点;(2)如图2,延长CB交⊙O于点H,连接HD交OE于点K,连接CF,求证:CF=OK+DO;(3)如图3,在(2)的条件下,延长DB交⊙O于点Q,连接QH,若DO=,KG=2,求QH的长【答案】(1)证明:如图1中,连接OC.∵AC是⊙O的切线,∴OC⊥AC,∴∠ACO=90°,∴∠A+∠AOC=90°,∵CA=CB,∴∠A=∠B,∵EF⊥BC,∴∠OGB=90°,∴∠B+∠BOG=90°,∴∠BOG=∠AOC,∵∠BOG=∠DOE,∴∠DOC=∠DOE,∴点D是的中点(2)证明:如图2中,连接OC.∵EF⊥HC,∴CG=GH,∴EF垂直平分HC,∴FC=FH,∵∠CFK= ∠COE,∵∠COD=∠DOE,∴∠CFK=∠COD,∵∠CHK= ∠COD,∴∠CHK= ∠CFK,∴点K在以F为圆心FC为半径的圆上,∴FC=FK=FH,∵DO=OF,∴DO+OK=OF+OK=FK=CF,即CF=OK+DO;(3)解:如图3中,连接OC、作HM⊥AQ于M.设OK=x,则CF= +x,OG=2﹣x,GF= ﹣(2﹣x),∵CG2=CF2﹣FG2=CO2﹣OG2,∴( +x)2﹣[ -(2﹣x)]2=()2﹣(2﹣x)2,解得x= ,∴CF=5,FG=4,CG=3,OG= ,∵∠CFE=∠BOG,∴CF∥OB,∴ = = ,可得OB= ,BG= ,BH= ,由△BHM∽△BOG,可得 = = ,∴BM= ,HM= ,MQ=OQ﹣OB﹣BM=在Rt△HMQ中,QH= = =【解析】【分析】(1)如图1中,连接OC.根据切线的性质得出OC⊥AC,根据垂直的定义得出∠ACO=90°,根据直角三角形两锐角互余得出∠A+∠AOC=90°,根据等边对等角得出∠A=∠B,根据垂直的定义得出∠OGB=90°,根据直角三角形两锐角互余得出∠B+∠BOG=90°,根据等角的余角相等得出∠BOG=∠AOC,根据对顶角相等及等量代换得出∠DOC=∠DOE,根据相等的圆心角所对的弧相等得出结论;(2)如图2中,连接OC.根据垂径定理得出CG=GH,进而得出EF垂直平分HC,根据线段垂直平分线上上的点到线段两个端点的距离相等得出FC=FH,根据圆周角定理及等量代换得出∠CFK=∠COD,∠CHK=∠CFK,从而得出点K在以F为圆心FC为半径的圆上,根据同圆的半径相等得出FC=FK=FH,DO=OF,根据线段的和差及等量代换得出CF=OK+DO;(3)如图3中,连接OC、作HM⊥AQ于M.设OK=x,则CF= +x,OG=2﹣x,GF=﹣(2﹣x),根据勾股定理由CG2=CF2﹣FG2=CO2﹣OG2,列出关于x的方程,求解得出x的值,从而得出CF=5,FG=4,CG=3,OG= 根据平行线的判定定理得出,内错角相等,两直线平行得出CF∥OB,根据平行线分线段成比例定理得出C F ∶O B = C G∶ G B = F G ∶G O ,进而可得OB,BG,BH的长,由△BHM∽△BOG,可得 B H ∶O B = B M ∶B G = H M ∶O G,再得出BM,HM,MQ的长,在Rt△HMQ中,根据勾股定理得出QH的长。
4.如图,已知AB是⊙O的直径,点C在⊙O上,过点C的直线与AB的延长线交于点P,AC=PC,∠COB=2∠PCB.(1)求证:PC是⊙O的切线;(2)求证:BC= AB;(3)点M是弧AB的中点,CM交AB于点N,若AB=4,求MN MC的值.【答案】(1)证明:∵OA=OC,∴∠A=∠ACO,又∵∠COB=2∠A,∠COB=2∠PCB,∴∠A=∠ACO=∠PCB,又∵AB是⊙O的直径,∴∠ACO+∠OCB=90°,∴∠PCB+∠OCB=90°,即OC⊥CP,∵OC是⊙O的半径,∴PC是⊙O的切线(2)证明:∵AC=PC,∴∠A=∠P,∴∠A=∠ACO=∠PCB=∠P.又∵∠COB=∠A+∠ACO,∠CBO=∠P+∠PCB,∴∠COB=∠CBO,∴BC=OC,∴(3)解:连接MA,MB,∵点M是弧AB的中点,∴弧AM=弧BM,∴∠ACM=∠BCM,∵∠ACM=∠ABM,∴∠BCM=∠ABM,∵∠BMN=∠BMC,∴△MBN∽△MCB,∴,∴ BM2=MN⋅MC ,又∵AB是⊙O的直径,弧AM=弧BM,∴∠AMB=90°,AM=BM,∵AB=4,∴,∴ MN⋅MC=BM2=8 .【解析】【分析】(1)根据等边对等角得出∠A=∠ACO,运用外角的性质和已知条件得出∠A=∠ACO=∠PCB,再根据直径所对的圆周角是直角得出∠PCB+∠OCB=90°,进而求解.(2)根据等边对等角得出∠A=∠P,再根据第一问中的结论求解即可,(3)连接MA,MB,根据同弧或等弧所对的圆周角相等得出∠ACM=∠ABM,∴∠BCM=∠ABM,证出△MBN∽△MCB,得出比例式进而求解即可.5.如图,已知二次函数y=ax2+ x+c的图象与y轴交于点A(0,4),与x轴交于点B、C,点C坐标为(8,0),连接AB、AC.(1)请直接写出二次函数y=ax2+ x+c的表达式;(2)判断△ABC的形状,并说明理由;(3)若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,请直接写出此时点N的坐标;(4)若点N在线段BC上运动(不与点B、C重合),过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求此时点N的坐标.【答案】(1)解:∵A(0,4),∴c=4,,把点C坐标(8,0)代入解析式,得:a=-,∴二次函数表达式为;(2)解:令y=0,则解得,x1=8,x2="-2" ,∴点B的坐标为(-2,0),由已知可得,在Rt△AOB中,AB----2=BO2+AO2=22+42=20,在Rt△AOC中AC----2=AO2+CO2=42+82=80,又∵BC=OB+OC=2+8=10,∴在△ABC中AB----2+ AC----2=20+80=102=BC2,∴△ABC是直角三角形;(3)解:由勾股定理先求出AC,AC= ,①在x轴负半轴,当AC=AN 时,NO=CO=8,∴此时N(-8,0);②在x轴负半轴,当AC=NC时,NC=AC= ,∵CO=8,∴NO= -8,∴此时N(8- ,0);③在x轴正半轴,当AN=CN时,设CN=x,则AN=x,ON=8-x,在Rt△AON中,+ = ,解得:x=5,∴ON=3,∴此时N(3,0);④在x轴正半轴,当AC=NC时,AC=NC= ,∴ON= +8,∴此时N(+8,0);综上所述:满足条件的N点坐标是(-8,0)、(8- ,0)、(3,0)、(8+ ,0);(4)解:设点N的坐标为(n,0),则BN=n+2,过M点作MD⊥x轴于点D,∴MD∥OA,∴△BMD∽△BAO,,∵MN∥AC,∴,∴,∵OA=4,BC=10,BN=n+2,∴MD= (n+2),∵S△AMN= S△ABN- S△BMN==- +5,∵- <0,∴n=3时,S有最大值,∴当△AMN面积最大时,N点坐标为(3,0).【解析】【分析】(1)用待定系数法可求二次函数的解析式;(2)因为抛物线交x轴于B、C两点,令y=0,解关于x的一元二次方程可得点B的坐标,然后计算AB、BC、AC的长,用勾股定理的逆定理即可判断;(3)由(2)可知AC的长,由题意可知有4种情况:①在x轴负半轴,当AC=AN时;②②在x轴负半轴,当AC=NC时;③在x轴正半轴,当AN=CN时;④在x轴正半轴,当AC=NC时;结合已知条件易求解;(4)设点N的坐标为(n,0),则BN=n+2,过M点作MD⊥x轴于点D,由平行于三角形一边的直线和其他两边所构成的三角形与原三角形相似可得△BMD∽△BAO,于是有比例式,根据平行线分线段成比例定理可得,所以,将已知线段代入比例式可将MD用含n的代数式表示出来,根据三角形的构成可得S△AMN= S△ABN- S△BMN=⋅ BN⋅OA−BN⋅MD,将BN、MD代入可得关于n的二次函数,配成顶点式根据二次函数的性质即可求解。