超导微观理论
电阻的微观理论和超导体讲义

则平均漂移速度 电流密度为
2 j nev ne( eE / v me ) (ne / v me ) E E
eE v v me
t /v
eEt v me
其中,电导率为
ne v me
2
从金属的电子理论导出了欧姆定律的微分形式 和电导率的表达式。
a F / m e eE / m e
由于电子与点阵碰撞,电子不 能一直加速, + + + + + + + + + + + + + + + + + + + + + + + + + + + +
电子定向速度增加受到限制, 电子只在两次碰撞之间加速
电子两次碰撞的时间间隔为t ,上次碰撞后的初速度为
万有引力的时空弯曲示意图
超导机制的核心(2)-电子对相干
金属中电子混乱
超导体中电子 对步调一致, 所有电子对可 以看作一个整 体,运动不易 受外界影响
高温超导体的发现:1986年1月柏诺兹和缪勒,发 现钡镧铜氧化物是超导体
发现了高温铜氧化物超导体,揭开了人类对超导 技术的开发的序幕
• 已故超导材料权威
• 电子固有的热运动以 外,因电场的作用, 还获得与场强方向相 反的加速度, 并做有规 则的定向运动
离子 (+)
4、电阻的起源
电子
电场
金属自由电子气体模型的近似
• 除了电子与晶格碰撞一瞬间以外,忽略电子与晶格之间 的相互作用,即“自由电子近似”
2-3 超导体的基本理论

(2)BCS理论 二流体模型和伦敦方程虽然可以解释一些超导现象,
但是不能揭示那种奇异的超导电子究竟是什么。1957年, 巴丁、库柏和施里佛提出了超导电性量子理论,称为BCS 超导微观理论。1972年获得了诺贝尔物理学奖。
BCS理论证明了低温下材料的超导电性起源于物质 中电子与声子的相互作用。当电子间通过声子的作用而产 生的吸引力大于库仑排斥力时,电子结合成库柏电子对, 使系统的总能量降低而进入超导态。在超导的基态与激发 态之间有一等于电子对结合能的能隙△(T),超导电子 对不接受小于能隙的能量。
M Tc 常数
对于大多数超导体,α=1/2。同位素效应使人们想到电 子-声子相互作用与超导电性有密切的联系,因而对超导理 论的建立产生了重要的影响。需要指出的是高温氧化物超导 体表现出很弱的同位素效应。
2.3.4 超导电性的微观机制 自超导现象发现以来,科学界一直在寻找能解释超
导这一奇异现象的理论,先后提出唯象理论,BCS理论 等。这些理论各有其合理性,同时也存在局限性。他们 在机理上并不互相排斥,相反可以互相补充。但到目前 为止,所有理论的一个严重不足之处就是,他们并不能 预测实际的超导材料的性质,也不能说明由哪些元素和 如何配比时才能得到所需临界参量的超导材料,尤其对 于高温超导现象还没有比较完善的理论加以解释。下面 简单介绍解释超导电现象的理论和微观机制。
晶体中电子是处于正离子组成的晶格环
境中,带负电荷的电子吸引正离子向它
靠拢;于是在电子周围又形成正电荷聚
集的区域,它又吸引附近的电子。电子
间通过交换声子能够产生吸引作用。
电子与正离子相互作用形 成库柏电子对示意图
当电子间有净的吸引作用时,费密面附近的两个电子将
形成束缚的电子对的状态,它的能量比两个独立的电子的总
第六章超导微观理论

由于相当于“对算子”的外势场,所以又称为对 势。 利用玻戈留玻夫正则变换可将以上哈密顿对角化
Ck uk k vk k,
Ck uk k vk k C uk vk k
|E|, 当V0时,E不能展开为V的幂级数,说明Cooper问题不能用微扰论求解
超导问题不能用微扰论求解
Cooper对的尺寸 利用测不准关系: cp ~
c为Cooper 对的半径
c ~
F EF ~ ~ ~ 104 cm p | E | k F | E |
EF为电子伏级, kF ~ 108 cm1, | E |~ 104 eV量级。
H coul
1 4e 2 2 C C C C 2 k1 q , 1 k 2 q , 2 k 2 , 2 k1 , 1 2 q ,k1 ,k2 q
1 , 2
两电子间净的相互作用势
1 4e 2 H ' (Vk1 ,q 2 ) C C k q , k q , Ck , Ck , 2 q ,k1 ,k2 q 2 1 1 2 2 2 2 1 1
FeAs基超导, Tc ~ 50K
液氮的温度为~77K。
超导体的基本属性可由下列3个特征表示 1. 超导态是一种新的凝聚态 T<Tc时,比热容不再与T成线性关系,变为指数式的温度关系。 T<Tc时,超导态的自由能比正常态低,因为必须加磁场Hc才能破坏超导性, 使金属恢复电阻,回到正常态。 Hc称为临界磁场。
他们得出了超导态的本征能量及波函数,解释了低温超导现象。
这里介绍简单的自洽场近似法求BCS约化哈密顿的本征函数和本征值 (其实质与BCS变分法相同)
超导电性的微观机制及其应用

超导电性的微观机制及其应用超导现象是指某些物质在低温下表现出的零电阻和完全磁场排斥的特性。
这个神奇的现象在实际应用中具有广泛的潜力,例如超导电缆、磁悬浮列车和MRI设备等。
要理解超导现象的微观机制,我们需要了解它的起源和相关理论。
超导现象的理论基础是由约瑟夫·巴丁、约翰·巴丁和恩里科·费米等人在20世纪50年代初提出的。
他们基于费米-狄拉克统计原理和电子与晶格之间的相互作用来解释超导电性。
根据这个理论,当某些金属或合金被冷却到超导转变温度以下时,电子会以成对的方式聚集在一起形成所谓的库珀对。
这些电子通过库珀对与晶格振动相互作用,从而导致电阻为零。
在更详细的层面上,超导电性的理论可以用BCS理论来描述。
BCS 理论认为,超导电性是由于电子与晶格之间的相互作用导致了库珀对的形成。
在超导体中,晶格的振动形成了一种被称为声子的粒子,它们传递相互作用给电子。
这种相互作用使得电子能够成对出现,形成库珀对。
库珀对的形成使得电子能够在整个超导体中以一种协同的方式运动,从而导致零电阻和磁场的排斥。
超导现象的应用非常广泛。
其中一个最重要的应用是超导电缆。
超导电缆由超导体和包裹超导体的保护层构成。
由于超导体的零电阻特性,超导电缆可以输送大电流而无能量损耗。
这使得超导电缆在电力输送中具有巨大的潜力,可以实现更高效、更可靠的电力传输。
另一个重要的应用是磁悬浮技术。
通过在磁铁上放置超导体,可以实现磁悬浮效应。
超导体在低温下对磁场具有完全的排斥,因此可以使物体浮在磁场中。
这种技术在磁悬浮列车和磁浮风力发电等领域得到了广泛应用,可以实现高速、低能耗的运输和发电方式。
此外,超导体还被广泛应用于医学领域。
MRI(磁共振成像)是一种通过利用超导磁体产生强磁场的技术来观察人体内部结构的方法。
超导磁体能够提供非常强大的磁场,在医学图像诊断中起到关键的作用。
总之,超导电性的微观机制可以通过BCS理论解释。
超导现象具有零电阻和磁场排斥的特性,可以在超导电缆、磁悬浮技术和医学领域等多个应用中发挥作用。
超导介绍及应用PPT课件

(6)科学工程和实验室应用
• 科学工程和实验室是超导技 术应用的一个重要方面,它 包括高能加速器、核聚变装 置等。高能加速器用来加速 粒子产生人工核反应以研究 物质内部结构,是基本粒子 物理学研究的主要装备。
当通过超导体中的电流达到某一特定值时, 又会重新出现电阻,使其产生这一相变的电 流称为临界电流 临界磁场(Hc): 逐渐增大磁场到达一定值后,超 导体会从超导态变为正常态,把破坏超导电 性所需的最小磁场
临 界 温 度
(Tc)
临界磁场
逐渐增大磁场到 H 达一定值后,超导体 会从超导态变为正常 Hc(0) 态,把破坏超导电性 所需的最小磁场称为 临界磁场,记为Hc。
超导发电机
在电力领域,利用超导线 圈磁体可以将发电机的磁场强 度提高到5万~6 万高斯,并且 几乎没有能量损失,这种发电 机便是交流超导发电机。超导 发电机的单机发电容量比常规 发电机提高5~10倍,达1万兆 瓦,而体积却减少1/2,整机重 量减轻1/3,发电效率提高50%
超导限流器
超导限流器是利用超 导体的超导/正常态转变 特性,有效限制电力系 统故障短路电流,能够 快速和有效地达到限流 作用的一种电力设备。 超导限流器集检测、触 发和限流于一体,反应 速度快,正常运行时的 损耗很低,能自动复位, 克服了常规熔断器只能 使用一次的缺点 。
巴丁、库柏、施里弗
巴丁、库柏、施里弗获得了1972年诺贝 尔物理奖
BCS理论的三个观点
bcs是什么意思

bcs是什么意思
bcs意思是:
常规超导体微观理论。
BCS理论是解释常规超导体的超导电性的微观理论(所以也常意译为超导的微观理论)。
该理论以其发明者约翰·巴丁、利昂·库珀和约翰·施里弗的名字首字母命名。
BCS理论中作出了一个重要的假设:电子之间存在吸引力。
在典型的I型超导体中,这种力是由于电子和晶格之间的库仑吸引力。
晶格中的电子将导致其周围的正电荷轻微增加。
正电荷的增加又会吸引另一个电子。
这两个电子被称为库珀对(cooperpair)。
如果将这些电子结合在一起所需的能量小于试图将它们分开的晶格的热振动的能量,则这个库珀对将保持互相约束的状态。
这也解释了为什么超导要求低温--晶格的热振动必须足够小以允许库珀对的形成。
在超导体中,电流由这些库珀对而不是单独的电子形成。
高二物理竞赛课件:超导电性的微观理论图象

能源工业: 超导贮能调节电网负荷、超导磁体约束的等离子体
和可能产生的核聚变
电子学方面: 超导计算机研究:计算速度高,体积小,功
耗低,使用方便,信息储存量大
医学和生物方面:核磁共振计算机断层诊断装置(NMR-CT)、
超导量子干涉场、低消耗
2、超导电缆
电能在零电阻输送,完全没有损耗
3、超导储能
超导体圆环置于磁场中,降温至材料临界温度以下,撤去磁场, 由于电磁感应,圆环中有感生电流产生。只要温度保持在临界温 度以下,电流便会持续。
高温超导实用化——诱人前景
电力能源方面:输电电缆、发电机、电动机、变压器超导化超导
超导电性的微观理论图象
三、如何基于库柏对的概念描述超导电性?
◇当超导体为非载流状态时,无论是库柏对还是正常态电子在动量空 间分布是均匀的,没有择优方向,所以无电流存在; ◇在载流情况下,库柏对的质心动量不为零,所有库柏对都获得了一 个大小相等的质心动量; ◇声子对对库柏对中电子的散射只是将一个库柏对变成了另一个库柏 对,并改变库柏对的整体动量,所以载流库柏对所产生的电流是无电 阻的; ◇拆散一个库柏对需要一个最低能量,所以较小的电流密度的能量不 足以拆散库柏对。
超导电性的微观理论图象
超导电性的微观理论图象
一、电子-声子如何相互作用?
何种电子可以形成库柏对?
超导电性的微观理论图象
一、电子-声子如何相互作用?
何种电子最易形成库柏对?
超导电性的微观理论图象
二、超导能隙是如何形成的?
◇尽管电子之间的相互作用是排斥的,但是由于库柏对借助声子交换 形成,具有净的的相互吸引,所以能量是负的; ◇库柏对一旦形成,体系能量就下降,而且固体中的库柏对越多,体 系的能量愈低; ◇拆散一个库柏对需要一个最低能量,所以超导态和正常态存在能隙; ◇由于温度越高库柏对越易拆散,能隙是温度的函数,温度越高,能 隙越小,当T=TC 时,能隙为零。
1972年诺贝尔物理学奖

1972年诺贝尔物理学奖1972年物理学奖,颁发给了三位美国的物理学家,他们是约翰·巴丁(John Bardeen)、利昂·库珀(Leon NCoope)和约翰·施里弗(John R.Schrieffer,1931—2019),他们曾在同一个实验室工作过,并且创立了以他们名字的第一个字母为缩写的BCS超导微观理论。
其中巴丁是第二次获得这一奖项(第一次获奖是1956年),是物理学史上唯一两次获得这一荣誉的人。
约翰·巴丁(John Bardeen,1908—1991),他的生平在前面已经介绍过,在这里不再重复。
早在20世纪50年代早期,巴丁就已经开始考虑超导电性的问题。
他意识到电子与声子的相互作用是解决问题的关键。
1953年,施里弗来到伊利诺伊大学,在巴丁的指导下攻读物理学博士学位,并选择超导问题作为博士论文题目。
在普林斯顿高等研究院的杨振宁的推荐下,刚从哥伦比亚大学获得博士学位不久的库柏开始与巴丁和施里弗进行合作,研究超导的微观机制。
从20世纪30年代开始,巴丁就接触到了超导电性,他对这种现象长期得不到解释甚为担忧,认为这是理论物理学界的耻辱。
E.伦敦(E.London)认为,超导电性是一种宏观尺度上的量子现象,他的能隙概念和对迈斯纳效应的重视,对巴丁很有启发。
1940年,巴丁曾经尝试对超导电性进行解释,他认为关键在于费米面(描述金属中电子状态的动量空间中的等能面)是起因于微小点阵位移而出现的一些小能隙,1在紧靠费米面下面的态的电子能量被降低,处于这种态的电子具有非常小的有效能量、很大的轨道和很强的抗磁性。
巴丁的这一解释是不成功的。
1941年,巴丁参加战时军事研究,只好把超导电性的研究暂时放下。
1950年,由于麦克斯韦(E.Maxwell)等人发现超导体的同位素效应,促使巴丁回到超导电性的研究上来。
当巴丁听到这一效应的发现时,马上想到有可能是一种电子和声子的相互作用。