初中数学幂的运算专题总复习

合集下载

幂的运算总复习

幂的运算总复习

幂的运算第一部分 知识梳理一、 同底数幂的乘法1. 同底数幂的乘法同底数幂相乘,底数不变,指数相加。

公式表示为:+m n m n a a a ⋅=()m n 、都是正整数2. 同底数幂的乘法可以推广到三个或三个以上的同底数幂相乘,即m n p m n p a a a a ++⋅⋅=()m n p 、、都是正整数。

注意点:(1) 同底数幂的乘法中,首先要找出相同的底数,运算时,底数不变,直接把指数相加,所得的和作为积的指数。

(2) 在进行同底数幂的乘法运算时,如果底数不同,先设法将其转化为相同的底数,再按法则进行计算.二、 幂的乘方和积的乘方1. 幂的乘方幂的乘方,底数不变,指数相乘。

公式表示为:()()m n mn a a m n =,都是正整数。

幂的乘方推广:[()]()m n p mnp a am n p =,,都是正整数2.积的乘方积的乘方,把积的每个因式分别乘方,再把所得的幂相乘。

公式表示为:()()n n n ab a b n =是正整数积的乘方推广:()()n n n n abc a b c n =是正整数注意点:(1) 幂的乘方的底数是指幂的底数,而不是指乘方的底数.(2) 指数相乘是指幂的指数与乘方的指数相乘,一定要注意与同底数幂相乘中“指数相加”区分开.(3) 运用积的乘方法则时,数字系数的乘方,应根据乘方的意义计算出结果。

(4) 运用积的乘方法则时,应把每一个因式都分别乘方,不要遗漏其中任何一个因式. 三、 同底数幂的除法1. 同底数幂的除法 : 同底数幂相除,底数不变,指数相减。

公式表示为:(0)m n m n a a a a m n m n -÷=≠>,、是正整数,且同底数幂的除法推广:(0)m n p m n p a a a a a m n p m n p --÷÷=≠>+,,、、是正整数 2.零指数幂的意义:任何不等于0的数的0次幂都等于1: 用公式表示为:01(0)a a =≠3.负整数指数幂的意义:任何不等于0的数的()n n -是正整数次幂,等于这个数的n 次幂的倒数.(先进行幂的运算然后直接倒数): 用公式表示为:1(0)n na a n a -=≠,是正整数 4.绝对值小于1的数的科学记数法对于绝对值大于0小于1的数,可以用科学记数法表示的形式为10na -⨯,其中110a ≤<,n 由原数左边起第一个不为零的数字前面的0的个数(含整数位上的零)所决定。

《幂的运算复习》课件

《幂的运算复习》课件

基础练习题
1. 计算
2^3 + 3^2
3. 计算
a^m × a^n
总结词
考察幂的运算基本概念和简单 计算
2. 计算
(a^2)^3 × a^4
4. 计算
(x^2)^3
进阶练习题
1. 计算
(a + b)^2
3. 计算
(a × b)^n
总结词
考察幂的运算规则 和复杂计算
2. 计算
(a - b)^3
4. 计算
总结词 理解幂的乘方运算在解决实际问 题中的应用。
开方运算
总结词
详细描述
总结词
详细描述
掌握幂的开方运算规则,理解 开方的意义和性质。
幂的开方运算规则是"底数开方 ,指数减半"。即,√a^m = a^(m/2)。例如,√2^3 = 2^(3/2)。
理解幂的开方运算在解决实际 问题中的应用。
在解决实际问题时,有时需要 求一个数的平方根,这时就可 以使用幂的开方运算。此外, 在计算一些几何量时,也可以 使用幂的开方运算来简化计算 过程。
忽略幂的运算优先级
总结词
在进行幂的运算时,学生容易忽略运 算的优先级,导致计算结果错误。
详细描述
在数学运算中,幂运算具有优先级, 应该先进行幂运算,然后再进行加减 乘除等其他运算。学生常常忽略这一 点,例如将"a+b*c^2"误写为 "a+(b*c)^2",导致计算结果错误。
错误应用幂的性质
总结词
在金融领域,幂的运算用 于构建各种金融模型,如 股票价格模型、利率模型 等。
人口统计
在人口统计学中,幂的运 算用于预测人口增长和分 布。

幂运算中考知识点总结

幂运算中考知识点总结

幂运算中考知识点总结一、指数和底数在幂运算中,指数和底数是两个非常重要的概念。

指数表示底数相乘的次数,底数则是进行乘方运算的数。

例如,在表达式a的n次幂中,n就是指数,a就是底数。

指数有几个基本的概念需要了解:1. 正指数和负指数正指数表示底数相乘的次数是正整数,负指数表示底数相乘的次数是负整数。

当指数为0时,任何非零数的零次幂都等于1,0的零次幂没有意义。

2. 零指数任何非零数的零次幂都等于1。

3. 幂与乘积的关系a的m次幂和a的n次幂的乘积等于a的m+n次幂。

即a的m次幂乘以a的n次幂等于a的m+n次幂。

4. 幂与幂的关系a的m次幂的n次幂等于a的m×n次幂。

即a的m次幂的n次幂等于a的m×n次幂。

二、幂运算的基本性质1. 乘方的取消律对于任意非零数a,b以及任意整数m,n,有以下基本性质:a的m次幂和b的m次幂相等,则a和b互为m次方根;a的m次幂和a的n次幂相等,那么m和n相等。

(前提是a不等于0)2. 乘方的运算规律对于任何非零数a和整数m,n,p,有以下基本性质:a的m次幂的n次幂等于a的m×n次幂;a的m次幂和a的n次幂的p次幂等于a的m×p次幂;a的m次幂的p次幂和a的n次幂的p次幂等于a的m+n次幂。

3. 乘方的分配律对于任何非零数a和b以及整数m,n,有以下基本性质:a和b相乘后再进行m次幂等于a的m次幂和b的m次幂相乘;a的m次幂和a的n次幂相乘等于a的m+n次幂。

三、幂运算的应用幂运算在实际生活和数学中有着丰富的应用,常见的应用有以下几种:1. 计算面积和体积在几何中,幂运算可以用来计算三角形、矩形、圆等的面积,以及立方体、球体等的体积。

2. 科学计数法幂运算在科学计数法中有着重要的应用,可以帮助我们用较小的数字表示非常大的数,或者较大的数字表示非常小的数。

3. 概率和统计在概率和统计中,幂运算可以用来计算事件发生的可能性,以及表示数据之间的关系。

幂的运算(3大知识点7类题型)(知识梳理与题型分类讲解)(人教版)(学生版) 25学年八年级数学上册

幂的运算(3大知识点7类题型)(知识梳理与题型分类讲解)(人教版)(学生版) 25学年八年级数学上册

专题14.1幂的运算(3大知识点7类题型)(知识梳理与题型分类讲解)第一部分【知识点归纳与题型目录】【知识点1】同底数幂的乘法法则+⋅=m n m n a a a (其中,m n 都是正整数).即同底数幂相乘,底数不变,指数相加.【要点提示】(1)同底数幂是指底数相同的幂,底数可以是任意的实数,也可以是单项式、多项式.(2)三个或三个以上同底数幂相乘时,也具有这一性质,即m n p m n p a a a a ++⋅⋅=(,,m n p 都是正整数).(3)逆用公式:把一个幂分解成两个或多个同底数幂的积,其中它们的底数与原来的底数相同,它们的指数之和等于原来的幂的指数。

即m n m n a a a +=⋅(,m n 都是正整数).【知识点2】幂的乘方法则()=m n mn a a (其中,m n 都是正整数).即幂的乘方,底数不变,指数相乘.【要点提示】(1)公式的推广:(())=m n p mnp a a(0≠a ,,,m n p 均为正整数)(2)逆用公式:()()n m mn m n aa a ==,根据题目的需要常常逆用幂的乘方运算能将某些幂变形,从而解决问题.【知识点3】积的乘方法则()=⋅n n nab a b (其中n 是正整数).即积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.【要点提示】(1)公式的推广:()=⋅⋅n n n n abc a b c(n 为正整数).(2)逆用公式:()n n n a b ab =逆用公式适当的变形可简化运算过程,尤其是遇到底数互为倒数时,计算更简便.如:1010101122 1.22⎛⎫⎛⎫⨯=⨯= ⎪ ⎪⎝⎭⎝⎭【知识点4】注意事项(1)底数可以是任意实数,也可以是单项式、多项式.(2)同底数幂的乘法时,只有当底数相同时,指数才可以相加.指数为1,计算时不要遗漏.(3)幂的乘方运算时,指数相乘,而同底数幂的乘法中是指数相加.(4)积的乘方运算时须注意,积的乘方要将每一个因式(特别是系数)都要分别乘方.(5)灵活地双向应用运算性质,使运算更加方便、简洁.(6)带有负号的幂的运算,要养成先化简符号的习惯.【题型目录】【题型1】同底数幂的乘法运算及逆运算...........................................2;【题型2】幂的乘方运算及逆运算.................................................3;【题型3】积的乘方运算及逆运算.................................................3;【题型4】幂的混合运算.........................................................4;【题型5】幂的运算的应用.......................................................4;【题型6】直通中考.............................................................5;【题型7】拓展与延伸...........................................................5.第二部分【题型展示与方法点拨】【题型1】同底数幂的乘法运算及逆运算【例1】(23-24七年级上·河南周口·期中)在学习第一章有理数时,类比小学两个正数的运算法则学习了有理数的加减法、有理数的乘除法,在第二章整式的加减时,类比第一章有理数的学习过程学习了整式的加减,那么整式的乘法是否可以类比有理数的乘法进行学习呢?我们从特殊情况入手对两个同底数幂相乘进行探究.(1)探究根据乘方的意义填空,观察计算结果,你能发现什么规律①53( )222⨯=,②42( )a a a ⋅=,③( )555m n ⨯=,(2)规律( )m n a a a ⋅=(,m n 都是正整数).即______.(文字表达)(3)应用①计算31m m a a +⋅;②把(2)x y +看成一个整体,计算23(2)(2)x y x y +⋅+.【变式1】(23-24七年级下·全国·单元测试)计算3()()x y y x -⋅-=()A .4()x y -B .4()x y --C .4)y x -(D .4()x y +【变式2】(23-24七年级下·全国·单元测试)已知1222162x x ⋅⋅=,则x =.【例2】(2024七年级下·全国·专题练习)(1)已知23x =,求32x +的值;(2)若21464a +=,求a 的值.【变式1】(23-24七年级下·江苏淮安·期中)已知23x =,26y =,则2x y +的值是()A .12B .18C .36D .54【变式2】(2024七年级上·上海·专题练习)已知4222112x x +-⋅=,则x 的值为.【题型2】幂的乘方运算及逆运算【例3】(21-22七年级上·上海·期末)计算:()()()3254652x x x x x x ⎡⎤⋅-⋅+-⋅+-⎣⎦.【变式1】(2022·江苏镇江·中考真题)下列运算中,结果正确的是()A .224325a a a +=B .3332a a a -=C .235a a a ⋅=D .()325a a =【变式2】.若25 3 0x y +-=,则432⋅=x y .【例4】(2023八年级上·全国·专题练习)(1)若23m n a a ==,,求32m n a +的值;(2)若2639273x x ⨯⨯=,求x 的值.【变式1】已知553a =,444b =,335c =,则a 、b 、c 的大小关系为()A .c a b <<B .c b a <<C .a b c <<D .a c b<<【变式2】(23-24八年级上·重庆九龙坡·阶段练习)已知433,33a b ==,则239a b ⨯=.【题型3】积的乘方运算及逆运算25.【例5】(22-23八年级上·黑龙江哈尔滨·阶段练习)(1)()34222x x x ⋅-;(2)()()23332232x y x y +-【变式1】(2022·广东深圳·中考真题)下列运算正确的是()A .268a a a ⋅=B .()3326a a -=C .()22a b a b +=+D .235a b ab+=【变式2】(20-21七年级下·江苏扬州·期末)已知am =10,bm =2,则(ab )m =.【例6】(2023九年级·全国·专题练习)用简便方法计算:(1)88552510.25(4)57⎛⎫⎛⎫-⨯⨯⨯- ⎪ ⎪⎝⎭⎝⎭;(2)()201720180.1258⨯-.【变式1】(22-23七年级下·河北沧州·期中)若n 为正整数.且24n a =,则()()223224n n a a -的值为()A .4B .16C .64D .192【变式2】已知2232336x x x ++-⋅=,则x =.【题型4】幂的混合运算【例7】(21-22八年级上·全国·课后作业)计算:(1)()()()2243224249()(2)--+-a a b a b ;(2)()()()22112()3------n n n n x x x x x .【变式1】(20-21七年级下·甘肃兰州·阶段练习)下列各式计算正确的是()A .-3xy ·(-2xy )2=12x 3y 3B .4x 2·(-2x 3)2=16x 12C .(-a 2)·a 3=a 6D .2a 2b ·(-ab )2=2a 4b 3【变式2】已知2,3x x a t ==,则24x =.(用含,a t 的代数式表示)【题型5】幂的运算的应用【例8】(23-24八年级上·山西长治·阶段练习)我们知道,一般的数学公式、法则、定义可以正向运用,也可以逆向运用.对于“同底数幂的乘法”“幂的乘方”“积的乘方”这几个法则的逆向运用表现为m n m n a a a += ,()()n m mn m n a a a ==,()mm m a b ab =;(m ,n 为正整数).请运用这个思路和幂的运算法则解决下列问题:(1)已知552a =,443b =,334c =,请把a ,b ,c 用“<”连接起来:;(2)若2a x =,3b x =,求32a b x +的值;(3)计算:2001001011284⎛⎫⨯⨯ ⎪⎝⎭.【变式1】(21-22八年级上·河南三门峡·期末)下列运算中,错误的个数是()(1)224a a a +=;(2)236a a a ⋅=;(3)2n n n a a a ⋅=;(4)()448a a a --⋅=A .1个B .2个C .3个D .4个【变式2】(20-21九年级下·湖南永州·期中)将边长为1的正方形纸片按如图所示方法进行对折,记第1次对折后得到的图形面积为S 1,第2次对折后得到的图形面积为S 2,…,第n 次对折后得到的图形面积为S n ,请根据图2化简,12320202021S S S S S +++++= .第三部分【中考链接与拓展延伸】【题型6】直通中考【例9】(2024·河北·中考真题)若a ,b 是正整数,且满足8282222222a b a a a b b b ++⋅⋅⋅+=⨯⨯⋅⋅⋅⨯ 个相加个相乘,则a 与b 的关系正确的是()A .38a b +=B .38a b =C .83a b +=D .38a b=+【例10】(2024·山东烟台·中考真题)下列运算结果为6a 的是()A .23a a ⋅B .122a a ÷C .33a a +D .()32a 【题型7】拓展延伸【例11】(2024·河北·中考真题)“铺地锦”是我国古代一种乘法运算方法,可将多位数乘法运算转化为一位数乘法和简单的加法运算.淇淇受其启发,设计了如图1所示的“表格算法”,图1表示13223⨯,运算结果为3036.图2表示一个三位数与一个两位数相乘,表格中部分数据被墨迹覆盖,根据图2中现有数据进行推断,正确的是()A .“20”左边的数是16B .“20”右边的“□”表示5C .运算结果小于6000D .运算结果可以表示为41001025a +【例12】(19-20七年级下·江苏南京·期中)观察等式(2a ﹣1)a +2=1,其中a 的取值可能是()A .﹣2B .1或﹣2C .0或1D .1或﹣2或0。

专题1.3 幂的乘方与积的乘方(知识梳理与考点分类讲解)2023~2024学年七年级数学下册

专题1.3 幂的乘方与积的乘方(知识梳理与考点分类讲解)2023~2024学年七年级数学下册

专题1.3 幂的乘方与积的乘方(知识梳理与考点分类讲解)【知识点一】幂的乘方1.幂的乘方法则 幂的乘方,底数不变,指数相乘.即:用字母表示为()nm n a a =(m ,n 都是正整数)2.法则的拓展运用(1)幂的乘法运算法则的推广:[]m n p a ()=mnp a (m ,n ,p 都是正整数);(2)幂的乘方法则也可以逆用,逆用时mn a =()n m a =()mn a (m ,n 都是正整数)特别提醒1.“底数不变”是指幂的底数a 不变,“指数相乘”是指幂的指数m 与乘方的指数n 相乘.2.底数可以是一个单项式,也可以是一个多项式.【知识点二】积的乘方1,积的乘法法则积的乘方,等于把积中的每一个因式分别乘方,再把所得的幂相乘.即:用字母表示为()n ab =n n a b (n 为正整数).2.法则的拓展运用(1) 积的乘方法则的推广:()n n n n abc a b c =(n 为正整数).(2) 积的乘方法则也可以逆用,逆用时n n a b =()n ab (n 为正整数).特别提醒1.积的乘方的前提是底数是乘积的形式,若底数为和的形式则不能用,即()n a b +≠n n a b +.2.每个因数(式)可以是单项式,也可以是多项式.3.在进行积的乘方运算时,要把底数中的每一个因式分别乘方,不要漏掉任何一个.【考点目录】【考点1】同底数幂相乘运算1.64a 【详解】原式666644a a a a =+-=.【易错点分析】幂的乘方中,当底数为负数时,如果指数为偶数,则结果为正数;如果指数为奇数,则结果为负数.合并同类项,要让同类项的系数相加减,字母和字母的指数不变.2.A【分析】先把81,27,9转化为底数为3的幂,再根据幂的乘方,底数不变,指数相乘化简.然后根据指数的大小即可比较大小.【详解】解:∵()314131248133a ===;()413141232733b ===;()61261122339c ===.则a b c >>.故选:A .【点睛】本题考查了幂的乘方,变形为同底数幂的形式,再比较大小,可使计算简便.3.9a 【分析】先算乘方,再算同底数幂的乘法即可.【详解】解:()233639a a a a a ⋅=⋅=;故答案为:9a .【点睛】本题考查幂的运算,熟练掌握相关运算法则,是解题的关键.4.(1)9﹣(2)27-(3)243-【分析】本题主要考查幂的乘方、同底数幂的乘法的逆用,熟练掌握运算法则是解题的关键;(1)利用同底数幂的乘法的法则进行运算即可;掌握同底数幂的乘法法则是解题的关键;(2)利用幂的乘方的法则进行运算即可;掌握幂的乘方的法则是解题的关键;(3)利用同底数幂的乘法的法则及幂的乘方的法则进行运算即可;掌握相关运算法则是解题的关键.【详解】(1)解:339x y x y a a a +=⋅=-⨯=- .(2)解:()()333327x x a a ==-=-.(3)解:()()()3233232233279243x y x y x y a a a a a +=⋅=⋅=-⋅=-⨯=-.5.A【详解】先根据幂的乘方法则,把4个数化成指数相同的数,再根据底数的大小比较即可.()11555112232== ,()11444113381==,()111133355125==,()11222116636==,且11111111323681125<<<,552244332635∴<<<.【易错点分析】与幂有关的计算,需要用到如下策略:把不同底数的幂化为同底数的幂;把不同指数的幂化为同指数的幂;把已知幂化为特殊底数的幂.6.18【分析】根据幂的乘方和同底数幂的乘法的逆运算法则求解即可.【详解】解:∵3m a =,2n a =,∴22m n m na a a +=⋅()2nm a a =⋅232=⨯18=,故答案为:18.【点睛】本题考查幂的乘方和同底数幂的乘法,利用幂的乘方和同底数幂的乘法逆运算法则是解答的关键.7.(1)61237x y ;(2)616x -.【分析】(1)先利用积的乘方运算法则求解,再加减求解即可;(2)先利用同底数幂的乘法和积的乘方运算法则求解,再加减求解即可.【详解】(1)解:()()6322423xy x y -+-6126126427x y x y =-61237x y =;(2)解:()()32224323x x x x -+⋅--66689x x x =-+-616x =-.【点睛】本题考查同底数幂的乘法、积的乘方、合并同类项,熟练掌握运算法则并正确求解是解答的关键.8.D【分析】根据积的乘方运算法则逐项计算,即可判断.【详解】A.()3263x yx y =,故该选项错误,不符合题意;B.()3328a a =,故该选项错误,不符合题意;C.()222ab a b -=,故该选项错误,不符合题意;D.()2224a a =,故该选项正确,符合题意;故选:D .【点睛】本题考查了积的乘方运算法则,熟练掌握运算法则是解题的关键.9.36【分析】利用同底数幂的乘法、积的乘方计算得到1234m n a b a b ++=,推出1324m n +=⎧⎨+=⎩,据此计算即可求解.【详解】解:∵212m n m n a b ab a b ++⋅=,∴()()()555212152034m n m n a b ab a b a b a b ++⋅===,∴1234m n a b a b ++=,∵a ,b 为非零实数,∴13m +=,24n +=,解得2m =,2n =,故()22333236n n n m m ==⨯=.故答案为:36.【点睛】本题考查同底数幂的乘法、积的乘方,熟练掌握运算法则并正确求解是解答的关键.10.(1)320;(2)5400.【分析】(1)根据同底数幂的除法法则计算即可;(2)根据幂的乘方以及同底数幂的乘法法则计算即可.【点睛】题考查积的积的乘方逆用,熟练掌握运算法则并能正确运用是解题的关键.13.0【分析】本题考查了幂的混合运算,利用同底数幂的除法运算法则及积的乘方即可求解,熟练掌握相关运算法则是解题的关键.【详解】解:原式4444x x =-+0=.14.A【分析】分别根据同底数幂的乘法法则,幂的乘方运算法则进行计算,得出结果再进行判断即可.【详解】A 、23235·a a a a +==;B 、()32236a a a ⨯==;C 、()42426a a a a ---÷==;D 、24246·a a a a +==;故选:A .【点睛】本题主要考查了同底数幂的乘法以及幂的乘方,解此题的关键是熟记幂的运算和负整数次幂运算法则.15.22a 【分析】先根据幂的乘方和同底数幂的乘法进行计算,再根据同底数幂的除法进行计算,最后合并同类项即可.【详解】解:()()2332a a a a ÷⋅+622a a a =÷+22a a =+22a =故答案为:22a .【点睛】本题考查了整式的混合运算,能正确根据整式的运算法则进行计算是解此题的关键,注意运算顺序.16.(1)67x (2)322n na b -(3)9150a【分析】直接利用幂的乘方运算法则以及同底数幂的乘法运算法则将原式变形即可得出答案.【详解】∵ax=3,ay=9,∴a2x+y=(ax)2•ay=9×9=81.故答案为81.【点睛】本题考查了幂的乘方运算以及同底数幂的乘法运算,正确将原式变形是解题的关键.答案第7页,共7页。

初中数学专题复习资料-----幂的运算性质

初中数学专题复习资料-----幂的运算性质

初中数学专题复习资料-----幂的运算性质【知识梳理】1、知识结构2、知识要点(1)同底数幂相乘,底数不变,指数相加,即 ←→a m+n =a m ·a nnm nma a a +=⋅(2)幂的乘方,底数不变,指数相乘,即←→a mn =(a m )n =(a n )m()mnnm aa=(3)积的乘方,等于每个因式分别乘方,即←→a n b n =(ab)n()nn nb a ab =(4)同底数幂相除,底数不变,指数相减,即 ←→a m-n =a m ÷a n (a ≠0)nm n ma a a -=÷(5)零指数和负指数:规定,(其中a ≠0,p 为正整数)(其中,m 、n 均为整数)10=a ppa a1=-3、中考预测对于幂的运算性质的考查,在中考中多以选择题和填空题出现,以考查对该性质的掌握,题目侧重于基础知识的掌握和运用,以及对该性质的理解,题目不会很难,但是会有一定的综合性,应准确把握和理解幂的运算性质,防止混淆。

(一)同底数幂的乘法【解题讲解-------基础训练】【例1】 1、(-)2×(-)3= 。

2、(-b )2·(-b )4·(-b)= ,(m+n )5·(n+m )8= 1212。

3、a 16可以写成( ) A .a 8+a 8; B .a 8·a 2 ; C .a 8·a 8 ; D .a 4·a 4。

4、下列计算正确的是( ) A .b 4·b 2=b 8 B .x 3+x 2=x 6 C .a 4+a 2=a 6 D .m 3·m =m 4【解题讲解-------能力提升】【例2】1、下面的计算错误的是( )A .x 4·x 3=x 7B .(-c )3·(-c )5=c 8C .2×210=211D .a 5·a 5=2a 102、x 2m+2可写成( ) A .2x m+2 Bx 2m +x 2 C .x 2·x m+1 D .x 2m ·x 23、若x ,y 为正整数,且2x ·2y =25,则x ,y 的值有( )对。

幂的运算复习课

幂的运算复习课

(- 3) × (- 3) (3)
100
101
例5:比较550与2425的大小。
解:∵550=(52)25=2525
2425<2525
∴550>2425
例6:已知210=a2=4b(其中a,b为正整数),
求ab的值。
解:∵210=a2 ∴(25)2=a2 即a=25=32 又∵210=4b ∴(22)5=45=4b 即b=5 ∴ab=325
本节课你的收获是什么?
பைடு நூலகம்
布置作业:
课本52页复习题8.3 1、 2 补充习题28页 小结与思考
a
例1 (1)地球可以近似地看成球体,半径约
为6.37×103km,地球的体积大约为多少?
你会计算地球的表面积吗? 请你查阅资料,找出计算球体表面积的公 式,再进行计算。
(2)地球可以近似地看成球体,半径约为 6.37×103km,地球的体积大约为多少? 地球上海洋总面积约3.6×108km2,海洋 总面积是地球表面积的百分之几? 按海洋的海水平均深度3.7×103m计算, 求地球上海水的体积(用科学记数法表示).
例2:计算
(1)4×22×84;(2)0.24×0.44×12.54;
1 100 101 ( ) 3 (3) 3
2.110 3 4 (4) 0.311 710
例3:计算
(1)计算:15,25,35,45, …,195; (2)1275的个位上的数字是几?
(3)5811 、 7318的个位上的数字分别 是几?
例4 :
(1)下列算式中,①a3· a3=2a3;②10×109=1019; ③(xy2)3=xy6;④a3n÷an=a3.其中错误的是( ) A、1个 B、2个 C、3个 D、4个 (2)在xm-1· ( ) =x2m+1中,括号内应填写的代 数式是( ) A、x2m B、x2m+1 C、x2m+2 D、xm+2

幂的运算专题复习

幂的运算专题复习

幂的运算专题复习【知识方法归纳】注意:零指数幂的意义“任何不等于0的数的0次幂都等于1”和负指数幂的意义“任何不等于0的数的负次幂等于它正次幂的倒数”知识点1 同底数幂的意义及同底数幂的乘法法则(重点)同底数幂是指底数相同的幂。

如如32与52或32)(b a 与52)(b a 等同底数幂的乘法法则:m n mn a a a ⋅=,即,同底数幂相乘,底数不变,指数相加。

【典型例题】1.计算(-2)2007+(-2)2008的结果是( ) A .22015 B .22007 C .-2 D .-220082.当a<0,n 为正整数时,(-a )5·(-a )2n 的值为( )A .正数B .负数C .非正数D .非负数3.(一题多解题)计算:(a -b )2m -1·(b -a )2m ·(a -b )2m+1,其中m 为正整数.知识点2 逆用同底数幂的法则 逆用法则为:n m n m a a a∙=+(m 、n 都是正整数)【典型例题】1.(一题多变题)(1)已知x m =3,x n =5,求x m+n . (2)一变:已知x m =3,x n =5,求x 2m+n ;(3)二变:已知x m =3,x n =15,求x m+n .知识点3 幂的乘方的意义及运算法则(重点)幂的乘方指几个相同的幂相乘。

幂的乘方的法则:()m n mn a a = (m 、n 是正整数) 即:幂的乘方,底数不变,指数相乘【典型例题】1.计算(-a 2)5+(-a 5)2的结果是( ) A .0 B .2a 10 C .-2a 10 D .2a 72.下列各式成立的是( )A .(a 3)x =(a x )3B .(a n )3=a n+3C .(a+b )3=a 2+b 2D .(-a )m =-a m3.如果(9n )2=312,则n 的值是( )A .4B .3C .2D .14.已知x2+3x+5的值为7,那么3x2+9x-2的值是( ) A .0 B .2 C .4 D .66.计算:(1)233342)(a a a a a +⋅+⋅ (2)22442)()(2a a a ⋅+⋅知识点4 积的乘方意义及运算法则积的乘方指底数是乘积的形式的乘方。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

幂的运算
第一部分第一部分 知识梳理知识梳理
一、 同底数幂的乘法同底数幂的乘法
1. 同底数幂的乘法
同底数幂相乘,底数不变,指数相加。

公式表示为:+m n m n a a a ⋅=()m n 、都是正整数
2. 同底数幂的乘法可以推广到三个或三个以上的同底数幂相乘,即
m n p m n p a a a a ++⋅⋅=()m n p 、、都是正整数。

注意点注意点::
(1) 同底数幂的乘法中,首先要找出相同的底数相同的底数相同的底数,运算时,底数不变底数不变
底数不变,直接把指数相加,所得的和作为积的指数.
(2) 在进行同底数幂的乘法运算时,如果底数不同如果底数不同如果底数不同,先设法将其转化为相同的底数相同的底数相同的底数,再按法则进行计算.
二、 幂的乘方和积的乘方幂的乘方和积的乘方
1. 幂的乘方
幂的乘方,底数不变,指数相乘.
公式表示为:()()m n mn a a m n =,都是正整数.
幂的乘方推广:[()]()m n p mnp a a m n p =,,都是正整数
2.积的乘方
积的乘方,把积的每个因式分别乘方,再把所得的幂相乘.
公式表示为:()()n n n ab a b n =是正整数
积的乘方推广:()()n n n n abc a b c n =是正整数
注意注意点点:
(1) 幂的乘方的底数是指幂的底数,而不是指乘方的底数.
(2) 指数相乘是指幂的指数与乘方的指数相乘,一定要注意与同底数幂相乘中“指数相加”
区分开.
(3) 运用积的乘方法则时,数字系数的乘方,应根据乘方的意义计算出结果.
(4) 运用积的乘方法则时,应把每一个因式都分别乘方,不要遗漏其中任何一个因式.
三、 同底数幂的除法同底数幂的除法
1. 同底数幂的除法 : 同底数幂相除,底数不变底数不变底数不变,,指数相减指数相减..
公式表示为:(0)m n m n a a a a m n m n −÷=≠>,、是正整数,且
同底数幂的除法推广:(0)m n p m n p a
a a a a m n p m n p −−÷÷=≠>+,,、、是正整数
2.零指数幂的意义零指数幂的意义:: 任何不等于不等于0的数的0次幂都等于1: 用公式表示为:01(0)a a =≠
3.负整数指数幂的意义负整数指数幂的意义::
任何不等于0的数的()n n −是正整数次幂,等于这个数的n 次幂的倒数.((先进行幂的运算然后
直接倒数直接倒数)): 用公式表示为:1(0)n n
a a n a −=
≠,是正整数 4.绝对值小于1的数的科学记数法 对于绝对值大于0小于1的数,可以用科学记数法表示的形式为10n a −×,其中110a ≤<,n
由原数左边起第一个不为零的数字前面的0的个数(含整数位上的零)所决定.
注意点注意点::
(1) 底数a 不能为0,若a 为0,则除数为0,除法就没有意义了.
(2) (0)a m n m n ≠>,、是正整数,且是法则的一部分,不要漏掉.
(3) 只要底数不为0,则任何数的零次方都等于1.1.
第二部分第二部分 例题精讲例题精讲
考点1.幂的运算法则幂的运算法则
例1. 计算计算
(1)26()a a −⋅; (2) 32()()a b b a −⋅−; (3)12()n a +; (4)2
232
−xy (5)53()a a −÷; (6)32(1)(1)a a +÷+
变式变式 计算计算计算
(1)35(2)(2)(2)b b b +⋅+⋅+ (2)3223()()x x −⋅−; (3)41n n a a ++÷;
总结总结:: 考点2.幂的法则的逆运算幂的法则的逆运算
例2.(1)已知23m =,24n =,求2m n +的值; (2)比较55544433334,5,的大小
(3)计算:2013201253()(2135× (4)已知323=+n m ,求n m 48⋅的值
变式变式
1.若n 为正整数,且72=n x ,求n n x x 2223)(4)3(−的值;
2.已知4432=−−c b a ,求4)161(
84−×÷c b n 的值。

考点3.零指数幂与负整式指数幂零指数幂与负整式指数幂
例3.把下列各数化为分数或小数的形式把下列各数化为分数或小数的形式
(1)23−; (2)3(3)−−; (3)25()3
−−; (4)34.810−−×
变式变式
1.一种花瓣的花粉颗粒直径约为0.0000065米,则0.0000065用科学记数法表示为 。

2.计算:450)2
3()32()971(−÷−−+
3.已知1)5(0=−y 无意义,且1023=+y x ,求x ,y 的值
考点4.幂的运算探究题幂的运算探究题
例4.观察下列算式: 221=,422=,823=,1624=,3225=,6426=,12827=, 25628=,……根据上述算式中的规律,你认为1032的末位数字应是
变式变式 运用所学的运用所学的运用所学的““幂的运算性质幂的运算性质””:+m n m n a a a ⋅=,()m n mn a a =, ()n n n ab a b =, m n m n a a a −÷=。

(1)已知334455543===c b a ,,,比较a ,b ,c 的大小;
(2)已知32=a ,62=b ,122=c ,找出a ,b ,c 之间的等量关系;
(3)试比较1417与1131的大小。

第三部分第三部分 强化训练强化训练
1. 下列运算中,正确的是( )
A.2232a a −= B.235()a a = C.369a a a ⋅= D.224(2)2a a =
2.下列运算正确的有( ) ①241111(((2(4)1222222
•=×××=×=;②33a a a •=;③339x x x •=; ④4442y y y •=;⑤336b b b +=
A.5个 B.4个 C.2个 D.0个
3.下列计算中错误的有( )
5210)1(a a a =÷,55)2(a a a a =÷,33)3(0=,(4)236a a a ⋅=,235)())(5(a a a −=−÷−,
A.1个
B.2个
C.3个
D.4个
4.若1139273n n ⋅⋅=,则n 的值为( )
A.2 B.3 C.4 D.5
5.若37()()()()k m n m n m n m n −•−•−=−,则k 的值是
6.计算201320122()(1.5)3
−×= . 7.计算()()2
232a a −÷的结果是 。

8.要使(x-1)0-(x+1)-2有意义,x 的取值范围应满足 。

9. 最薄的金箔的厚度为0.000000091m,用科学记数法表示为 m.
10.计算题
(1) ()()[]()()9
89y x x y y x y x −−÷−÷−+ (2)3232733(3)()(5)a a a a a −⋅+−⋅−
11.11.解答题解答题解答题
(1)6m n a +=,2n a =,求23m n a +的值的值..。

相关文档
最新文档