应用多元统计分析 习题解答
应用多元统计分析课后习题答案高惠璇

第三章 多元正态总体参数的检验
3-2 设X~Nn(μ,σ2In), A,B为n阶对称阵.
若AB =0 ,证明X′AX与X′BX相互独立.
证明的思路:记rk(A)=r. 因A为n阶对称阵,存在正交阵Γ,使得
Γ ′AΓ=diag(λ1,…,λr 0,..,0) 令Y=Γ′X,则Y~Nn(Γ′μ,σ2In),
(2x12
x22
2x1x2
22x1
14x2
65)
1 2 1 2
1
2
exp
1
212
2 2
(1
2
)
[
2 2
(
x1
1 ) 2
21 2(x1
1)(x2
2
)
2 1
(
x2
2
)
2
]
比较上下式相应的系数,可得:
1 2
2 2
1 2
2
1
2 1
1
1 2 1
2 1
1
2
1/
21
2 2
2
2
2 1
21 22 21 21
f (x; , ) a
a0 (2 ) p/ 2 |
(x )1
|1/ 2 ,当0 a
(x )
1
ba02
时,
其中 b2 2 ln[a(2 ) p/2 | |1/ 2 ] 2 ln[aa0 ] 0, 20
第二章 多元正态分布及参数的估计
因 0,的特征值记为1 2 p 0, i对应
3-1 设X~Nn(μ,σ2In), A为对称幂等 阵,且rk(A)=r(r≤n),证明
证明 因A为对称幂等阵,而对称幂等阵的
(完整版)应用多元统计分析课后答案_朱建平版

2.1.试叙述多元联合分布和边际分布之间的关系。
解:多元联合分布讨论多个随机变量联合到一起的概率分布状况,12(,,)p X X X X '=的联合分布密度函数是一个p 维的函数,而边际分布讨论是12(,,)p X X X X '=的子向量的概率分布,其概率密度函数的维数小于p 。
2.2设二维随机向量12()X X '服从二元正态分布,写出其联合分布。
解:设12()X X '的均值向量为()12μμ'=μ,协方差矩阵为21122212σσσσ⎛⎫ ⎪⎝⎭,则其联合分布密度函数为1/21222112112222122121()exp ()()2f σσσσσσσσ--⎧⎫⎛⎫⎛⎫⎪⎪'=---⎨⎬ ⎪⎪⎝⎭⎝⎭⎪⎪⎩⎭x x μx μ。
2.3已知随机向量12()X X '的联合密度函数为121212222[()()()()2()()](,)()()d c x a b a x c x a x c f x x b a d c --+-----=--其中1ax b ≤≤,2c x d ≤≤。
求(1)随机变量1X 和2X 的边缘密度函数、均值和方差; (2)随机变量1X 和2X 的协方差和相关系数;(3)判断1X 和2X 是否相互独立。
(1)解:随机变量1X 和2X 的边缘密度函数、均值和方差;112121222[()()()()2()()]()()()dx cd c x a b a x c x a x c f x dx b a d c --+-----=--⎰12212222222()()2[()()2()()]()()()()dd c c d c x a x b a x c x a x c dx b a d c b a d c -------=+----⎰ 121222202()()2[()2()]()()()()dd c c d c x a x b a t x a t dt b a d c b a d c ------=+----⎰ 2212122222()()[()2()]1()()()()d cdc d c x a x b a t x a t b a d c b a d c b a------=+=----- 所以 由于1X 服从均匀分布,则均值为2b a+,方差为()212b a -。
应用多元统计分析课后习题答案高惠璇部分习题解答(00004)市公开课金奖市赛课一等奖课件

[(
y1
aˆ0
)2
]
0
可得
ˆ
2
1 3
( y1
aˆ0 )2
( y2
aˆ0 )2
( y3
3aˆ0 )2
drf
ˆ
2 0
似然比统计量分子为
L(aˆ0
, ˆ 0 2
)
(2
)
3 2
(ˆ 0 2
)
3 2
exp[
3 2
].
第5页
5
第四章 回归分析
似然比统计量为
L(aˆ0 ,ˆ02 ) L(aˆ,bˆ,ˆ 2 )
第18页 18
第四章 回归分析
第19页 19
第四章 回归分析
等号成立 C(ˆ ) 0 (CC)1C • C(ˆ ) 0 ˆ.
第20页 20
第四章 回归分析
第21页 21
第四章 回归分析
第22页 22
第四章 回归分析
见附录P394定理7.2(7.5)式
第23页 23
第四章 回归分析
证实:(1)预计向量为 Yˆ Cˆ C(CC)1CY HY
yˆ
1 n
n i 1
yˆi
1 n
1n
Yˆ
1 n
1n
HY
1 n
(H1n )Y
1 n
1n
Y
y.
(因1n C张成的空间,这里有H1n 1n )
(2) 因 n ( yi y)( yˆi yˆ ) n ( yi yˆi yˆi y)( yˆi y)
0
ln
L
2
n
2
2
1
2( 2 )2
(Y
应用多元统计分析课后题答案

c) c)2
2( x1
a)( x2
c)]
其中 a x1 b , c x2 d 。求 (1)随机变量 X1 和 X 2 的边缘密度函数、均值和方差; (2)随机变量 X1 和 X 2 的协方差和相关系数; (3)判断 X1 和 X 2 是否相互独立。
(1)解:随机变量 X1 和 X 2 的边缘密度函数、均值和方差;
12
2 2
1/
2
exp
1 2
(x
μ)
12 21
12
2 2
1
(x
μ)
。
2.3 已知随机向量 ( X1 X 2 ) 的联合密度函数为
f
( x1 ,
x2 )
2[(d
c)( x1
a)
(b a)(x2 (b a)2 (d
μ)
1 n 1
n i 1
E(Xi
-
μ)(
X i
-
μ)
nE(X
μ)(X
μ)
Σ
。
故 S 为 Σ 的无偏估计。 n 1
2.9.设 X(1) , X(2) , ..., X(n) 是从多元正态分布 X ~ N p (μ, Σ) 抽出的一个简单随机样本,试求 S
c) 2(x1 a)(x2 a)2(d c)2
c)]
dx2
2(d c)(x1 a)x2 d dc 2[(b a)t 2(x1 a)t] dt
(b a)2 (d c)2
应用多元统计分析课后习题答案详解北大高惠璇习题解答公开课一等奖优质课大赛微课获奖课件

0 8
X (2)
X
(3)
0
X (5) CL4
第11页 11
第六章 聚类分析
② 合并{X(2),X(5)}=CL3,并类距离 D2=3.
0 D(3) 10
9
0 8
0
X (3)
CL4 CL3
③ 合并{CL3,CL4}=CL2,并类距离 D3=8.
D(4) 100
0
X (3) CL2
④ 所有样品合并为一类CL1,并类距离 D4=10.
n p nq nr2
(X
(k)
X
(q) )'( X
(k)
X
( p) )
n2p nr2
D
2 pk
nq2 nr2
Dq2k
n p nq nr2
(X
(k)
X
( p) )'( X
(k)
X
( p)
X
( p)
X
(q) )
n p nq nr2
(X
(k)
X
(q) )'( X
(k)
X
(q)
X
(q)
X
( p) )
第26页 26
故d*是一个距离.
第5页
5
第六章 聚类分析
(4) 设d (1)和d (2)是距离, 令d * d (1) • d (2).
d *虽满足前2个条件,但不一定满足三角不等式.
下面用反例来说明d *不一定是距离.
设di(j1)
d (2) ij
X (i) X ( j) (m 1), 则di*j
X (i) X ( j)
D
2 pk
nq nr
应用多元统计分析课后习题答案高惠璇三部分习题解答公开课一等奖优质课大赛微课获奖课件

max
0
L(0,0 )
max
L(
,
0
)
分子
|
1
20
|n/ 2
exp
1 2
n
( X ( )
1
0 )01( X ( )
0 )
|
1
20
|n/ 2
exp
1 2
n
tr[01
1
( X ( )
0 )( X ( )
0 )]
第17页 17
第三章 多元正态总体参数检查
Yr1
X BX
Y Γ BΓΓ
Y HY
(Yr
1
,,
Yn
)
H
22
Yn
由于Y1, …,Yr ,Yr+1 ,…,Yn互相独立,
故X′AX与X′BX互相独立.
第9页
9
第三章 多元正态总体参数检查
3-3 设X~Np(μ,Σ),Σ>0,A和B为p阶对称阵, 试证实 (X-μ)′A(X-μ)与(X-μ)′B(X-μ)互相独立
Np(μ,Σ)随机样本, X和Ax分别表示正态总体X样 本均值向量和离差阵,则由性质1有
Tx2 n(n 1)( X ) Ax1( X )
~ T 2 ( p, n 1).
令 Y(i) CX (i) d (i 1,..., n)
其中C是p p非退化常数矩阵, d是p 1常向量。
则 Y(i) ~ N p (C d,CC) (i 1,2,..., n)
max L(
, 0 )
max L(, ) ,
分子当ˆ X达最大,且最大值
L( X
, 0 )
(完整版)多元统计分析课后练习答案

第1章 多元正态分布1、在数据处理时,为什么通常要进行标准化处理?数据的标准化是将数据按比例缩放,使之落入一个小的特定区间。
在某些比较和评价的指标处理中经常会用到,去除数据的单位限制,将其转化为无量纲的纯数值,便于不同单位或量级的指标能够进行比较和加权。
其中最典型的就是0-1标准化和Z 标准化。
2、欧氏距离与马氏距离的优缺点是什么?欧氏距离也称欧几里得度量、欧几里得度量,是一个通常采用的距离定义,它是在m 维空间中两个点之间的真实距离。
在二维和三维空间中的欧氏距离的就是两点之间的距离。
缺点:就大部分统计问题而言,欧氏距离是不能令人满意的。
每个坐标对欧氏距离的贡献是同等的。
当坐标表示测量值时,它们往往带有大小不等的随机波动,在这种情况下,合理的方法是对坐标加权,使变化较大的坐标比变化较小的坐标有较小的权系数,这就产生了各种距离。
当各个分量为不同性质的量时,“距离”的大小与指标的单位有关。
它将样品的不同属性之间的差别等同看待,这一点有时不能满足实际要求。
没有考虑到总体变异对距离远近的影响。
马氏距离表示数据的协方差距离。
为两个服从同一分布并且其协方差矩阵为Σ的随机变量与的差异程度:如果协方差矩阵为单位矩阵,那么马氏距离就简化为欧氏距离,如果协方差矩阵为对角阵,则其也可称为正规化的欧氏距离。
优点:它不受量纲的影响,两点之间的马氏距离与原始数据的测量单位无关。
由标准化数据和中心化数据计算出的二点之间的马氏距离相同。
马氏距离还可以排除变量之间的相关性的干扰。
缺点:夸大了变化微小的变量的作用。
受协方差矩阵不稳定的影响,马氏距离并不总是能顺利计算出。
3、当变量X1和X2方向上的变差相等,且与互相独立时,采用欧氏距离与统计距离是否一致?统计距离区别于欧式距离,此距离要依赖样本的方差和协方差,能够体现各变量在变差大小上的不同,以及优势存在的相关性,还要求距离与各变量所用的单位无关。
如果各变量之间相互独立,即观测变量的协方差矩阵是对角矩阵, 则马氏距离就退化为用各个观测指标的标准差的倒数作为权数的加权欧氏距离。
应用多元统计分析课后答案

-4454.39
-62.75
9
3.41
0.04
0.2
67.86
98.51
1.25
-11.25
-11.43
10
1.16
0.01
0.54
43.7
100
1.03
-87.18
-7.41
11
30.22
0.16
0.4
87.36
94.88
0.53
729.41
-9.97
12
8.19
0.22
0.38
30.31
应用多元统计分析课后答案
第五章聚类分析
5.1判别分析和聚类分析有何区别?
答:即根据一定的判别准则,判定一个样本归属于哪一类。具体而言,设有n个样本,对每个样本测得p项指标(变量)的数据,已知每个样本属于k个类别(或总体)中的某一类,通过找出一个最优的划分,使得不同类别的样本尽可能地区别开,并判别该样本属于哪个总体。聚类分析是分析如何对样品(或变量)进行量化分类的问题。在聚类之前,我们并不知道总体,而是通过一次次的聚类,使相近的样品(或变量)聚合形成总体。通俗来讲,判别分析是在已知有多少类及是什么类的情况下进行分类,而聚类分析是在不知道类的情况下进行分类。
有序聚类就是解决样品的次序不能变动时的聚类分析问题。如果用 表示 个有序的样品,则每一类必须是这样的形式,即 ,其中 且 ,简记为 。在同一类中的样品是次序相邻的。一般的步骤是(1)计算直径{D(i,j)}。(2)计算最小分类损失函数{L[p(l,k)]}。(3)确定分类个数k。(4)最优分类。
5.7检测某类产品的重量,抽了六个样品,每个样品只测了一个指标,分别为1,2,3,6,9,11.试用最短距离法,重心法进行聚类分析。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章部分习题解答
第六章 聚类分析
6-1 证明下列结论:
(1) 两个距离的和所组成的函数仍是距离;
(2) 一个正常数乘上一个距离所组成的函数
仍是距离;
(3)设d为一个距离,c>0为常数,则 d * d
仍是一个距离;
d c
(4) 两个距离的乘积所组成的函数不一定是
距离;
证明 :(1)设d(1)和d(2)为距,离 令dd(1) d(2).
D r ( L )k m D p ( L 1 ) i , k D q ( L n 1 ) k ) D (p ( L 1 ) q D ( L )( k p ,q )
设第L+1步从类间距离矩阵 D(L) Di(L j) 出发,
20
第六章 聚类分析
因Dr(Lk) Dp (L q1) DL (kp,q)
D(0)
D(1)
0 4 6
0 9
0
16
7 3
10 5
0 8
0
① 合并{X(1),X(4)}=CL4,并类距离 D1=1.
0
D(2)
92 32
65
2
0 52 136
2
0 100
2
X(2) X(3) 0CX(L54)
14
第六章 聚类分析
② 合并{X(2),X(5)}=CL3,并类距离 D2=3.
(k)
X ( p) )'(X
( p)
X
(q) )
n p nq nr2
(X
(k)
X
(q) )'(X
( p)
X
(q) )
np nr
D
2 pk
nq nr
Dq2k
n p nq nr2
D
2 pq
27
第六章 聚类分析
解二:因样品间的距离定义为欧氏距离,利用
X(r)
1 nr
npX(p)
nqX(q)
Dr2k ( X (k) X (r) )'( X (k) X (r) )
di*kdk*,j对一i,切 k, j.
故d*=ad是一个距离. (3) 设d为一个距离,c>0为常数,显然有
①
di*j
dij dij c
0,且仅当 X(i)
X( j)时di*j
0;
②
di*j
dij dij c
dji dji c
d*ji,对一切 i, j;
4
第六章 聚类分析
③
d
* ij
d ij dij c
X1
X4
X2
X5
X3
0
1
2
3
4
5
6
7
8
Average Distance Between Clusters
16
第六章 聚类分析
6-4 利用距离平方的递推公式
D k 2 r p D p 2 kq D q 2 kD p 2 q|D p 2 k D q 2|k
来证明当γ=0,αp≥0,αq≥0,αp+αq+β≥1时,系统聚类中的类 平均法、可变类平均法、可变法、Ward法的单调性.
1.10.250.85
23
第六章 聚类分析
当把A与{B,C}并为一类时,并类距离
D 20 .8 5 0 .92 1 2D 1
故重心法法不具有单调性。
A
并类过程如下:
B
C
D(1) 0
1.1 0
110..01C B AD(2) 0
0.8 0
5GAr
D(3) 0
24
第六章 聚类分析
6-7 试推导重心法的距离递推公式(6.3.2);
pq(1)nnrp
(1)nq
nr
11
故可变类平均法具有单调性。
18
第六章 聚类分析
对于可变法,因
p0,qp12120,1q21210,(11)
故可变法具有单调性。
对于离差平方和法,因
0,p
nk nr
np nk
0,q
nk nr
nq nk
0,
pqnnkr
np nk
nk nr
nq nk
nk nr nk
a dbc
n
n
(xtixi)2 (xtjxj)2
(ab)c(d) (ac)b(d)
t1
t1
(6.2.2)
9
第六章 聚类分析
利用两定量变量夹角余弦的公式:
n
xti xtj
cosij
t 1 n
n
其中
xt2i
xt2j
t 1
t 1
n
n
n
xti xtj a, xt2iab, xt2jac
t 1
t1
xi)2
n
t1
xt2i
nxi2
abnab2 n
(ab)[n(ab)]1(ab)(cd)
nn8源自第六章 聚类分析n (xtj
t1
xj)2
n
t1
xt2j
nx2j
acnac2 n
(ac)[n(ac)]1(ac)(bd)
n
n
故二值变量的相关系数为:
n
Cij(7)
(xtixi)x(tjxj)
t1
Dr2k
np nr
2
(X (k)
X
(
p)
)'(
)
nq nr
2
(X (k)
X (q))'( )
npnq nr2
(X
(k)
X
( p) )'( X
(k)
X
(q) )
npnq nr2
(X
(k)
X
(q) )'( X
(k)
X
( p) )
n2p nr2
Dp2k
nq2 nr2
Dq2k
npnq nr2
(X (k)
Dr2kn nrpDp 2kn nq r Dq2knn pn r2qDp 2q
解一: 利用
X(r)
1 nr
npX(p)nqX(q)
如果样品间的距离定义为欧氏距离,则有
Dr2k(X(k) X(r))('X(k) X(r))
npnrnq
X(k)
np nr
X(p)
nq nr
X(q)'
25
第六章 聚类分析
11
故离差平方和法具有单调性。
19
第六章 聚类分析
6-5 试从定义直接证明最长和最短距离法的单调性.
证明:先考虑最短距离法:
设第L步从类间距离矩阵
D D (L1)
(L1) ij
D(L1) pq
miD ni(L j1)
故合并Gp和Gq为一新类Gr,这时第L步的并类距离:
DL Dp(Lq1)
且新类Gr与其它类Gk的距离由递推公式可知
证明:设第L次合并Gp和Gq为新类Gr后,并类距离DL = Dpq,且必有Dpq2≤Dij2 . 新类Gr与其它类Gk的距离平方的
递推公式 ,当γ=0,αp≥0,αq≥0, αp+αq+ β ≥1 时
D k 2 rp D p 2 k q D q 2 k D p 2 q (p q ) D p 2 q D p 2q
t1
t1
故有 ci(j9)co ijs(ab a )a (c) (6.2.3)
10
第六章 聚类分析
6-3 下面是5个样品两两间的距离阵
0
D(0)
D(1)
4 6
0 9
0
16
7 3
10 5
0 8
0
试用最长距离法、类平均法作系统聚类,并画出谱系
聚类图.
解:用最长距离法:
① 合并{X(1),X(4)}=CL4,
X
(k)
1 nr
(np X ( p) nq X (q) )
X (k) X (k) 2 np X (k) X ( p) 2 nq X (k) X (q)
nr
nr
1 nr2
n
2 p
X
( p) X
( p)
2npnq X
( p) X
(q)
nq2 X
(q) X
(q)
28
第六章 聚类分析
利用 X(k)X(k) n1r npX(k)X(k) nqX(k)X(k)
④ 所有样品合并为一类CL1,并类距离 D4=10.
12
第六章 聚类分析
最长距离法的谱系聚类图如下:
Name of Observation or Cluster
X1
X4
X2
X5
X3
0
1
2
3
4
5
6
7
8
9
10
Maximum Distance Between Clusters
13
第六章 聚类分析
用类平均法:
n
(xti xi)(xtj xj )
rij
t1 n
n
(xti xi)2
(xtj xj )2
t1
t1
7
第六章 聚类分析
n
(xti xi)(xtj
t1
n
xj) xtixtj
t1
nxixj
anabac nn
1[an(ab)(ac)]1[a(abcd)(ab)(ac)]
n
n
adbc n
n
(xti
nq2 nr2
n1r2(nqnr
nqnp);nnr2p2