集成电路设计课程实验报告

合集下载

集成电路实验报告

集成电路实验报告

集成电路分析与设计实验报告姓名:胡鑫旭班级:130242学号:13024229成绩:目录实验2 Linux 环境下基本操作 (3)1.实验目的 (3)2.实验设备与软件 (3)3.实验内容和步骤 (3)4.实验结果和分析 (3)5.心得体会 (5)实验3 RTL Compiler 对数字低通滤波器电路的综合 (6)1.实验目的 (6)2.实验设备与软件 (6)3.实验内容与步骤 (6)4.实验结果与分析 (6)5.心得体会 (12)实验4 NC 对数字低通滤波器电路的仿真 (12)1.实验目的 (12)2.实验设备与软件 (13)3.实验内容与步骤 (13)4.实验结果与分析 (13)5.心得体会 (15)实验5 反相器设计 (16)1.实验目的 (16)2.实验设备与软件 (16)3.实验内容与步骤 (16)4.实验结果与分析 (18)5.心得体会 (21)实验2 Linux 环境下基本操作1.实验目的1. 熟悉linux 文件、目录管理命令。

2. 熟悉linux 文件链接命令。

3. 熟悉linux 下文件编辑命令。

2.实验设备与软件集成电路设计终端Linux RedHat AS43.实验内容和步骤1.系统登陆启动计算机,选择启动linux输入用户名:cdsuser,输入密码:cdsuser至此,完成系统启动,并作为用户cdsuser 登录2. 创建终端和工作文件夹在桌面区域单击右键,选择New Terminal,至此进入命令行模式(可根据需要打开多个)。

键入察看当前目录命令:pwd ↙说明:此时出现的是当前用户的根文件夹路径。

路径指的是一个文件夹或文件在系统中的位置。

Linux 根路径为“/”;当前路径为“./”; 当前路径的上一级路径为“../ ”。

使用从根路径开始的路径名称成为绝对路径,如“/home/holygan/”。

利用“../”,“./”等方式定义的路径名称成为相对路径,如“../holygan/”。

本科生课-集成电路版图设计-实验报告

本科生课-集成电路版图设计-实验报告

西安邮电大学集成电路版图设计实验报告学号:XXX姓名:XX班级:微电子XX日期:20XX目录实验一、反相器电路的版图验证1)反相器电路2)反相器电路前仿真3)反相器电路版图说明4)反相器电路版图DRC验证5)反相器电路版图LVS验证6)反相器电路版图提取寄生参数7)反相器电路版图后仿真8)小结实验二、电阻负载共源放大器版图验证9)电阻负载共源放大器电路10)电阻负载共源放大器电路前仿真11)电阻负载共源放大器电路版图说明12)电阻负载共源放大器电路版图DRC验证13)电阻负载共源放大器电路版图LVS验证14)电阻负载共源放大器电路版图提取寄生参数15)电阻负载共源放大器电路版图后仿真16)小结实验一、反相器电路的版图验证1、反相器电路反相器电路由一个PMOS、NPOS管,输入输出端、地、电源端和SUB 端构成,其中VDD接PMOS管源端和衬底,地接NMOS管的漏端,输入端接两MOS管栅极,输出端接两MOS管漏端,SUB端单独引出,搭建好的反相器电路如图1所示。

图1 反相器原理图2、反相器电路前仿真通过工具栏的Design-Create Cellview-From Cellview将反相器电路转化为symbol,和schemetic保存在相同的cell中。

然后重新创建一个cell,插入之前创建好的反相器symbol,插入电感、电容、信号源、地等搭建一个前仿真电路,此处最好在输入输出网络上打上text,以便显示波形时方便观察,如图2所示。

图2 前仿真电路图反相器的输入端设置为方波信号,设置合适的高低电平、脉冲周期、上升时间、下降时间,将频率设置为参数变量F,选择瞬态分析,设置变量值为100KHZ,仿真时间为20u,然后进行仿真,如果仿真结果很密集而不清晰可以右键框选图形放大,如图3所示。

图3 前仿真结果3、反相器电路版图说明打开之前搭建好的反相器电路,通过Tools-Design Synthesis-Laout XL新建一个同cell目录下的Laout文件,在原理图上选中两个MOS管后在Laout中选择Create-Pick From Schematic从原理图中调入两个器件的版图模型。

集成电路实验报告

集成电路实验报告

班级:XX姓名:XXX学号:XXXXXX指导老师:XXX实验日期:XXXX年XX月XX日一、实验目的1. 理解集成电路的基本组成和工作原理。

2. 掌握基本的集成电路设计方法,包括原理图设计、版图设计、仿真分析等。

3. 学习使用集成电路设计软件,如Cadence、LTspice等。

4. 通过实验加深对集成电路理论知识的理解,提高动手能力和问题解决能力。

二、实验内容本次实验主要包括以下内容:1. 原理图设计:使用Cadence软件绘制一个简单的CMOS反相器原理图。

2. 版图设计:根据原理图,使用Cadence软件进行版图设计,并生成GDSII文件。

3. 仿真分析:使用LTspice软件对设计的反相器进行仿真分析,测试其性能指标。

4. 版图与原理图匹配:使用Cadence软件进行版图与原理图的匹配,确保设计正确无误。

三、实验步骤1. 原理图设计:- 打开Cadence软件,选择原理图设计模块。

- 根据反相器原理,绘制相应的电路符号,包括NMOS和PMOS晶体管、电阻和电容等。

- 设置各个元件的参数,如晶体管的尺寸、电阻和电容的值等。

- 完成原理图设计后,保存文件。

2. 版图设计:- 打开Cadence软件,选择版图设计模块。

- 根据原理图,绘制晶体管、电阻和电容的版图。

- 设置版图规则,如最小线宽、最小间距等。

- 完成版图设计后,生成GDSII文件。

3. 仿真分析:- 打开LTspice软件,选择仿真模块。

- 将GDSII文件导入LTspice,生成对应的原理图。

- 设置仿真参数,如输入电压、仿真时间等。

- 运行仿真,观察反相器的输出波形、传输特性和功耗等性能指标。

4. 版图与原理图匹配:- 打开Cadence软件,选择版图与原理图匹配模块。

- 将原理图和版图导入匹配模块。

- 进行版图与原理图的匹配,检查是否存在错误或不一致之处。

- 修正错误,确保版图与原理图完全一致。

四、实验结果与分析1. 原理图设计:- 成功绘制了一个简单的CMOS反相器原理图,包括NMOS和PMOS晶体管、电阻和电容等元件。

数字集成电路设计实验报告

数字集成电路设计实验报告

数字集成电路设计实验报告
摘要:
本实验旨在设计一个数字集成电路,实现特定功能。

本报告将介绍实验目的、背景和理论知识、设计方法、实验步骤、结果分析和讨论以及实验总结。

1.实验目的:
设计一个数字集成电路,实现特定功能,并通过实验验证设计的正确性和可行性。

2.背景和理论知识:
简要介绍数字集成电路的基本概念和原理,并介绍与本实验相关的理论知识,包括逻辑门、布尔代数、时序电路等。

3.设计方法:
本部分将详细介绍实验中采用的设计方法,包括采用的逻辑门类型、布尔代数的转换方法、时序电路的设计方法等。

4.实验步骤:
本部分将详细描述实验的具体步骤,包括电路图的绘制、器件的选择和布局、逻辑设计的步骤、时序电路的设计方法、电路的仿真等。

5.结果分析和讨论:
本部分将对实验结果进行分析和讨论,比较设计与实际结果的差异,分析可能的原因,并讨论实验的局限性和改进方向。

6.实验总结:
总结实验过程中的收获和经验,评估实验的结果和设计的可行性,并提出对未来工作的展望和建议。

通过对数字集成电路设计实验的详细介绍和分析,本报告旨在提供一份完整的实验报告,帮助读者理解实验过程和结果,并为今后的设计工作提供参考。

模拟cmos集成电路设计研究生课程实验报告

模拟cmos集成电路设计研究生课程实验报告

模拟CMOS集成电路设计研究生课程实验报告一、概述在现代集成电路设计领域,模拟CMOS集成电路设计一直是一个备受关注的课题。

本实验旨在通过对模拟CMOS集成电路设计相关内容的学习和实践,加深对该领域的理解,并提升设计实践能力。

本文将介绍实验内容、实验过程和实验结果,并结合个人观点对模拟CMOS集成电路设计进行探讨。

二、实验内容1. 实验名称:基于CMOS工艺的运算放大器设计与仿真2. 实验目的:通过对基本运算放大器的设计与仿真,理解模拟CMOS 集成电路设计的基本原理和方法。

3. 实验要求:设计一个基于CMOS工艺的运算放大器电路,并进行仿真验证。

4. 实验器材与软件:PSPICE仿真软件、计算机、基本电路元件。

三、实验过程1. 设计基本运算放大器电路a. 根据理论知识,选择合适的CMOS工艺器件,并进行电路拓扑设计。

b. 计算电路的主要参数,如增益、带宽、输入输出阻抗等。

c. 优化设计,满足实际应用需求。

2. 运算放大器电路仿真a. 在PSPICE软件中建立电路模型。

b. 分析仿真结果,验证设计参数是否符合预期。

c. 优化设计,使得电路性能达到最佳状态。

四、实验结果经过反复设计与仿真,最终得到了一个基于CMOS工艺的运算放大器电路。

在PSPICE软件中进行仿真测试,结果表明设计的运算放大器电路性能良好,能够满足设计要求。

在输入端加入正弦波信号,输出端得到经过放大和处理的信号,验证了电路的正常工作。

五、总结与回顾通过本次实验,我深刻理解了模拟CMOS集成电路设计的基本原理和方法。

从初步设计到最终仿真,我逐步掌握了电路设计与优化的过程,并将理论知识应用到实践中。

在今后的学习和工作中,我将继续深入研究模拟CMOS集成电路设计,不断提升自己的技能。

六、个人观点与理解模拟CMOS集成电路设计是一个复杂而又具有挑战性的领域。

在实验过程中,我深刻意识到了理论知识与实际应用的紧密通联,只有不断实践与探索,才能够更好地理解与掌握。

专用集成电路实验报告56

专用集成电路实验报告56

专用集成电路实验报告56
专用集成电路实验报告56
一、实验介绍
本次实验是关于专用集成电路的实验,通过搭建实际电路并进行测试,以加深对专用集成电路原理和应用的理解。

二、实验原理
三、实验过程
1.首先,根据实验要求,选择一个具体的应用场景并找到相关的专用
集成电路芯片。

本次实验选择了一个用于数码相机的图像传感器集成电路。

2.根据芯片手册,获取其引脚定义和使用方法。

了解芯片的输入输出
信号特性,并设计出相应的电路接线。

3.接下来,搭建实际电路。

根据设计图纸,将专用集成电路芯片与其
他电路元器件连接起来,确保连接正确、稳定。

4.完成电路搭建后,对电路进行电气测试。

通过调整电源电压和信号
输入,观察电路的输出波形和电流大小,验证电路的性能和功能。

5.在实验过程中,及时记录实验数据和观察结果。

根据需求,可以对
电路参数、性能和功能进行测试和分析。

四、实验结果
经实验验证,所搭建的专用集成电路电路运行正常,输入信号能够正
确地输出,符合芯片手册的规定。

实验数据和观察结果见附表1
五、实验总结
通过本次实验,我们深入了解了专用集成电路的原理和应用,学习了如何选择合适的芯片、设计电路接线和进行测试分析。

同时,本次实验也加深了我们对电路搭建和调试的理解,培养了我们的动手能力和团队合作意识。

在今后的学习和工作中,我们将更加注重专用集成电路的应用研究和创新,为电子科技的发展做出更大的贡献。

附表1:实验数据和观察结果
...
(请根据实际情况填写实验数据和观察结果)。

集成电路实验报告

集成电路实验报告

集成电路实验报告本次实验主要介绍集成电路的基本概念和电路设计方法,通过设计和制作CMOS场效应晶体管(MOSFET)的放大器电路来实现对这些知识的应用。

本次实验的主要内容如下:一、实验器材和材料本次实验所使用的器材和材料:1、计算机2、激光打印机3、示波器4、信号源5、直流电源6、理想电感7、电容8、MOSFET二、实验原理本次实验涉及的知识点包括:1、MOSFET的基本概念和特性MOSFET是一种场效应管,在电子学中起到了很重要的作用。

它的主要特点是控制端的电压可以改变通道区中的电子密度,从而控制电流流过管子中的通道。

根据不同的控制方式,MOSFET可以分为N型和P型两种。

2、放大器电路的基本原理放大器电路是一种能够放大电信号的电路,可以将小电信号放大为相对较大的电信号。

根据不同的信号类型和放大器类型,可以设计不同种类的放大器电路。

三、实验内容和步骤本次实验的实验内容和步骤如下:1、设计MOSFET的放大器电路首先,我们需要根据实验所需放大器的需求,设计出一种合理的MOSFET放大器电路。

具体步骤如下:(1)根据输入信号和输出信号的大小,计算出所需放大器的放大倍数。

(2)根据放大倍数,选择合适的与MOSFET配合使用的电容和电阻。

(3)将MOSFET、电容和电阻按照电路图的样式和连接方式进行连接。

制作和测试MOSFET放大器电路,具体步骤如下:(2)使用万用表对焊接完成的电路进行测试,确保电路连接正常。

(3)将电路连接到直流电源和信号源上,调节电源和信号源的参数,测试电路的放大效果。

四、实验结果分析本次实验的主要结果包括设计和制作的MOSFET放大器电路以及测试结果。

通过测试结果的分析,我们可以对电路的性能进行评估,并确定是否满足所需放大倍数的要求。

五、实验总结通过本次实验,我们了解了集成电路的基本概念和电路设计方法,并掌握了MOSFET放大器电路的设计和制作方法。

通过实验结果的分析,我们也可以更好地理解和掌握集成电路的相关知识和应用。

集成电路实验报告(信号的放大-滤波-AD采样电路)

集成电路实验报告(信号的放大-滤波-AD采样电路)

Multisim实验报告内容姓名:胡俊超学号:200805010615一、题目:基于Multisim信号采集处理系统在multisim软件基础上,主要是实现信号的放大,滤波,AD采样电路。

二、设计要求:1.系统的电源输入为正负15V,系统各个电源都由集成电路产生的稳压电压供给。

2. 输入信号的为100Hz或者500Hz或者1kHz,幅度为10mv。

3. 放大电路要求:考虑提高输入阻抗;考虑放大后的信号是否超过的AD的输入范围;放大倍数由信号与AD的输入决定。

可以考虑集成仪表运放。

4. 滤波电路:四阶巴特沃思低通滤波器,截止频率为500Hz。

计算各个电阻和电容的取值。

5.AD采样;可以使用8位和16位AD,并设定AD的电压范围为0-5v。

考虑采样定理的约束。

6.DA输出;AD的数字信号直接输出给DA模块7.对比原始信号和DA输出信号。

三,各个部分详细的设计方法和思路。

电源部分:原理分析:由于题目给出了直流15V的条件,考虑到整个系统中所采用的741运放以及AD,DA的采样参考电压,所以选取5V和-5V供电电压。

集成电路中78系列的线性稳压器件7812以及7805可以构成两级稳压达到要求的5V电源,78系列压差在3V以上的范围,也满足我们的设计要求,同理,采用7912和7905即可以得到-5的电压。

电路原理图:构成5V电源电压电路图构成-5V电源电压原理图信号输入和放大部分原理分析:信号的幅度为10mV,频率可以选择,此时选择500Hz,放大倍数放大30倍。

为了提高输入阻抗,考虑采用集成运放741作为输入,用反向放大,便于计算放大倍数,再用741做一次同比列的方向放大,这样信号的相位和输入信号无相移,构成了线性无相移的放大环节。

原理电路图(放大部分)放大部分仿真结果图中可以看到输入信号为红色10mV的VPP幅值,输出为蓝色300mV的VPP,所以放大了30倍,输入输出周期相同,相位一致。

放大信号的滤波部分原理分析;四阶巴特沃斯低通滤波器,技术指标要求Wn=500Hz ,由于考虑到输入信号角频率是500Hz,所以将Wn提高到550Hz,在设计滤波器是取滤波电容C3和C4的值相等,R6和R7相等,R12和R10相等,C8和C7的值相等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

VLSI设计课程实验报告
一、第一题
1、实验要求
从L-Edit的spr/examplel/lightslb.tdb库中研究一个六管电路,将其还原成CMOS电路结构并说明逻辑功能。

我们选择三输入的或非门作为讨论对象。

2、三输入的或非门的版图
图1 三输入或非门的版图
3、版图的分析
如图1,从左到右上面的三个MOS管分别标记为M1、M2和M3,下面的三个为M4、M5和M6。

其中粉红色的三个长方形为栅极,分别连接输入信号A、B和C。

黑色的接触孔连接第一层金属和MOS管有源区,白色的接触孔连接第一层金属和第二层金属。

观察下面的三个MOS管,M4源极接地,漏极接OUT;M5和M4公用一个漏极,M5源极接地;M6和M5公用一个源极,漏极接OUT,即M4、M5和M6并联。

同理,可分析出M1、M2和M3串联到电源。

所以,版图为3输入的或非门。

在Ledit下执行Tools/Extract命令,即可将版图提取为网表文件,可知六个晶体管的L=2um,W=28um,PMOS管的衬底都接电源,NMOS管的衬底都接地。

4、三输入或非门电路图
图2 三输入或非门的电路图
二、第二题
1、实验要求
基于CSMC0.6um dpdm CMOS工艺规则以及SPICE参数,画出一个CMOS 反向器,要求P管的沟道宽度是N管的3倍,并在输入激励的tr为500ps,tf为300ps时,用T-SPICE进行模拟,并分别给出负载Cl为0.01pf和1pf时的反向器延时tr和tf。

2、电路图
图3 反相器的电路图
参数设置:
NMOS L=0.6u W=3u AD=5.7p PD=9.8u AS=5.7p PS=9.8u
PMOS L=0.6u W=9u AD=17.1p PD=21.8u AS=30.06p PS=25.4u
电源电压为5V,输入信号的高低电平分别为 5V,0V
3、绘制的版图
图4 0.6um 非门的版图
PMOS管的有源区面积较大,为了更好的工作,在PMOS管的源极和电源之间的接触使用2列接触孔。

4、仿真文件
* Circuit Extracted by Tanner Research's L-Edit V7.12 / Extract V4.00 ; * TDB File: C:\result\bantu\invertor, Cell: L_inv
* Extract Definition File: C:\result\bantu\csmc.ext
* Extract Date and Time: 03/29/2007 - 22:49
.include csmc06_dpdm.md
* NODE NAME ALIASES
* Main circuit: Invertor
M1 4 3 2 2 NMOS L=0.6u W=3u AD=5.7p PD=9.8u AS=5.7p PS=9.8u
* M1 DRAIN GATE SOURCE BULK (-0.8 -11.6 -0.2 -8.6)
M2 4 3 1 1 PMOS L=0.6u W=9u AD=17.1p PD=21.8u AS=30.06p PS=25.4u
* M2 DRAIN GATE SOURCE BULK (-0.8 -3 -0.2 6)
C1 4 2 0.01pf
V3 3 2 pulse(0.0 5.0 200ps 500ps 300ps 1100ps 2500ps)
V1 1 2 5v
V2 2 0 0
.op
.tran 1p 2500p
.measure tran trise trig v(OUT) val=0.5 rise=2 targ v(OUT) val=4.5 rise=2 .measure tran tfall trig v(OUT) val=0.5 rise=2 targ v(OUT) val=4.5 rise=2 .print tran V(3) V(4)
* Total Nodes: 4
* Total Elements: 2
* Extract Elapsed Time: 1 seconds
.END
5、仿真结果
1)电压传输特性
如图4,反相器的VTC具有非常窄的过渡区,这是由于在开关过渡期间的高增益造成的,此时NMOS和PMOS同时导通且处于饱和状态。

图5 反相器的电压传输特性
2)输出信号的上升和下降时间
图6 负载电容为0.01pf 时的瞬时分析结果
上升时间: 130ps 下降时间: 177ps 传播延时pLH t =70ps 传播延时pHL t =112ps
pLH t 小于pHL t ,因为:
L eqp pLH C R t 69.0= (2.1) L eqn pH L C R t 69.0= (2.2)
由于PMOS 管的导通电阻小于NMOS ,故pLH t 小于pHL t 。

可见,反相器输出信号有以下性质;
1) 上升时间和下降时间均比输入信号的小,这是反相器的过渡区很窄,且具有高
增益的结果。

2) 输出高电平和低电平分别为VDD 和GND ,换言之,电压摆幅等于电源电压,因
而抗噪声能力很强。

图7 负载电容为1pf 时的瞬时分析结果
由图4,可见输出信号低电平在3.1V 左右,也就是说,反相器已经不能正常工作。

设MOS 管的等效导通电阻为n R ,则近似的传播延时正比于时间常数L n C R ,由于输出电容L C 过大,导致输出电压的变化过慢,跟不上输入信号的改变来不及达到额定值,故输出高电平只有2.7V 左右,输出低电平约为1.2V 。

下面,我们仿真一下该情况下对输入阶跃信号的响应,如图8所示反相器的
pHL t =2628ns,经过10ps 后,反相器才放电完毕,输出降低为0,显然对于前面所加的周期为2500ps 的脉冲信号,反相器不能正常工作。

图8 反相器在大负载电容下的阶跃响应。

相关文档
最新文档